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Konzultant: doc. RNDr. Karel Najzar, CSc.
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Abstract

In the present thesis we show that we can accelerate the convergence speed
of restarted GMRES processes with the help of rank-one updated matrices of the
form A − byT , where A is the system matrix, b is the right-hand side and y is
a free parameter vector. Although some attempts to improve projection methods
with rank-one updates of a different form have been undertaken (for example in
Eirola, Nevanlinna [17] or in Weiss [76] and Wagner [71]), our approach, based on
the Sherman-Morrison formula, is new. It allows to solve a parameter dependent
auxiliary problem with the same right-hand side but a different system matrix.
Regardless of the properties of A we can force any convergence speed of the second
system when the initial guess is zero. Moreover, reasonable convergence speed of
the second system is able to overcome stagnation of the original problem. This has
been tested on different kinds of problems from practice. The computation of the
parameter vector y ∈ Rn as well as computations with the rank-one updated matrix
add only little costs to the restarted method.

When the initial guess is nonzero (for example at the end of restart cycles), we
minimize residual norms over all possible parameter vectors. Stepwise minimization
does not seem lucrative, but theoretical investigation of global minimization shows
that we can project implicitly on subspaces of a dimension twice as large as the
iteration number. In addition, we combine stepwise minimization with a precondi-
tioning technique with the help of updated matrices of the form A−AdyT for some
d ∈ Rn. In numerical experiments it proved to be able to overcome stagnation of
restarted GMRES.

We have also worked out results about the spectrum of the rank-one updated
matrix. In theory, one can create any spectrum of A − byT by the choice of the
parameter vector y ∈ Rn. In practice it is only feasible to prescribe Ritz values
of the auxiliary matrix. But when we assume we have a nearly normal matrix
also modification of selected eigenvalues can be achieved. Based on these ideas, we
have constructed algorithms for both normal and nonnormal matrices. In problems
where spectral properties hampered convergence, these techniques could accelerate
the GMRES process.
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Notations

In this thesis we will use the following abbreviations:

AT := the transposed matrix A
AH := the transposed and complex conjugated matrix A
A−2 := A−1 ·A−1

diag(A) := the diagonal matrix with the diagonal elements of A
diag(λ1, . . . , λn) := the diagonal matrix with elements λ1, . . . , λn

xT := the transposed vector x
xT y := the Euclidean inner product of two real vectors
‖x‖ := the square root

√
xT x

‖A‖ := the matrix norm associated with the above vector norm
‖A‖F := the Frobenius norm of A
In := the identity matrix of dimension n, I0 being the empty matrix
ei := the ith column of the identity matrix of the involved space
dim(W) := the dimension of the subspace W
rank(A) := the rank of the matrix A
ai,j := the element of the matrix A in its ith row and in its jth column
{x1, . . . , xm} := the sequence of vectors x1, . . . , xm

(x1, . . . , xm) := the matrix whose columns are the vectors x1, . . . , xm

σ(A) := the spectrum of the matrix A
λ̄ := the complex conjugated value λ ∈ C
x̄ := the complex conjugated vector x ∈ Cn

Re(x) := the real part of a complex value or vector
Im(x) := the imaginary part of a complex value or vector





Preface

In modern scientific computation solvers of linear and nonlinear systems of equations
are tools of primary importance. For both problems a large scale of methods has
been proposed, but many theoretical and practical questions remain unanswered. In
this work we consider the solution of a system of linear equations characterized by
a matrix A ∈ Rn×n, a right-hand side b ∈ Rn and an equation

Ax = b (1)

with unknown x ∈ Rn. It focusses on applications where A is a general nonsingu-
lar matrix, without assuming symmetry or other special properties. Leaving aside
direct solvers and preconditioning techniques, we concentrate on iterative methods,
especially on projection methods based on Krylov subspaces. We try to improve
methods that belong to this class and that in addition cannot be implemented with
short recurrences. They are more robust than methods allowing short recurrences,
but in modern problems they have to be restarted to avoid too large computational
and storage costs, thus loosing convergence properties. The present thesis specializes
on techniques to accelerate convergence speed of restarted Krylov subspace methods
and proposes new approaches to achieve this. The new approaches were inspired
by a series of papers by Arioli, Greenbaum, Pták and Strakoš ([2], [30] and [31]).
It proves the existence of matrices and right-hand sides yielding a prescribed con-
vergence curve when the GMRES method is applied. In addition, it shows how to
construct such linear systems and it is possible to prescribe the spectrum of the ma-
trix too. In this thesis we show that we can define a small rank update of A which
belongs to the class of linear systems with a given convergence speed. Alternatively
we can choose the updated matrix such that it has arbitrary spectrum. It is possible
to exploit the updated system for solving the original system (1) with the help of
the Sherman-Morrison formula for inverting rank-m updates, m ≤ n. Favorable
properties of the updated system appear to accelerate the first system too. In the
present work we restrict ourselves wittingly to a very precise exploitation of the
Sherman-Morrison formula. It offers many acceleration options and gives raise to
theoretical questions. Other exploitations have not been investigated although they
might be as interesting.

In the first chapter we give a survey of the most popular projection methods.
We point out advantages of projection compared with other strategies in the con-
text of solving the problem (1) and we list some important properties of projection
methods in general. Among others, we turn our attention to the choice of the Petrov-
Galerkin orthogonality condition and to the choice of the space to project onto. It
turns out Krylov subspaces are in some sense optimal when solving linear systems
with the help of projections. The remaining of the chapter describes well-known pro-
jection methods, ranging from the classical conjugate gradient method that dates
from back in the early fifties to recently proposed techniques to improve the restarted
GMRES method. We apply some of the methods in numerical examples in order
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to compare them with our new approaches. All methods are treated explicitly from
the projectional point of view without addressing implementational details such as
the generation of bases, solution of least-squares problems or Hessenberg systems
(algorithms connected with bases of the individual methods are displayed in the last
chapter). We feel that, although the role of projective processes in Krylov subspace
methods has been studied by others (e.g. in Eiermann, Ernst, Schneider [16], [18]),
these results stay on a relatively abstract level, especially when the involved projec-
tion has a complicated character. On the other hand, the projection that underlies a
method is the only key to convergence behavior if no information about structural,
spectral or other properties of the matrix is a priori available. We have tried to
give for every method a detailed description of the projector that characterizes it.
We also treat truncated, restarted and accelerated restarted methods in this manner
and even methods that were originally not conceived as projection methods. A more
profound description of some of these methods which includes comparing numeri-
cal experiments can be found in our papers [13] and [65] published together with
J. Źıtko (the second one is written in Czech). The first chapter does not contain
any original results apart from the generalization of a residual based version of the
GMRES method (Walker, Zhou [74]) for other methods and a small supplement to
a deflation technique. This part of the thesis consists mainly of elaboration of the
theory of projective processes for iterative methods.

The remaining chapters propose new techniques to overcome slow convergence
or stagnation of restarted projection methods. In the second chapter we present the
main tool all these techniques are based on: The Sherman-Morrison theorem. With
its help we can transform the original problem to an auxiliary problem with the
same right-hand side. The matrix of the auxiliary system is a rank-one update of A.
We prove that when the initial guess x0 ∈ Rn of a GMRES process is zero, then it
is possible to define this rank-one update such that the process has any prescribed
convergence speed. After the presentation of numerically stable implementations
to compute such an update, we address backtransformation of the auxiliary system
approximations to obtain iterates for the original system (1). We discuss possibilities
to improve convergence of the first system by backtransformation from a predefined,
fast converging second system. It turns out this makes sense only when we apply the
restarted GMRES method, but in that case the proposed procedure seems reasonable
and its effectiveness is confirmed by numerical experiments of various types. In all
cases the procedure manages to overcome stagnation of restarted GMRES. With the
help of a technical proposition we demonstrate the relation between the quality of the
backtransformation and the prescribed convergence speed of the auxiliary system.
This proposition enables us to influence the quality of the backtransformation during
the iterative process.

The idea of switching to a system with arbitrary convergence speed is possible
only when the initial guess is zero. We discuss GMRES processes with nonzero initial
guesses in the third chapter. At first, we show how to minimize the residual norms
of the second system at every single iteration by the choice of the rank-one update of
A. An example with an auxiliary system that is minimal in this sense is presented,
but in general this locally minimizing technique is not all too effective. It seems more
profitable to search for rank-one updates that yield after say k iterations a residual
norm that is globally minimal, i.e. minimal regardless of the size of residual norms of
previous iterations. We demonstrate how to compute such an update and prove that
(under weak conditions) the rank-one updated system implicitly projects during the
kth iteration onto a subspace of dimension 2k. The last part of this chapter concerns
a different technique for processes with x0 6= 0. It does minimize residual norms with



the help of the Sherman-Morrison formula, but the involved rank-one update has
a different structure. It is in fact a right preconditioning technique. This has the
advantage that residual norms of auxiliary and backtransformed iterations are equal.
Some of the ideas of the second and third chapter will be published in the paper
[14].

Although the preceding accelerations of the restarted GMRES method are
based on direct reducing of residual norms rather than on spectral deflation, prac-
tical problems exist in which modification of eigenvalues has a positive influence on
convergence speed. This has been our motivation to address spectral properties of
the rank-one updated matrix in the fourth chapter. Among others we prove that we
can force any spectrum by the choice of the update. As an immediate consequence of
this result it is possible to define arbitrary Ritz values of the auxiliary matrix at the
beginning of a GMRES process and we can exploit this fact for deflation purposes.
On the other hand, direct modification of the eigenvalues of A itself by rank-one
update seems hard to handle in practice. But for normal or close to normal matrices
we propose a deflative procedure that modifies precisely located eigenvalues and it
has shown to be effective in numerical examples.

As mentioned before, we have placed concrete algorithms at the end of the the-
sis. The last chapter displays algorithms to generate bases of well-known methods.
Theoretical properties, as far as they are not trivial, accompany the algorithms. For
example, a detailed description of the properties of the look-ahead Lanczos process
is given. In addition, we have constructed algorithms for the techniques proposed in
chapters two, three and four. These new algorithms are followed by a brief discussion
of computational and storage costs. Finally, we apply all new methods to a sample
numerical experiment. Other numerical examples illustrate the new procedures in
the previous chapters, immediately after their theoretical description.

Prague, March 2004.
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Chapter 1

Projection methods

One of today’s most popular classes of methods to solve linear systems are projection
methods. In this chapter we point out some of the advantages of projection compared
with other strategies and we will search for projections that are optimal in the
context of solving linear equations. This will lead in a natural way to projection
with Krylov subspaces. The chapter provides a brief survey of these projection
methods, ranging from classical Krylov subspace methods to modern techniques
that try to improve the classical ones. In addition we treat some methods that are
not based on Krylov subspaces.

In order to compare projection techniques with different procedures to solve
linear systems, let us start at the very beginning.

1.1 Introduction

We consider a system of linear equations characterized by a nonsingular matrix
A ∈ Rn×n, a right-hand side b ∈ Rn and an equation

Ax = b (1.1)

with unknown x ∈ Rn. In this thesis we will consider real problems, but generaliza-
tion of the results for the complex case is straightforward. The linear system (1.1)
can be preconditioned from the left by replacing it by the system

MlAx = Mlb,

where Ml ∈ Rn×n is a nonsingular matrix that yields an easier to solve linear
problem. Alternatively, we can precondition from the right by solving

AMry = b,

where Mr ∈ Rn×n, y ∈ Rn, and where we compute x from x = Mry, or we can
combine left and right preconditioning. For the moment, however, we assume system
(1.1) is already written in preconditioned form. The exact solution, denoted by
x∗ ∈ Rn, can be found either with a direct method or by applying an iterative
method. Direct solvers calculate the inverse of A by decomposing A in easily inver-
tible factors, such as triangular or orthogonal matrices. An iterative method finds
approximate solutions of (1.1) by successively defining iterates. Starting with a first
approximation, the initial guess x0 ∈ Rn, iterates can be written in the form

xk := fk(x0, . . . , xk−1), k = 1, 2, . . .

11



12 CHAPTER 1. PROJECTION METHODS

where fk is some function with domain Rn×k and range Rn. The two approaches
can be combined when we use an approximation to A−1 given by the incomplete
factorization of a direct solver as preconditioner and we apply an iterative method
to the preconditioned system.

The computational costs of direct solvers can grow unacceptably high if the
dimension of the system is large. For example, the number of operations needed to
find x∗ with Gauss elimination or LU-decomposition is of order n3. An advantage of
iterative methods is that they exploit possible sparsity of A, whereas direct solvers
have more difficulties to do so. Large matrices arising in modern computations often
have an advantageous structure that is easily lost by direct solvers due to the fill-in
they produce. In addition, when using a direct method the solution is found as late
as at the very end of the computation and no approximate solution is available at an
earlier stage. In practice we are often satisfied with an approximation of x∗ because
the original problem (a mathematical model of some scientific problem) has already
been approximated and discretized to obtain the system (1.1). This approximation
can best be obtained by an iterative process that seeks to reduce the distance of the
iterates to x∗.

In the remaining of the thesis we restrict ourselves to iterative methods. Two
frequently used vectors to express the quality of the iterative vectors during the
process are the error and the residual vector.

Definition 1.1.1 The k-th residual vector of an iterative method for (1.1) is the
vector

rk := b−Axk.

The k-th error vector is the difference between the exact solution and the k-th iterate

dk := x∗ − xk.

Thus we have the following relationship between residual and error vector:

rk = Adk. (1.2)

Note that when the exact solution is not known, the error vector dk cannot be
computed whereas the residual vector is always available. For this reason it is in
practice the norm of the residual vector that is the indicator for convergence speed,
although the norm of the error can be significantly larger when ‖A‖ is small in
comparison with ‖rk‖. When convergence is achieved, however, the discrepancy
vanishes. Moreover, many methods are implicitly based on values related to the
residual vector rather than to the error vector. A commonly used procedure, for
example, consists of adding to approximations a correction vector that depends on
the associated residual vector. If the corresponding error vector were available we
could use it as correction vector and immediately obtain x∗, but instead we must be
satisfied with recursions of the form

xk := x̂k−1 + gk(r̂k−1), k = 1, 2, . . . (1.3)

where x̂k−1 ∈ {x0, . . . , xk−1}, gk is some function with range in Rn and

r̂k−1 = b−Ax̂k−1. (1.4)

The action of gk on r̂k−1 can usually be represented by matrix multiplication. For
residual vectors this yields the recursion

rk = r̂k−1 −AGkr̂k−1 = (In −AGk)r̂k−1,
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with Gk being a matrix representation of the operator gk. To stimulate convergence,
it is useful to have operators Gk satisfying

‖In −AGk‖N < 1 (1.5)

in some norm ‖ · ‖N . The matrix Gk can be an approximation in some sense of A−1

and is possibly independent from k (the Jacobi method uses Gk := (diag(A))−1)
or it can be successively updated to yield better approximations of A−1 (see for
example Eirola and Nevanlinna [17]).

But finding accurate approximations of A−1 is inefficient when approximations
of only A−1b = x∗ can be found more easily. An alternative way to diminish the
length of residual vectors consists of extracting them from an affine subspace of
comparatively small dimension and imposing on them some optimality condition
with respect to the subspace. Convergence can then be stimulated by letting the
subspace dimension grow with every iteration or by advantageous choice of the
subspace or by a combination of these two. A large class of currently used methods
based on this idea is the class of so-called projection methods.

1.2 General remarks about projection methods

In analogy with (1.3), projection methods can be defined as follows.

Definition 1.2.1 A projection method is an iterative method with successive resi-
dual vectors that satisfy

rk = r̂k−1 − ℘k(r̂k−1), k = 1, 2, . . . ,

where r̂k−1 ∈ {r0, . . . , rk−1} and where the operator ℘k is a projector.

We define a projector ℘ as an operator satisfying ℘ ◦ ℘ = ℘. The projector
℘k does not need to be an orthogonal projector onto the involved subspace. In the
remaining of this chapter we will denote matrix representations of ℘k by Pk, the
m-dimensional subspace, m ≤ n, that ℘k projects onto, the projection space, by Wm

and if the projection process is orthogonal to a space different from Wm, that space,
the test space, will be denoted by Vm. In the literature a projection orthogonal to
Vm is also called a projection along V⊥m and it is understood as a projection where
the difference between the vector to project and its projection is orthogonal to Vm.
If the columns of Bm ∈ Rn×m, m ≤ n, form a basis of the test space Vm and those
of Wm ∈ Rn×m a basis of the projection space Wm, the kth residual vector of a
projection method has the form

rk = r̂k−1 −Wmzm, zm ∈ Rm,

and must satisfy
BT

m(r̂k−1 −Wmzm) = 0. (1.6)

The projection exists as long as det(BT
mWm) 6= 0 and in that case

zm = (BT
mWm)−1BT

mr̂k−1.

The assumption det(BT
mWm) 6= 0 holds if and only if no nonzero vector from Wm

is orthogonal to the test space Vm. Otherwise, rk is not defined. If Vm = Wm,
the projection is orthogonal and exists if Wm has full dimension. In that case,
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in mathematical methods of different kinds, condition (1.6) is referred to as the
Galerkin orthogonality condition. When Vm 6= Wm we will speak of the Petrov-
Galerkin orthogonality condition. Because of

rk = r̂k−1 −Pkr̂k−1

the matrix representation of ℘k with respect to Bm and Wm is

Pk = Wm(BT
mWm)−1BT

m. (1.7)

Trivially, matrix representations of a projector depend on the chosen bases for pro-
jection and test space.

In projection methods the error vector

d̂k−1 := x∗ − x̂k−1, x̂k−1 ∈ {x0, . . . , xk−1},

is seen to be projected onto A−1Wm and the projector is orthogonal to ATVm

because of (1.2). Indeed, the kth error vector satisfies

dk = A−1(r̂k−1 −Pk(Ad̂k−1)) = d̂k−1 −A−1PkAd̂k−1. (1.8)

The operator A−1PkA is in general an oblique projector, even when Pk is orthogonal
because the matrix A−1PkA is not symmetric when A is not orthogonal.

When we consider convergence speed according to (1.5) we obtain a very
pessimistic bound, namely

‖rk‖N = ‖(In −Pk)r̂k−1‖N ≤ ‖In −Pk‖N · ‖r̂k−1‖N .

With In −Pk being a projector too, we have

‖In −Pk‖N ≥ 1

for projection methods and thus convergence is not guaranteed. The situation looks
a little better if the projections are orthogonal, because in that case, with the Eu-
clidean norm,

‖In −Pk‖ = 1.

But of course, methods that project orthogonally can be characterized by the mini-
mization property

‖rk‖ = min
w∈Wm

‖r̂k−1 − w‖. (1.9)

Thus growth of the subspace dimension, m, will prevent residual norms from in-
creasing. A similar norm minimizing property for oblique projections cannot be
formulated, but the residuals produced by oblique projections are closely related to
those of their orthogonal counterparts, as we will see later on (Theorem 1.3.2). The
way of computing iterates with oblique processes can be cheaper than by orthogonal
projection and that makes them attractive enough for practical use.

1.2.1 The projection space

Let us take a closer look at the projection space and try to gain some insight in
how to choose it best in the context of solving linear systems. An essential concern
of residual-based methods is to ensure inexpensive computation of iterates from
residuals, though it might in some cases be possible to postpone this computation
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to the very end of the process when the residual norm is as small as desired. In
projection methods residual and iterate are connected by

rk = r̂k−1 −Wmzm = b−Axk = b−A(x̂k−1 + A−1Wmzm)

because of (1.4) and we obtain for the corresponding iterate

xk = x̂k−1 + A−1Wmzm (1.10)

because A is nonsingular. Unless a basis of A−1Wm is available, computing the
approximations of projection methods from their residuals thus asks for full invertion
of A, which is precisely what we wish to avoid ! In other words, the elements of
the subspace Wm must contain at least one multiplication with A and this is a first
requirement for projection spaces. To demonstrate this, let us fulfil the requirement
in a trivial way and choose the projection space to be spanned by the columns of
A, that is

Wm = Ak := A(e1, . . . , ek), m = k ≤ n,

where during the kth iteration we project on a subspace of dimension k. If Bk is
a basis of a k-dimensional test space Vk satisfying det(BT

k Ak) 6= 0, then with (1.7)
the corresponding projector can be represented by

Pk = Ak(BT
k Ak)−1BT

k ,

and with for example r̂k−1 := r0 relations (1.6) and (1.10) yield

xk = x0 + (e1, . . . , ek)zk = x0 + (e1, . . . , ek)(BT
k Ak)−1BT

k r0.

A possible choice is Bk = (e1, . . . , ek), which leads to successive invertion of the
upper left k×k blocks of A if they are invertible. If we choose to project orthogonally,
then the test space must be equal to the projection space, i.e. Bk := Wm = Ak.
Let us do so and in addition facilitate the inversion of the involved k × k matrix by
successively orthogonalizing the columns of A, e.g. by computing at the kth step
the QR decomposition of dimension k,

Ak = QkRk, QT
k Qk = Ik,

where Rk ∈ Rk×k is upper triangular. Then we have with (1.7)

Pk = QkRk(AT
k Ak)−1RT

k QT
k = QkQ

T
k , if det(AT

k Ak) 6= 0,

and

xk = x0 +
(

R−1
k

0

)
QT

k r0, if det(Rk) 6= 0.

This procedure can be seen as a formulation of the direct method

x∗ := (Rn)−1QT
n b

as a projection method with approximations available at the k-th iteration when
det(Rk) 6= 0 and because we project orthogonally residual norms do not increase.

In a similar way it is possible to regard other direct solvers as projection
methods. But whether they converge reasonably, that is whether residual norms
decrease rapidly enough to obtain a satisfying approximation after less than n steps
depends on the evolution of the distance between r0 and the projection spaces
span{Ae1, . . . ,Aek}. Fast decline of this distance is clearly merely a question of
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having good luck with the choice of r0, that is of x0 ! To have at least some con-
nection with the projection space, we require that the projection space be somehow
related to the residual we project, that is with r̂k−1. Combined with our first re-
quirement that elements of the projection space must contain a multiplication with
A, this leads in a natural way to Krylov subspaces. They were originally introduced
by Krylov [42] in the context of eigenvalue computations and have the following
structure.

Definition 1.2.2 The m-th Krylov Subspace Km(C, z) generated by z ∈ Rn and
C ∈ Rn×n is defined through

Km(C, z) := span{z,Cz,C2z, . . . ,Cm−1z}.

Thus the subspace AKk(A, r̂k−1) exactly satisfies our two demands for projection
spaces and in addition it contains information about multiple application of the
operator represented by A. Therefore, dominant properties of A become apparent
at an early stage and under favorable circumstances we can expect the corresponding
iterate to be relatively accurate. Moreover, one can for example extract spectral
information on A from these spaces. Due to the connection of residual vector with
system matrix in Krylov projection spaces we also obtain

Lemma 1.2.3 Let a projection method project r̂k−1 onto AKk(A, r̂k−1) and let
k < n be the smallest integer for which dim(Kk(A, r̂k−1)) = k − 1. Then xk = x∗.

P r o o f : The vectors {r̂k−1,Ar̂k−1, . . . ,Ak−1r̂k−1} are linearly dependent, hence
we can write

k−1∑

i=0

αiAir̂k−1 = 0

for some αi ∈ R with at least one nonzero αi. If α0 were zero, then

A(
k−1∑

i=1

αiAi−1r̂k−1) = 0,

which contradicts dim(Kk−1(A, r̂k−1)) = k − 1 because A is nonsingular. Hence we
can write

r̂k−1 =
k−1∑

i=1

−αi

α0
Air̂k−1 = A(

k−2∑

i=0

−αi+1

α0
Air̂k−1) ∈ AKk−1(A, r̂k−1).

But by assumption AKk−1(A, r̂k−1) = AKk(A, r̂k−1). Thus Pkr̂k−1 = r̂k−1 and
rk = 0. 2

A further advantage of Krylov projection spaces is that their bases can be up-
dated by only one matrix vector multiplication per iteration, which is especially ad-
vantageous if the structure of A admits inexpensive multiplication. Finally, Krylov
spaces are closely connected with polynomial spaces and this connection allows to
exploit results from polynomial approximation theory for the theoretical investiga-
tion of methods based on Krylov subspaces.

Turning our attention to the bases of projection spaces, we will restrict our-
selves to the projection spaces AKk(A, r̂k−1), these spaces being most suitable in
the sense described above. Different choices of bases can result in mathematically
equivalent projections with very different numerical properties. An obvious basis of
a Krylov subspace is {r̂k−1,Ar̂k−1, . . . ,Ak−1r̂k−1}, this has been proposed by Ipsen
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[36], [37], but this basis is numerically very unstable. Instead, most implementa-
tions modify the obvious basis with the help of a combination of normalizing and
orthogonalizing. Such procedures can be applied to two sorts of bases, resulting in
two classes of implementation strategies. The first and most current one is iterate
oriented in the sense that bases for the subspaces connected with the iterates are
being computed. If a projection method projects r̂k−1 onto AKk(A, r̂k−1), then the
corresponding iterate xk is an element of the affine subspace x̂k−1 +Kk(A, r̂k−1) by
(1.10). Iterate-based implementations compute bases of Kk(A, r̂k−1). Alternatively,
one can work with the bases of the spaces that the residuals are projected onto, that
is of AKk(A, r̂k−1). For the following considerations we assume that we project on a
subspace of dimension k during the kth iteration, hence m = k in (1.7). In addition,
we assume Kk(A, r̂k−1) has dimension k for all k ≤ n.

The first option consists of computing bases {v1, . . . , vk} and {c1, . . . , ck} of
Kk(A, r̂k−1). Easy updating is obtained when we exploit ascending bases.

Definition 1.2.4 A basis {v1, . . . , vk} of Kk(A, r̂k−1) is ascending when

span{v1, . . . , vi} = Ki(A, r̂k−1), i ≤ k. (1.11)

If both bases {c1, . . . , ck} and {v1, . . . , vk} are ascending and Vk+1 = (v1, . . . , vk+1)
and Ck = (c1, . . . , ck), then c1, v1 ∈ span{r̂k−1} and there exists a decomposition of
the form

ACk = Vk+1H̃k, (1.12)

where H̃k ∈ R(k+1)×k is an upper Hessenberg matrix that has rank k due to the
non-singularity of A. In the following we define

v1 := r̂k−1/‖r̂k−1‖.

The iterate-based implementation writes the k-th iterate in the form

xk = x̂k−1 + Ckyk, yk ∈ Rk, (1.13)

which leads to the Petrov-Galerkin orthogonality condition

BT
k rk = BT

k (r̂k−1 −ACkyk) = BT
k r̂k−1 −BT

k Vk+1H̃kyk = 0, (1.14)

and yk equals the solution of the linear system

BT
k Vk+1H̃ky = BT

k r̂k−1, (1.15)

as long as BT
k Vk+1H̃k is not singular.

The second option is to compute bases of the projection spaces, i.e. of AKk(A, r̂k−1).
In analogy with the foregoing we consider ascending bases {c1, . . . , ck} and {w1, . . . , wk}
of AKk(A, r̂k−1) with Wk = (w1, . . . , wk) and Ck−1 = (c1, . . . , ck−1) and with a de-
composition

ACk−1 = WkG̃k−1, (1.16)

where G̃k−1 ∈ Rk×(k−1) is an upper Hessenberg matrix of full rank and

w1 := Ar̂k−1/‖Ar̂k−1‖.

To obtain the iterate corresponding to the kth residual, we need to change this
decomposition to

A(v1,Ck−1) = WkRk, (1.17)
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where v1 = r̂k−1/‖r̂k−1‖ and

Rk :=
(‖Ar̂k−1‖
‖r̂k−1‖ e1, G̃k−1

)
∈ Rk×k

is upper triangular and nonsingular. Then span{v1, c1, . . . , ck−1} = Kk(A, r̂k−1) and
the kth iterate can be written in the form

xk = x̂k−1 + (v1,Ck−1)zk, zk ∈ Rk. (1.18)

We obtain zk observing with (1.7), (1.17) and (1.18) that

rk = r̂k−1 −Wk(BT
k Wk)−1BT

k r̂k−1 =

b−Axk = r̂k−1 −A(v1,Ck−1)zk = r̂k−1 −WkRkzk, (1.19)

by solving z =: zk from
Rkz = (BT

k Wk)−1BT
k r̂k−1 (1.20)

for nonsingular BT
k Wk. Under that condition, this option solves an upper triangular

system instead of the more complicated (1.15). Both variants have ,,projected” the
original problem of dimension n to a smaller problem (1.15) or (1.20) of dimension k.
Note that both variants ask for the same number of matrix vector multiplications.
However, as is discussed in Liesen, Rozložńık, Strakoš [46], the conditioning of the
bases of the two approaches can be fairly different. In most methods we avoid the
computation of the basis {c1, . . . , ck} of (1.12) and (1.16) because it is feasible to
choose the basis to be equal to {v1, . . . , vk} or {w1, . . . , wk}, respectively. Moreover,
the systems (1.15) and (1.20) can often be simplified by the choice of Bk, which
makes them solvable in a numerically more stable way.

Usually the involved bases will be as close to orthonormal as possible for the
sake of numerical stability. For example, they can be ATA-orthogonal or only
orthogonal. In case the basis {v1, . . . , vk} from decomposition (1.12) is orthonor-
mal and Ck = Vk, this decomposition is called an Arnoldi decomposition and the
columns of Vk are named Arnoldi vectors. The same holds for (1.16). The ini-
tial procedure to compute Arnoldi decompositions is indeed due to Arnoldi [1].
Commonly used algorithms to calculate these decompositions include the Modified
Gram-Schmidt process (see Algorithm 5.1.1) and the Householder reflection option
(Algorithm 5.1.2). They break down if and only if rank(Vk+1) = k and in that
case we obtain the exact solution x∗ with Lemma 1.2.3. The former algorithm is a
modification of the Gram-Schmidt orthogonalization process applied to AVk. The
idea behind Householder reflections is to reflect with respect to the canonical basis
{e1, . . . , ek} and can be described as follows:

Given the unit vector v1 = r0/‖r0‖, the initial reflection R1 (not to be con-
founded with the matrices from (1.20)) satisfies R1v1 = e1. In order to obtain
equality in the first column of (1.12) (with C = V) we define a reflection R2 that
leaves e1 unchanged and such that

R2(R1Av1) = h1,1e1 + h2,1e2,

for some h1,1, h2,1 ∈ R. Therefore,

Av1 = h1,1R1R2e1 + h2,1R1R2e2 = h1,1v1 + h2,1R1R2e2,
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and the desired equality follows by putting v2 := R1R2e2. In general, the jth reflec-
tion is chosen such that Rjei = ei, i < j and Rj(Rj−1 . . .R1Avj−1) =

∑j
i=1 hi,j−1ei

for some hi,j−1. Hence vj := R1 . . .Rjej yields the wanted relation

Avj−1 =
j∑

i=1

hi,j−1vi

and the vectors vi are orthogonal because Householder reflections preserve the or-
thogonality of {e1, . . . , ej}. Descriptions of this alternative can be found in detail
in Walker [72], [73]. It yields numerically more stable orthonormalization than the
Gram-Schmidt orthogonalization procedure but it is also more expensive.

1.2.2 The test space

No specific restrictions exist for the test spaces Vk related with the Petrov-Galerkin
condition. Many Krylov subspace-based projection methods seek to reduce the
amount of work by choosing Vk to be a Krylov subspace whose basis can be in-
expensively obtained from the computation of the basis for the projection space.
Obvious choices are Vk := AKk(A, r̂k−1) or Vk := Kk(A, r̂k−1) but other choices
can yield even lower computational costs. Computation and storage demands are
significantly reduced when it is possible to define iterates and residuals with short
recurrences. Often short recurrences for basis vectors enable short recurrences for
iterates and in Weiss [75] (in Chapter 3) sufficient and necessary conditions for the
existence of short iterate recurrences are formulated. Here we will only need the
following proposition. It shows that an appropriate choice of the test space can
induce short recurrences.

Proposition 1.2.5 Let the basis of the test space of a projector ℘k be given by
the columns of Bk and let us have a projection space with a pair of bases as in
decomposition (1.16) (or (1.12)). If

Tk := BT
k A(v1,Ck−1)

(or Tk := BT
k ACk) is upper Hessenberg with bandwidth of upper elements m, i.e.

ti,j = 0 for j− i > m, and det(Tj) 6= 0 for all 1 ≤ j ≤ k, then iterates and residuals
of ℘k can be defined with (m + 1)-term recurrences.

P r o o f : We will prove the case Tk := BT
k A(v1,Ck−1), the proof for Tk := BT

k ACk

is essentially identical. Because det(Tj) 6= 0 for all 1 ≤ j ≤ k, the LDU decomposi-
tion of Tk exists. Let it have the form Tk = LkDkUk , where Dk =diag(d1, . . . , dk),
Lk is unit lower bidiagonal with the elements l2, . . . , lk on the subdiagonal and Uk

is unit banded upper triangular with ui,j = 0 for j− i > m. We initialize by putting
L1 = U1 := I1, D1 := t1,1 and with Tk being known, the LDU decomposition can
easily be updated from Tk−1 = Lk−1Dk−1Uk−1 by putting first

lk = tk,k−1/dk−1, k > 1,

and then

uk−m,k = tk−m,k/dk−m, k > m, and for k ≤ m : u1,k = t1,k/d1.

The remaining elements in the last column of Uk follow with

ui,k =
ti,k − lidi−1ui−1,k

di
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for k −m + 1 ≤ i ≤ k − 1 if k > m and else for 2 ≤ i ≤ k − 1. Finally,

dk = tk,k − lkdk−1uk−1,k.

Because of decomposition (1.17) we can write Tk = BT
k WkRk. Then we have with

(1.18) and (1.20)
xk = x̂k−1 + (v1,Ck−1)T−1

k BT
k r̂k−1,

and with the abbreviation Sk := (v1,Ck−1)U−1
k this changes to

xk = x̂k−1 + SkD−1
k L−1

k BT
k r̂k−1.

Now the last column sk of Sk can be updated with the (m + 1)-term recurrence

sk = ck−1 −
m∑

i=1

uk−i,ksk−i, c0 := v1, uj,k := 0, j ≤ 0.

If D−1
k L−1

k BT
k r̂k−1 =

(
pk−1

πk−1

)
, we can write

xk = x̂k−1 + SkD−1
k L−1

k BT
k r̂k−1 = x̂k−1 + Sk−1pk−1 + πk−1sk = xk−1 + πk−1sk,

where πk−1 = (bT
k r̂k−1 − πk−2dk−1lk)/dk because of the last row of BT

k r̂k−1 =

LkDk

(
pk−1

πk−1

)
. For the residual we obtain

rk = rk−1 − πk−1Ask.

2

We have worked out an application of this proposition to the BCG method
in Lemma 5.1.8. A similar proposition based on Gauss elimination with pivoting
instead of LDU decomposition can also be formulated. Weiss [76] proposed a method
that explicitly computes projections enabling m-term recurrences by means of rank-
m updating of projectors (see also Wagner [71]).

We now proceed to the description of concrete projection methods.

1.3 Full projection methods

When the projection space of a projection method reaches dimension n the corres-
ponding residual vector vanishes and the exact solution can be computed. In full
methods we put r̂k−1 := r0 and test space and projection space always have dimen-
sion k during the kth iteration. Thus in (1.7) we have m := k and the solution x∗ is
found at the latest at the nth iteration. Though it might be possible to formulate di-
rect methods as full projection methods, as we have done for the QR-decomposition,
we will restrict ourselves for the moment to methods traditionally known as projec-
tion methods. Their projection spaces are all based on Krylov subspaces. Moreover,
the classical full methods we are going to describe all project, during the kth i-
teration, onto the same, in the sense of preceding considerations optimal projection
space Wk, namely

Wk := AKk(A, r0).

The test space Vk is either chosen such that the projection becomes orthogonal, i.e.
equal to the projection space, or otherwise it equals

Vk := Kk(A, r0).
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The Petrov-Galerkin orthogonality condition

rk⊥Vk,

however, does not necessarily concern Euclidean orthogonality. Some methods
project with respect to the energy norm and others with respect to iteration de-
pendent inner products (see Definition (1.3.3)). Differences between the methods
we will describe thus result from the involved orthogonality and from special pro-
perties of the system matrix A. In the latter case, the method does project onto the
Krylov subspace above, but the projection space might be simplified to a different
space. We will always assume Kk+1(A, r0) has dimension k + 1.

1.3.1 Euclidean orthogonality

Euclidean orthogonal projections

Let us start with the most natural case in which the orthogonality condition is
Euclidean and the projector is orthogonal. Thus both projection and test space
equal

Wk = Vk = AKk(A, r0)

and with (1.9), residual norms are non-increasing. The main representant of such a
projection is the GMRES method, the MINRES method is a less expensive imple-
mentation for symmetric matrices.

• The generalized minimal residual method (GMRES):
In this method r0 is orthogonally projected onto

AKk(A, r0), k = 1, 2, . . . ,

and thus residual vectors satisfy

‖rk‖ = min
y∈Rk

‖r0 −Wky‖,

if the columns of Wk span AKk(A, r0). That last property gave the GMRES
method its name. It can be seen as a generalization of the MINRES method
for matrices that are not symmetric. In residual-based implementations of
the GMRES method with an Arnoldi decomposition (1.16), the matrix Wk is
orthonormal and with (1.7) a matrix representation of the orthogonal projector
℘k is

Pk = WkWT
k

and thus
rk = r0 −WkWT

k r0.

If the kth iterate is written as in (1.18) in the form

xk = x0 + (v1,Wk−1)zk, zk ∈ Rk,

then the system from which zk is to be obtained, (1.20), changes to

Rkz = WT
k r0.

This way of calculating GMRES iterates has been proposed by Walker and
Zhou [74]. The classical implementation of Saad and Schultz [56], however, is
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based on an orthonormal basis Vk for Kk(A, r0) with Arnoldi decomposition
(1.12). With

xk = x0 + Vkyk, yk ∈ Rk,

we have

‖rk‖ = ‖r0 −AVkyk‖ = ‖Vk+1(‖r0‖e1 − H̃kyk)‖ = ‖‖r0‖e1 − H̃kyk‖

and yk equals the solution of the least squares problem of dimension (k+1)×k

min
y∈Rk

∥∥∥‖r0‖e1 − H̃ky
∥∥∥ . (1.21)

As soon as GMRES iterates are needed, the latter version is numerically more
stable due to the fact that the columns of (v1,Wk−1) are not an orthogonal
basis of the space connected to iterates, Kk(A, r0), whereas Vk is orthogonal
(see for example Rozložńık [55]). On the other hand, information about the
length of residuals might be more reliable when using orthonormal bases Wk

instead of AVk.

• The minimal residual method (MINRES):
This method is based on the same projector as the GMRES method but it
requires symmetric matrices. The method was introduced before the GMRES
method by Paige and Saunders [53]. The difference with the GMRES method
is that in this implementation short recurrences for iterates exist because the
upper Hessenberg matrices involved in the orthogonalization process are in
the symmetric case tridiagonal. To compute an Arnoldi decomposition (1.12)
or (1.16) for symmetric matrices one commonly uses the symmetric Lanczos
procedure (Algorithm 5.1.4) that contains a three-term recurrence to update
bases. With Proposition 1.2.5 (where Bk := Wk) we obtain three-term recur-
rences for iterates and residuals.

Euclidean oblique projections

Euclidean oblique projection with the test space

Vk = Kk(A, r0)

and the projection space
Wk = AKk(A, r0)

was historically the first Krylov subspace projection to be used in the context of
iterative methods, namely for symmetric positive definite matrices. In that case it
can be shown that the projection always exists. But in general, when elements of
AKk(A, r0) happen to be orthogonal to Kk(A, r0), the corresponding iterate can not
be defined, which is a drawback of oblique projections compared with orthogonal
projectors. As mentioned before, implementations of projection methods try to
exploit bases that are as close to orthonormal as possible for the sake of numerical
stability. In the Euclidean oblique case, at least an orthogonal basis of Kk(A, r0) is
given by the sequence of residuals:

Lemma 1.3.1 If the projection space of ℘k is AKk(A, r0) and the test space is
Kk(A, r0), then {r0, . . . , rk} is an orthogonal basis of Kk+1(A, r0).
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P r o o f : Clearly, the assumption is valid for k = 1. If it is valid for some
j−1 < k too, we have rj ∈ r0 +AKj(A, r0) ⊂ Kj+1(A, r0). The vector rj is linearly
independent from {r0, . . . , rj−1} because it is orthogonal to this sequence spanning
the test space of the projector ℘j .
2

When an oblique method exploits an Arnoldi decomposition (1.12), that is
an orthonormal basis Vk+1, then it follows from the preceding lemma that the kth
residual vector must be a multiple of the last basis vector vk+1. The following
methods are all based on the oblique projector of this lemma but they differ in
the assumptions that are put on the system matrix and in the choice of bases for
projection and test space.

• The full orthogonalization method (FOM):
Without assumptions for A other than its non-singularity, the above oblique
projection yields the FOM method which can be implemented as follows. Let
the columns of Wk be an orthonormal basis of AKk(A, r0) with Arnoldi de-
composition (1.16) and let Vk have columns spanning Kk(A, r0) with first
column v1 = r0/‖r0‖. With Bk := Vk in (1.7) the projector involved in the
FOM method can be expressed through

Pk = Wk(VT
k Wk)−1VT

k , det(VT
k Wk) 6= 0.

With the columns of (v1,Wk−1) being a basis of Kk(A, r0) too, the operator
can be rewritten when we replace Vk by (v1,Wk−1) and exploit the equation

(
vT
1 Wk−1 vT

1 wk

Ik−1 0

)−1

=
1

vT
1 wk

(
0 (vT

1 wk)Ik−1

1 −vT
1 Wk−1

)
,

to obtain the expression

Pk = Wk

(
WT

k−1

(vT
1 − vT

1 Wk−1WT
k−1)/vT

1 wk

)
, vT

1 wk 6= 0.

In case vT
1 wk = 0 the kth FOM approximation does not exist, but this need not

break down the process since vT
1 wk+1 can very well be nonzero again. FOM

iterates of the form

xk = x0 + (v1,Wk−1)zk, zk ∈ Rk,

can be computed with (1.20) by solving z =: zk from

Rkz =
(

WT
k−1

(vT
1 − vT

1 Wk−1WT
k−1)/vT

1 wk

)
r0.

This new formulation of FOM is the parallel of Walker and Zhou’s GMRES
version ([74]).

Originally the iterate-based variant was used and the bases of the corres-
ponding Krylov subspaces were fully orthonormalized (hence the name of the
method). Thus let us assume that we have an orthonormal basis {v1, . . . , vk+1}
ofKk+1(A, r0) with Arnoldi decomposition (1.12), where Vk = (v1, . . . , vk) and
v1 := r0/‖r0‖. In that case FOM iterates

xk = x0 + Vkyk, yk ∈ Rk,



24 CHAPTER 1. PROJECTION METHODS

yield a linear system of the form (1.15), where

BT
k Vk+1H̃k = Hk

is the Hessenberg matrix H̃k without its last row. Then yk equals the solution
of the linear system

Hky = ‖r0‖e1, (1.22)

as long as Hk is not singular.

• The conjugate gradient method (CG):
Let us apply the same oblique projection to a matrix A that is symmetric
positive definite. Hence the projection space of ℘k is AKk(A, r0), the test
space is Kk(A, r0) and the iterates satisfy

xk ∈ x0 +Kk(A, r0).

In contrast with the FOM method we will not compute an orthonormal basis
of Kk+1(A, r0) with an Arnoldi decomposition (1.12), but use the sequence
{r0, r1, . . . , rk} that is already an orthogonal basis due to Lemma 1.3.1. In
addition we introduce the sequence {p0, . . . , pk} defined by the recurrence

p0 = r0, pk = rk −
rT
k Apk−1

pT
k−1Apk−1

pk−1, k > 1,

which is possible because A is positive definite. It is clear that also {p0, p1, . . . , pk}
generates Kk+1(A, r0). This basis, however, is not orthogonal anymore, but it
is A-orthogonal with respect to the energy inner product (x, y)A := xTAy:

pT
j Apk = 0, j 6= k.

Indeed,

pT
k−1Apk = pT

k−1(Ark −
rT
k Apk−1

pT
k−1Apk−1

Apk−1) = 0

and

pT
k−2Apk = rT

k Apk−2 −
rT
k Apk−1

pT
k−1Apk−1

pT
k−2Apk−1 = rT

k (
k−1∑

i=0

αiri) = 0,

for some αi ∈ R because Apk−2 ∈ span{Ark−2,Apk−3} ⊂ span{r0, . . . , rk−1}
and by inductive assumption pT

k−2Apk−1 = 0. Similarly pT
k−3Apk = 0, because

of rT
k Apk−3 = 0 and pT

k−3Apk−1 = 0. One can successively continue until
showing pT

0 Apk = 0.
Because of this A-orthogonality, the vectors pj are called conjugate gradients
and in the CG method we use the sequence of these vectors to obtain bases
for test and projection space: We put Bk := (p0, p1, . . . , pk−1) and Wk :=
A(p0, p1, . . . , pk−1) in (1.7). Then the matrix representation of the projector
Pk (not to be confounded with the sequence {p0, . . . , pk}) is given by

Pk = A(p0, . . . , pk−1)diag

(
1

pT
0 Ap0

, . . . ,
1

pT
k−1Apk−1

)
(p0, . . . , pk−1)T , (1.23)

and we can write residual vectors in the form

rk = r0 −Pkr0 = r0 − pT
0 r0

pT
0 Ap0

Ap0 . . .− pT
k−1r0

pT
k−1Apk−1

Apk−1
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= rk−1 −
pT

k−1r0

pT
k−1Apk−1

Apk−1, (1.24)

yielding for iterates

xk = xk−1 +
pT

k−1rk−1

pT
k−1Apk−1

pk−1,

when we note that pT
j r0 = pT

j rj for all j ≤ k− 1. This follows with (1.24) and
with the Petrov-Galerkin condition of the projector per induction from

rT
0 pj = rT

0 (rj −
rT
j Apj−1

pT
j−1Apj−1

pj−1) = rT
j−1(rj −

rT
j Apj−1

pT
j−1Apj−1

pj−1)

= (rj +
pT

j−1r0

pT
j−1Apj−1

Apj−1)T pj = rT
j pj .

This method for symmetric positive definite matrices was first proposed by
Hestenes and Stiefel [34]. The original projector ℘k on a subspace of dimension
k can with the help of the sequence {p0, . . . , pk−1} be simplified to a projection
of r̂k−1 := rk−1 with matrix representation

Pk :=
Apk−1p

T
k−1

pT
k−1Apk−1

,

being an oblique projection onto span{Apk−1}, orthogonal to span{pk−1}. Al-
ternatively, two-term recurrences for residuals can also be obtained from the
Lanczos process (Algorithm 5.1.4) with v1 := r0. The corresponding decom-
position has a tridiagonal Hessenberg matrix due to Lemma 5.1.5 and Propo-
sition 1.2.5 states that we can define a sequence {p0, . . . , pk}, and with its help
iterates and residuals, with two-term recurrences. This procedure is called
Lanczos iterative solution method, but it is mathematically equivalent with
the CG method. The fact that A is symmetric positive definite also entails
this method is error minimizing in the energy norm induced by the energy
inner product. This can be seen as follows: Combining (1.23) with (1.8) yields
a projector connected to the error of the form

(p0, p1, . . . , pk−1)diag

(
1

pT
0 Ap0

, . . . ,
1

pT
k−1Apk−1

)
(A(p0, p1, . . . , pk−1))

T .

Because the sequence {p0, . . . , pk−1} spans Kk(A, r0), the projection of the
error is onto and A-orthogonal to Kk(A, r0). In several applications (especially
from physics and quantum chemistry) the A-norm is related to the original
problem in a natural way and usable procedures to estimate the A-norm of
CG error vectors exist (see Tichý [66]).

• The orthogonal residuals method (ORTHORES):
The same oblique projection has also been implemented as follows. The set of
the k first residual vectors forms an orthogonal basis of Kk(A, r0) by Lemma
1.3.1. The ORTHORES method uses Bk := (r0, . . . , rk−1) in (1.7) and the
following basis of AKk(A, r0):

{r1 − r0, r2 − r0, . . . , rk−1 − r0,Ark−1}.
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Clearly, r1−r0 ∈ span{Ar0}. Furthermore, rj+1−r0 ∈ AKj+1(A, r0) for j > 1
and if rj+1 − r0 would be linearly dependent on the foregoing basis vectors,
then

rj+1 − r0 =
j∑

i=1

βi(ri − r0),

where at least one βl 6= 0 and where we have assumed that {r1−r0, . . . , rj−r0}
spans AKj(A, r0). But then

rT
l (rj+1 − r0) = βlr

T
l rl 6= 0,

contradicting the orthogonality condition of the ORTHORES projector.

Similarly, from rk−1 − r0 ∈ AKk−1(A, r0) we obtain Ark−1 ∈ AKk(A, r0)
through multiplication with A. If we assume Ark−1 ∈ AKk−1(A, r0) this
implies rk−1 ∈ Kk−1(A, r0), which contradicts the fact that {r0, . . . , rj−1}
spans Kj(A, r0) for all j ≤ k (see Lemma 1.3.1).

With Wk := (r1 − r0, r2 − r0, . . . , rk−1 − r0,Ark−1) in (1.7) a matrix repre-
sentation of the ORTHORES projector is given by

Pk = (r1 − r0, . . . , rk−1 − r0,Ark−1) ·
(
(r0, . . . , rk−1)T (r1 − r0, . . . , rk−1 − r0,Ark−1)

)−1
(r0, . . . , rk−1)T .

The expression to be inverted equals

(r0, . . . , rk−1)T (r1−r0, . . . , rk−1−r0,Ark−1) =




−‖r0‖2 . . . −‖r0‖2 rT
0 Ark−1

‖r1‖2 0 0 rT
1 Ark−1

0
. . . 0

...
0 0 ‖rk−1‖2 rT

k−1Ark−1


 ,

which changes to

diag(‖r0‖2, . . . , ‖rk−1‖2)




−1 . . . −1 −h0,k

1 0 0 −h1,k

0
. . . 0

...
0 0 1 −hk−1,k




when we introduce the notation

hi,k = −rT
i Ark−1

‖ri‖2
, 0 ≤ i ≤ k − 1.

Hence we obtain

det
(
(r0, . . . , rk−1)T (r1 − r0, . . . , rk−1 − r0,Ark−1)

)
=

(
k−1∏

i=0

‖ri‖2

)
k−1∑

i=0

hi,k

and when the determinant vanishes the projection is not defined. Otherwise,
with

hk,k =

(
k−1∑

i=0

hi,k

)−1

,

we have (
(r0, . . . , rk−1)T (r1 − r0, . . . , rk−1 − r0,Ark−1)

)−1
=
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hk,k




−h1,k
∑

i 6=1 hi,k . . . −h1,k

...
. . . . . .

...
−hk−1,k . . . −hk−1,k

∑
i 6=k−1 hi,k

−1 . . . −1 −1


diag(1/‖r0‖2, . . . , 1/‖rk−1‖2),

and the projection of r0 becomes

Pkr0 = hk,k(r1 − r0, . . . , rk−1 − r0,Ark−1)




−h1,k
...

−hk−1,k

−1


 .

The kth residual can be written as

rk = r0 −Pkr0 = r0 − hk,k(r1 − r0, . . . , rk−1 − r0,Ark−1)




−h1,k
...

−hk−1,k

−1


 =

r0+hk,k

(
Ark−1 +

k−1∑

i=1

hi,k(ri − r0)

)
= r0+hk,k

(
Ark−1 +

k−1∑

i=1

hi,kri

)
−hk,k

k−1∑

i=0

hi,kr0

and thus the residuals are given by

rk = hk,k(Ark−1 +
k−1∑

i=0

hi,kri)

and the iterates by

xk = hk,k(rk−1 −
k−1∑

i=0

hi,kxi).

This procedure, originally designed for positive real matrices, was proposed by
Young [77]. Of course, it can also be applied to matrices that are not positive
real. Implementations of the GMRES method can be based on this procedure
too (see for example Weiss [75]).

Relations between orthogonal and oblique projection methods

As the test spaces of an orthogonal method and its oblique parallel are very similar,
a close relationship of convergence properties between the two exists. This has been
intensively studied, for example in Eiermann, Ernst [18]. We cite here only some
relations we will need later on.

Theorem 1.3.2 Let a method project onto AKk(A, r0) and orthogonally to AKk(A, r0),
k ≥ 1, with residual vectors denoted by rM

k and let its oblique parallel project onto
AKk(A, r0) and orthogonally to Kk(A, r0), k ≥ 1, with residual vectors denoted by
rO
k . Then

rM
k = s2

kr
M
k−1 + c2

kr
O
k ,

‖rM
k ‖ = sk‖rM

k−1‖,
‖rM

k ‖ = s1s2 . . . sk‖r0‖,
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‖rM
k ‖ = ck‖rO

k ‖,
‖rO

k ‖ = s1s2 . . . sk‖r0‖/ck,

where sk = sin ∠(rM
k−1,AKk(A, r0)), ck = cos∠(rM

k−1,AKk(A, r0)) and ∠(rM
k−1, S) :=

inf06=s∈S ∠(rM
k−1, s) for subspaces S of Rn.

P r o o f : See Eiermann, Ernst [18], page 15 and 16. 2

From these relations it is clear that oblique projections are more susceptible to
irregular convergence behaviour than their orthogonal counterparts. If after the kth
iteration sk is close to 1, the residual norm of the orthogonal method is about as
large as the previous residual norm. The corresponding oblique residual norm, in
contrast, increases dramatically due to division by ck ≈ 0. This phenomenon is
known as the peak-plane relation of convergence curves of oblique and orthogonal
methods. In exact arithmetics, both projection strategies find the exact solution
at the same step, but in practice the unstability of the oblique version can prevent
residuals from vanishing.

1.3.2 V-orthogonality

Unless favorable properties of the system matrix A are assumed (e.g. symmetry),
Euclidean projection with orthonormal bases asks for orthogonalization of new ba-
sis vectors against all previous ones. When the iteration number k grows large this
implies high computational and storage costs. A way to overcome this disadvan-
tage is to give up orthogonality of bases and, in exchange, use bases that can be
computed with short recurrences. But non-orthonormal bases, besides from being
numerically less stable than orthonormal bases, are much harder to work with from
the projection theoretical point of view. For example, if the columns of Vk form
a non-orthonormal basis, terms of the form (VT

k Vk)−1 in (1.7) cannot be simpli-
fied to identity matrices anymore. To facilitate computations with non-orthonormal
bases, one usually exploits projectors whose Petrov-Galerkin condition depends on
the chosen basis and on the iteration number. The involved orthogonality is induced
by the following inner product.

Definition 1.3.3 If V = (v1, . . . , vm) ∈ Rn×m is a matrix with full rank, then the
V-inner product of two vectors a, b ∈ span{v1, . . . , vm} with respect to V is given by

(a, b)V = (Vc,Vd)V := cT d, where a = Vc, b = Vd,

and the V-norm is induced by the V-inner product.

With these notations it follows that

VTVc = VT a, c = (VTV)−1VT a,

and d can be determined similarly, yielding for arbitrary elements
a, b ∈ span{v1, . . . , vm}

(a, b)V = ((VTV)−1VT a)T (VTV)−1VT b = aTV(VTV)−2VT b. (1.25)

In V-orthogonal projection methods the matrix V of the above definition is provided
by the basis-generating algorithm. If the algorithm computes bases {v1, . . . , vk} and
{c1, . . . , ck} of Kk(A, r0) with a decomposition (1.12) and Vk+1 = (v1, . . . , vk+1),
then V-orthogonality is to be understood with respect to V := Vk+1 in Definition
1.3.3.
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Oblique projection with respect to the V-inner product

Oblique projections based on V-orthogonality put the following Petrov-Galerkin con-
dition on the residual vector:

rk⊥V Kk(A, r0).

From (1.25) and because rk lies in Kk+1(A, r0), we see that the test space for these
projectors, expressed in Euclidean orthogonality, is spanned by the columns of

Vk+1(VT
k+1Vk+1)−2VT

k+1Vk = Vk+1(VT
k+1Vk+1)−1


 Ik

0 . . . 0


 , (1.26)

where we have exploited

Vk = Vk+1


 Ik

0 . . . 0


 . (1.27)

With the basis A{c1, . . . , ck} of the projection space AKk(A, r0) the projector is
given by

ACk

(
(Vk+1(VT

k+1Vk+1)−2VT
k+1Vk)TACk

)−1 (
Vk+1(VT

k+1Vk+1)−2VT
k+1Vk

)T
,

which changes with (1.12) and (1.27) to

Pk = Vk+1




...
Ik 0

...
h̃k+1,ke

T
k H−1

k 0


 (VT

k+1Vk+1)−1VT
k+1, (1.28)

where Hk ∈ Rk×k is the upper Hessenberg matrix H̃k from (1.12) without its last
row and we assume det(Hk) 6= 0. If Hk is singular the kth projection does not exist.

The reason for using the rather complicated V-orthogonality is that with its
help we can derive a procedure to compute iterates that leads to the same kind of
linear system as in the FOM method. In the FOM case, the derivation of the linear
system (1.22) exploited orthonormality of the involved bases. With V-orthogonality,
the Petrov-Galerkin condition can, with iterates of the form (1.13), be expressed by
the equation


Vk+1(VT

k+1Vk+1)−1


 Ik

0 . . . 0







T

(r0 −ACkyk) =

=




...
Ik 0

...


 (VT

k+1Vk+1)−1VT
k+1Vk+1(‖r0‖e1 − H̃kyk) = 0.

Hence yk equals the solution of the linear system

Hky = ‖r0‖e1, (1.29)

which coincides with the system (1.22). If det(Hk) 6= 0 this yields for residuals the
expression

rk = r0 −ACkyk = Vk+1

(
‖r0‖e1 − H̃kH−1

k ‖r0‖e1

)
=
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Vk+1


‖r0‖e1 −




Ik

h̃k+1,ke
T
k H−1

k


 ‖r0‖e1


 = Vk+1




0
...
0

−h̃k+1,k‖r0‖eT
k H−1

k e1




= −vk+1h̃k+1,k‖r0‖eT
k H−1

k e1. (1.30)

Thus the kth residual vector is a multiple of the last basis vector vk+1, as was the
case with Euclidean orthogonality.

In general V-orthogonal projectors pay for their inexpensive iterations with a
loss of stability, especially the algorithms for bases can break down. The following
full methods work with such kind of projector. They differ only in the choice of
the involved bases {v1, . . . , vk+1} and, of course, they exploit different algorithms to
generate their bases.

• The bi-conjugate gradient method (BCG):
The first method to generate nonorthogonal bases with short recurrences in the
non-symmetric non-positive definite case, was the BCG method. This method
works with an arbitrary shadow vector ṽ1 and generates a pair of bases, one
corresponding to r0 and one to the shadow vector, that is bi-orthogonal. More
precisely, if the columns of Vk ∈ Rn×k span Kk(A, r0) (with v1 := r0/‖r0‖)
and those of Ṽk ∈ Rn×k span Kk(AT , ṽ1), then one variant of defining bi-
orthogonality is the condition

Ṽ
T
k Vk = Ik (1.31)

(for a detailed description of other variants see Weiss [75], Chapter 4). An
algorithm producing such bases is Algorithm 5.1.6, called the bi-orthogonal
Lanczos process. It yields a decomposition (1.12) with Ck = Vk due to Lemma
5.1.7.

With the matrix Vk+1 that results from the bi-orthogonal Lanczos process,
the considerations based on V-orthogonality that precede this method yield a
test space that is spanned by the columns of (1.26), a projector represented
by (1.28) and coordinate vectors yk that solve a system of the form (1.29). If
Hk is singular, the kth iterate does not exist.

Interestingly, the BCG method can also be characterized by a projection or-
thogonal to a different test space, namely Kk(AT , ṽ1), where the orthogonality
condition is Euclidean. Indeed, if

xk = x0 + Vkyk, yk ∈ Rk,

then (1.15) reads
Hky = Ṽ

T
k r0

, where Hk is the Hessenberg matrix H̃k without its last row. This is the
same system as (1.29) because vT

1 ṽ1 = 1 and thus this characterization yields
identical iterates.

A new, residual-based implementation results if we assume the columns of
some matrix Wk ∈ Rn×k span AKk(A, r0) (with w1 := Ar0/‖Ar0‖), those of
Ṽk ∈ Rn×k span Kk(AT , ṽ1), and the bi-orthogonality condition consists of

Ṽ
T
k Wk = Ik.
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This could be achieved by applying Algorithm 5.1.6 to a starting vector Ar0/‖Ar0‖.
We can represent this projector with Bk := Ṽk in (1.7) by

Pk = WkṼ
T
k . (1.32)

Due to Lemma 5.1.7 the basis Wk possesses a decomposition (1.16) , where
Ck−1 = Wk−1 and G̃k−1 ∈ Rk×(k−1) is tridiagonal. Thus we can define an
upper triangular matrix Rk according to (1.17) and if

xk = x0 + (v1,Wk−1)zk, zk ∈ Rk,

then (1.20) translates in
Rkz = Ṽ

T
k r0.

When Rk is nonsingular, we solve a linear system of dimension k with an
upper triangular tridiagonal system matrix.

Note that the projector of the BCG method depends on the choice of the
shadow vector. For different shadow vectors the projection is orthogonal to
different spaces. This item is treated for example in Tichý [66]. Also note that
the BCG procedure significantly reduces computational costs in comparison
with the oblique methods mentioned before, because bases can be defined
with three-term recurrences and with Lemma 5.1.7 and Proposition 1.2.5 also
iterates and residuals can. This has been worked out in Lemma 5.1.8. The
method was first described by Lanczos [44].

An important drawback of this method is the risk of breakdowns. In analogy
with algorithms for Arnoldi decompositions, the bi-orthogonal Lanczos pro-
cess terminates prematurely when the dimension of Kk(A, r0) or Kk(AT , ṽ1)
is maximal for some k < n. Then the process has found an A- respectively
AT -invariant subspace and in the first case we have found the exact solution
because of Lemma 1.2.3. This kind of termination is called ,,happy” break-
down and occurs when the vector vk+1 or wk+1 vanishes in Algorithm 5.1.6. If
neither of these vectors is zero, but still vT

k+1wk+1 = 0, the algorithm breaks
down too. This breakdown has been referred to as ,,serious”. Assu-ming
full dimension of all Krylov subspaces, it is readily seen that the matrix Hk

from (1.29) is singular if and only if the bi-orthogonalization procedure con-
nected to (1.32) breaks down in this manner. Thus a serious breakdown of
the residual-based implementation occurs exactly when the Petrov-Galerkin
condition cannot be satisfied, that is when the oblique projection does not
exist. The iterate-based version, on the other hand, is able to skip an iterate
if the projection does not exist (,,curable breakdown”), but it breaks down for
a different reason: Orthogonality of a vector from Kk+1(A, r0) to the space
Kk+1(AT , ṽ1). A well-known implementation of the iterate based version that
does not separate the computation of bases from the computation of iterates
is presented in Proposition 5.1.8. Although it is numerically more stable than
the strategy described above (see Gutknecht, Strakoš [32]), there are three
reasons why it can break down: Happy or serious breakdown of the underlying
bi-orthogonalization process and nonexistence of the oblique projection.

So-called ,,look-ahead” variants of Algorithm 5.1.6 try to reduce the risk of
breakdown by defining ,,nearly” bi-orthogonal bases (see for example Parlett,
Taylor and Liu [48] or Freund, Gutknecht and Nachtigal [27]). They avoid
computation of basis vectors if they are suspicious of being orthogonal to each
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other by skipping them, as long as it does not concern a ,,happy” breakdown.
The look-ahead strategy can also overcome other kinds of threatening instabi-
lity and it only exceptionally breaks down. An example is given in Algorithm
5.1.10. The bi-orthogonality condition (1.31) is in this case weakened to the
block bi-orthogonality condition (5.6). The one drawback of the look-ahead
process in comparison with bi-orthogonalization is that the three-term recur-
rences of the latter get lost. But a block generalization of Proposition 1.2.5 is
possible and thus iterates can be defined at least by three-block recurrences
because of Lemma 5.1.11. In general the dimension of the blocks Dl from (5.6)
is, however, very small (i.e. less than five in most applications) and if their
dimension equals one for all l the process coincides with bi-orthogonalization.
Otherwise, a method based on a look-ahead algorithm yields a different projec-
tor than classical bi-orthogonalization and is therefore slightly different from
the original BCG method.

• The conjugate gradient squared method (CGS):
In the BCG method we generate a basis for the subspace Kk(AT , ṽ1) (see
Lemma 5.1.7 or 5.1.11). This subspace is related to the linear system

AT x = b. (1.33)

When we desire to solve this dual system simultaneously with system (1.1) we
have to choose the shadow vector ṽ1 = r∗0/‖r∗0‖ , where r∗0 = b − AT x∗0 for
some initial guess x∗0 of the dual system. In the common case, however, the
dual system does not play any role and the bases of Kk(AT , ṽ1) merely serve
as shadowing sequences that enable short recurrence formulaes for the bases
of AKk(A, r0). A current choice is ṽ1 := v1. Unfortunately, one needs two
matrix vector multiplications (one with A and one with AT ) to compute only
one new basis vector for AKk+1(A, r0). In order to make the computation
of bases more profitable, in the CGS method we modify Algorithm 5.1.6, the
bi-orthogonal Lanczos process, to obtain only bases for K2k(A, r0) that can
be defined with short recurrences. This is achieved by squaring the residual
polynomials generated by the BCG method: When the jth BCG residual has
the form

r
BCG

j = ρj(A)r0, (1.34)

for some polynomial ρj of degree j with ρj(0) = 1, then the CGS algorithm
computes a sequence of basis vectors q0, q1, . . . whose elements with even index
satisfy

q2j = (ρj(A))2r0.

The sequence generated by Algorithm 5.1.12 with q0 := r0 has this property.
This is proved in Lemma 5.1.14. The idea of squaring comes from rewriting
BCG scalars (AT r∗0)

TAr0 in the form (r∗0)
TA2r0, which is a way to avoid

multiplications with the transposed matrix AT . Moreover, this algorithm,
when q0 := r0, yields bases for the desired Krylov subspaces (see Lemma
5.1.13) and only one matrix vector multiplication per basis vector is needed.
But the generated sequences are still dependent on the choice of the shadow
vector and as for bi-orthogonalization the process can break down.

We will now show that Algorithm 5.1.12 with q0 := r0 computes a decomposi-
tion of the form (1.12) and moreover, that the generated basis vectors are at
the same time the residual vectors resulting from projection with respect to
the corresponding V-inner product. For the quantities used in the following
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considerations we refer to Algorithm 5.1.12 and we assume that in the algo-
rithm αi 6= 0 for all i > 0.
If Ck := (c0, c1, . . . , ck) we obtain, when we omit the distinction between odd
and even indexes for the moment, that

qi+1 = qi − αiAci, i < k

and due to this recurrence the vector qk can be written as

qk = q0 −ACk−1




α0

α1
...

αk−1


 .

With the first equation we have

Aci =
1
αi

(qi − qi+1), i < k,

and this yields the decomposition

ACk−1 = (q0, . . . , qk)G̃k, (1.35)

where G̃k ∈ R(k+1)×k has the form

G̃k =




1 0 . . . . . . 0
−1 1

...
0 −1 1
...

. . . . . . . . .
...

... −1 1
0 . . . 0 −1




diag(1/α0, . . . , 1/αk−1).

Hence

qk = q0 −ACk−1




α0
...

αk−1


 = (q0, . . . , qk)


e1 − G̃k




α0
...

αk−1





 =

(q0/‖q0‖, . . . , qk/‖qk‖)

‖q0‖e1 − diag (‖q0‖, . . . , ‖qk‖)G̃k




α0
...

αk−1





 .

With the notations

Vk+1 := (q0/‖q0‖, . . . , qk/‖qk‖), H̃k := diag (‖q0‖, . . . , ‖qk‖)G̃k, (1.36)

we obtain

qk = q0 −ACk−1




α0
...

αk−1


 = Vk+1


‖q0‖e1 − H̃k




α0
...

αk−1





 . (1.37)

In this equation we recognize that the transpose free algorithm yields a de-
composition of the form (1.12) , where in contrast with preceding methods
Ck 6= Vk. If q0 = r0, then because of Lemma 5.1.13, the algorithm gene-
rates a basis A{c0, c1, . . . , ck−1} of AKk(A, r0) and a basis {v0, v1, . . . , vk−1},
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columns from Vk+1 in (1.36), of Kk(A, r0). Thus the oblique projector can
be represented by (1.28). In theory, iterates can be computed by solving the
Hessenberg system (1.29), but in the CGS case it is more efficient to extract
them from the residuals. This is due to the fact that the residuals are already
avai-lable in Algorithm 5.1.12, as we will now show. With (1.30), residual
vectors have the form

rk = −vkh̃k+1,k‖r0‖eT
k H−1

k e1 = vk
‖qk‖
αk−1

‖r0‖eT
k H−1

k e1. (1.38)

With (1.36) Hk can be written as

Hk = diag(‖q0‖, . . . , ‖qk−1‖)Gk,

where Gk ∈ Rk×k is the upper Hessenberg matrix G̃k from (1.35) without its
last row. Its inverse equals

H−1
k = diag(α0, . . . , αk−1)




1 0 . . . . . . 0
1 1

...
1 1 1 . . .
...

. . . . . . 0
1 1 1




diag(1/‖q0‖, . . . , 1/‖qk−1‖).

Thus eT
k H−1

k e1 = αk−1

‖q0‖ and this means that with (1.36) and (1.38) residual
vectors in the CGS method satisfy

rk = vk‖qk‖ = qk = q0 −ACk−1




α0
...

αk−1




if we choose q0 = r0. Thus ri ≡ qi, i ≤ k and the residuals are nothing but the
basis vectors for the Krylov subspaces.

Sonneveld [62] introduced this method and his version defines only even iterates

x2k = x0 + C2k−1




α0
...

α2k−1


 = x2k−2 + α2k−2(c2k−2 + c2k−1).

because α2k−1 = α2k−2 in Algorithm 5.1.12. Even iterates are due to the
original derivation of the method by squaring BCG residual polynomials. This
squaring has the following consequences concerning convergence behaviour:
The CGS method finds the exact solution at the same iteration number as
the BCG method and a breakdown of the former occurs precisely when the
latter breaks down. Fast convergence of BCG residual norms will be even
accelerated by CGS residuals, but also convergence oscillations are emphasized
by the latter. This leads to high peaks in the convergence curve and a loss of
stability in general.

• The bi-conjugate gradient stabilized method (BCGSTAB):
The main idea behind the BCGSTAB method is to combine smoothing of
the irregular convergence behaviour of the BCG method with a transpose free
procedure to generate bases. In such a procedure stabilizing parameters are
inserted. An example is Algorithm 5.1.15 with parameters ω2j and with short
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recurrences for basis vectors. It can be seen from this algorithm that the
smoothing parameters ω2j are defined by a standard line search:

‖q2j+2‖ = ‖q2j+1 − ω2jc2j+1‖ = min
ω∈R

‖q2j+1 − ωc2j+1‖. (1.39)

Furthermore, Algorithm 5.1.15 with q0 := r0 generates a sequence {q0, . . . , q2j}
with the following property: Instead of squaring the BCG polynomial as in
the CGS case, BCGSTAB basis vectors are of the form

q2j =

(
j−1∏

i=0

(In − ω2iA)

)
ρj(A)r0,

where ρj(A)r0 = r
BCG

j . Lemma 5.1.17 proves this fact.

We will now proceed along the same lines as we have done in the CGS method
for Algorithm 5.1.12, i.e. we demonstrate how the basis Vk+1 of the BCGSTAB
V-inner product can be derived from the Algorithm 5.1.15. In contrast with
the preceding method we consider even indexes from the very start. The
stabilizing algorithm, when it does not break down, yields vectors

q2k = q2k−2 − α2k−2c2k−2 − ω2k−2c2k−1

or, with C2k−1 := (c0, c1, . . . , c2k−1),

q2k = q0 −C2k−1




α0

ω0
...

α2k−2

ω2k−2




.

From Algorithm 5.1.15 we also obtain the decomposition

C2k−1 = (q0, q1, . . . , q2k)G̃2k, (1.40)

where G̃2k ∈ R(2k+1)×(2k) has the form

G̃2k =




1/α0 0 . . . . . . 0

−1/α0 1/ω0
...

0 −1/ω0 1/α2
...

. . . . . .
...

... −1/α2k−2 1/ω2k−2

0 . . . −1/ω2k−2




.

The vector q2k can be written as

q2k = (q0/‖q0‖, . . . , q2k/‖q2k‖)



‖q0‖e1 − diag(‖q0‖, . . . , ‖q2k‖)G̃2k




α0

ω0
...

α2k−2

ω2k−2







.

With the notations

V2k+1 := (q0/‖q0‖, . . . , q2k/‖q2k‖), H̃2k := diag(‖q0‖, . . . , ‖q2k‖)G̃2k,
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we obtain

q2k = q0 −C2k−1




α0

ω0
...

α2k−2

ω2k−2




= V2k+1



‖q0‖e1 − H̃2k




α0

ω0
...

α2k−2

ω2k−2







. (1.41)

When q0 := r0, then Lemma 5.1.16 states that {c0, c1, . . . , c2k−1} is a basis of
AK2k(A, r0) and {v1, . . . , v2k} spans K2k(A, r0). The matrix representation
of ℘2k in these bases is given by (1.28) when we replace indexes k by 2k.
Because the projection space is spanned by {c0, c1, . . . , c2k−1} and with q0 :=
r0, residual vectors with even indexes have the form

r2k = r0 −C2k−1y2k = V2k+1(‖r0‖e1 − H̃2ky2k), (1.42)

for some y2k ∈ R2k because of (1.41). According to (1.29), the Petrov-Galerkin
condition yields a linear system

H2ky = ‖r0‖e1,

where H2k ∈ R2k×2k is the upper Hessenberg matrix H̃2k without its last row.
This matrix can be written as

H2k = diag(‖q0‖, . . . , ‖q2k−1‖)G2k,

where G2k ∈ R2k×2k is the upper Hessenberg matrix G̃2k from (1.40) without
its last row. Its inverse equals

H−1
2k =




α0 0 . . . . . . 0

ω0 ω0
...

α2 α2 α2 0
...

. . . . . .
...

ω2k−2 ω2k−2 ω2k−2




diag(1/‖q0‖, . . . , 1/‖q2k−1‖).

In analogy with (1.30) we have

r2k = −v2k+1h̃2k+1,2k‖r0‖eT
2kH

−1
2k e1 = v2k+1

‖q2k‖
ω2k−2

‖r0‖eT
2kH

−1
2k e1

and hence

r2k = r0−C2k−1y2k = V2k+1




0
...
0

‖q2k‖·‖r0‖
ω2k−2

eT
2kH

−1
2k e1


 = V2k+1




0
...
0

‖q2k‖


 = q2k.

Thus r2j = q2j for all j if we choose q0 = r0 and the stabilizing parameters
in (1.39) appear to minimize the residual vectors. In addition, we obtain
y2k = (α0, ω0, . . . , ω2k−2)T . With Algorithm 5.1.15 we see

r2k = b−Ax2k = r2k−2 − α2k−2c2k−2 − ω2k−2c2k−1

= b−Ax2k−2 − α2k−2Ap2k−2 − ω2k−2Ar2k−1,

hence
x2k = x2k−2 + α2k−2p2k−2 + ω2k−2r2k−1.

The method was proposed by Van der Vorst [67]. Although breakdowns of a
new origin have been created, namely vanishing stabilization parameters ω2j ,
it appears to yield smoother and faster convergence than its predecessors, the
BCG and CGS methods.
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Orthogonal projection with respect to the V-inner product

In analogy with oblique projections we can define orthogonal projections with respect
to iteration dependent inner products. If the involved algorithm generates bases
{v1, . . . , vk} and {c1, . . . , ck} of Kk(A, r0) that are not necessarily orthonormal and
if they posses a decomposition (1.12), then the projection is asked to be V-orthogonal
with V := Vk+1 in Definition 1.3.3. This significantly facilitates the computation
of iterates with non-orthonormal bases, because when we put

xk = x0 + Ckyk, yk ∈ Rk, (1.43)

for some initial guess x0, then

rk = r0 −ACkyk = Vk+1(‖r0‖e1 − H̃kyk).

The V-orthogonality condition

‖rk‖ = min
y∈Rk

‖r0 −ACky‖V ,

results in the following property of yk (see Definition 1.3.3):
∥∥∥‖r0‖e1 − H̃kyk

∥∥∥ = min
y∈Rk

∥∥∥‖r0‖e1 − H̃ky
∥∥∥ . (1.44)

Thus the norm of rk is being ,,quasi-minimized” and we have reduced the least-
squares minimization problem of dimension n× k to a problem of dimension
(k+1)×k, as was the case in the GMRES method. In terms of classical orthogonality,
the test spaces are spanned by the columns of

Bk := Vk+1(VT
k+1Vk+1)−2VT

k+1ACk.

With the basis A{c1, . . . , ck} of AKk(A, r0) the matrix representation of ℘k becomes
with (1.7)

Pk = ACk

(
(Vk+1(VT

k+1Vk+1)−2VT
k+1ACk)TACk

)−1 (
Vk+1(VT

k+1Vk+1)−2VT
k+1ACk

)T

or, with (1.12),

Pk = Vk+1H̃k(H̃
T
k H̃k)−1H̃

T
k (VT

k+1Vk+1)−1VT
k+1. (1.45)

In theory, the minimization property (1.9) for residuals is lost when we project
V-orthogonally and non-increasing of residual norms can not be guaranteed anymore.
But compared with their oblique counterparts V-orthogonal projections appear to
stabilize irregular convergence behaviour. Indeed, the so-called TFQMR method
smoothes the oscillations of the residual norms of its oblique parallel, and the QMR
method does so for the BCG method. The orthogonal version of the BCGSTAB
method is the QMRCGSTAB method. We will treat here briefly the QMR and the
TFQMR method.

• The quasi-minimal residual method (QMR):
The QMR method is the orthogonal counterpart of the oblique BCG method.
Therefore, bases are generated by the bi-orthogonal Lanczos proces (Algorithm
5.1.6), or eventually by a look-ahead version such as Algorithm 5.1.10 and they
satisfy (1.31), respectively (5.6). Let us use the notations of the BCG method,
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where we have a decomposition (1.12) with Ck = Vk. We assume the basis-
generating algorithm does not break down and if we consider a look-ahead
algorithm, let us assume in (5.5) that m = ki+1 − 1, i.e. Dm is nonsingular.
Then, in accordance with the preceding considerations, if we replace Ck by
Vk, QMR iterates of the form (1.43) can be characterized by the property
(1.44) and the projector is given by (1.45).

In the original version of Freund and Nachtigal [24] the underlying algorithm
is a look-ahead version and in addition the least squares problem (1.44) is
scaled by a weight matrix. As for the BCG method, the orthogonality con-
dition of a QMR projection depends upon the shadow vector involved in the
algorithm and in this sense the notion QMR method covers a whole class of
projectors. In case we use Algorithm 5.1.6 it is possible to define iterates
with three term recurrences (although their derivation differs from the one of
Proposition 1.2.5). For the look-ahead version these short recurrences change
to block recurrences, see Freund and Nachtigal [24]. In this paper, some re-
lations between QMR and BCG residual norms have been pointed out. They
are analogue to those of Theorem 1.3.2 and one example of the smoothing po-
tential of the QMR method compared with the BCG method is presented later
on (Example 3 in Chapter 2). We used the QMR method also in experiments
where improvements of the GMRES method are discussed, because it is the
method with short recurrences that is closest to GMRES from the projectional
point of view.

• The transpose free QMR method (TFQMR):
The TFQMR method is the orthogonal parallel of the oblique CGS method
and hence is based on the same algorithm as the CGS method. With the
notations of the CGS method described above, we have a sequence c0, . . . , ck−1

and a sequence v0, . . . , vk−1 that both generate Kk(A, r0) if we choose q0 to
be the initial residual vector r0 in Algorithm 5.1.12 (see Lemma 5.1.13). We
have shown these bases can be decomposed according to (1.37). If we replace
indexes k by k − 1, TFQMR iterates of the form (1.43) can be characterized
by the property (1.44) and the projector is given by (1.45). The method was
introduced by Freund [25]. Two-term recurrences of iterates and residuals are
possible for the following reason. The matrix Tk from Proposition 1.2.5 with
Bk := Vk(VT

k Vk)−2VT
k ACk−1 has the form H̃

T
k−1H̃k−1 because of (1.37).

Now H̃
T
j H̃j has rank j for all j ≤ k − 1 and is tridiagonal because its factors

are bidiagonal. Hence we can apply Proposition 1.2.5.

Other full projection methods we did not describe above, be it oblique or orthogonal
ones, include the CGNE and CGNR methods for normal equations, GCR (Elman
[19]), ORTHODIR (Jea, Young [38]), ORTHOMIN (Vinsome, [70]), hybrid BCG
methods (Sleijpen, Van der Vorst, Fokkema [23]) and row projection methods. Some
of them might be mathematically equivalent to previously treated methods but
then they are implemented in a different way. For their description we refer to the
indicated literature.

1.4 Truncated and restarted projection methods

From the preceding full methods, methods that exploit orthonormal bases are the
most robust. But unless additional properties of the system matrix exist, it is for
them not possible to define iterates or residuals by short recurrences. If we wish
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to use orthonormal bases but to avoid recurrences of more than l terms for some
integer l, two options immediately offer themselves:

• Truncation: Only l orthogonality conditions are kept, the remaining conditions
are dropped.

• Restarting: After having reached projection onto a subspace of dimension l we
restart the same or a similar process with the new initial residual vector being
equal to rl.

Of course, the two approaches can be combined (see, for example, De Sturler [11]).
These techniques pay for computations of limited costs with the loss of convergence
in at most n steps. In theory it is possible to apply them to all projectors seen in
the previous section, but there is no need to do so for full methods with short term
recurrences.

1.4.1 Truncation

Several definitions of truncated methods are used in the literature. Truncation can
for example be applied to the orthogonalization process for bases. In that case, a
new basis vector is orthogonalized only against the l previous ones. Adapted versions
of Algorithm 5.1.1 or 5.1.2 then compute decompositions with a banded Hessenberg
matrix. The GMRES method with an adapted version of Algorithm 5.1.1 can be
formulated with l-term recurrences by Proposition 1.2.5 and it is possible to show
that also the truncated FOM method can. These truncated versions project, as
for the full versions, onto AKk(A, r0). The matrix Vk from Arnoldi decomposition
(1.12), however, (or V := Wk from (1.16) when using the residual-based approach)
is not orthonormal anymore, although the coordinate vector of iterates is extracted
from the same linear equations as for GMRES or FOM (from (1.44) or (1.29), re-
spectively). Thus the Petrov-Galerkin conditions must be understood with respect
to V-orthogonality, where V := Vk in Definition 1.3.3.

We will here use a definition where truncation concerns the orthogonality
conditions of the projector.

Definition 1.4.1 An l-truncated projection method is an iterative method with suc-
cessive residual vectors that satisfy

rk = r̂k−1 − ℘k(r̂k−1), k = 1, 2, . . . ,

where r̂k−1 = r0 if k ≤ l and else r̂k−1 = rk−l and where the operator ℘k is a
projector whose matrix representations have rank min(l, k).

When we truncate a full method, the rank-l projector is obtained by considering
l-dimensional projection and test spaces that result from discarding the first k − l
dimensions of the spaces from the full method. Several truncated methods are
listed below. Some of them do not arise from truncation of full methods. We also
describe iterative methods that were not originally conceived as projection methods
but appear to belong to them. For these methods, this classification may only have
theoretical interest as implementation based on projection is here computationally
more expensive and more complicated than the original process.

• The steepest descent method:
The steepest descent method can be regarded as an l-truncated version of
the CG method for symmetric positive definite matrices with l = 1. In the



40 CHAPTER 1. PROJECTION METHODS

steepest descent method we drop all but the last basis vector of the test space
of the CG projector. This space, Kk(A, r0), is spanned by the sequence of CG
residuals because of Lemma 1.3.1 and, as will be clear from the following, also
the sequence of steepest descent residuals spans this space. We thus have in
(1.7) Bm := rk−1 (we put m ≡ l for l-truncated methods), which yields the
Petrov-Galerkin condition

rT
k−1rk = 0.

Even so, the projection space is reduced to a last basis vector for the CG
projection space AKk(A, r0), namely Ark−1. Then residual vectors are given
by

rk = rk−1 − αk−1Ark−1

and with (1.7) the corresponding rank-one matrix representation of the pro-
jector is

Pk =
Ark−1r

T
k−1

rT
k−1Ark−1

,

where rT
k−1Ark−1 6= 0 because A is positive definite. Hence

αk−1 =
rT
k−1rk−1

rT
k−1Ark−1

and iterates have the form

xk = xk−1 + αk−1rk−1.

• Richardson iteration:
A very simple example of an iterative method with two-term recurrence is
Richardson iteration (for some applications see for example Fischer, Reichel
[22]). Iterates are characterized by

xk = xk−1 + δkrk−1, δk ∈ R,

and therefore residuals by

rk = rk−1 − δkArk−1, (1.46)

yielding

rk =
k∏

i=1

(In − δiA)r0.

This method can be seen as a 1-truncated projection method with projection
spaces span{Ark−1}. If sk is given by

sk := rk−1 −
rT
k rk−1

‖rk‖2
rk = rk−1 −

rT
k−1(rk−1 − δkArk−1)
‖rk−1 − δkArk−1‖2

(rk−1 − δkArk−1) ,

then the residual vector rk is orthogonal to sk by construction. With (1.7) the
rank-one matrix representing ℘k becomes

Pk =
δkArk−1s

T
k

δks
T
k Ark−1

=
δkArk−1s

T
k

sT
k rk−1

.
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The last equality follows from (1.46) and the orthogonality of rk and sk. The
projector is well defined because of

rT
k−1sk = ‖rk−1‖2 − (rT

k rk−1)2

‖rk‖2
.

This expression vanishes only in case αrk = rk−1 for some α ∈ R. But that
would imply the projection space is span{Ark−1}=span{rk−1} and the (k−1)st
residual would already have vanished.
For this method executing projections does not make sense in practice since the
computation of the projector asks for the vector sk and hence for the wanted
residual itself.

• Matrix splitting methods:
Let us write the system matrix A in the form

A = M−N,

where M is nonsingular. Then a matrix splitting method is an iterative method
defined by

Mxk = Nxk−1 + b, k ≥ 1.

Thus we have

xk = M−1(M−A)xk−1 + M−1b = (I−M−1A)xk−1 + M−1b

and the residuals satisfy

rk = rk−1 −AM−1rk−1. (1.47)

They are orthogonal to the vector

sk ≡ rk−1−
rT
k rk−1

‖rk‖2
rk = rk−1−

rT
k−1(rk−1 −AM−1rk−1)

‖rk−1 −AM−1rk−1‖2

(
rk−1 −AM−1rk−1

)
.

As for Richardson iteration matrix splitting methods can theoretically be seen
as 1-truncated projection methods with projectors

Pk =
AM−1rk−1s

T
k

sT
k AM−1rk−1

=
AM−1rk−1s

T
k

sT
k rk−1

.

The projection is onto span{AM−1rk−1} and orthogonal to span{sk} and is
well defined for the same reasons as for Richardson iteration. The nonsingular
matrix M is best chosen such, that it is close to A in some sense, but more
easy to invert than A itself. Many methods are based on the splitting

A = D− L−U,

where D =diag(A), L is strictly lower triangular and U strictly upper tri-
angular. With these notations the following matrix splitting methods are
characterized by their choice of M:

– The Jacobi method: M := D = diag(A).

– The Gauss-Seidel method: M := D− L.
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– The successive over-relaxating method (SOR): M := 1
ωD−L with

relaxation parameter 1/ω. In order to enable convergence ω should be
chosen to be larger than one (i.e. over-relaxing).

– The symmetric successive over-relaxating method (SSOR): When
we alternate SOR iterations with SOR iterative steps in which the orde-
ring of unknowns is reversed we obtain the SSOR method. This yields

M =
1

ω(2− ω)
(In − ωD−1L)(In − ωD−1U).

1.4.2 Restarting

Restarted methods can be defined as follows.

Definition 1.4.2 An m-restarted projection method is an iterative method with suc-
cessive residual vectors that satisfy

rk = r̂k−1 − ℘k(r̂k−1), k = 1, 2, . . . ,

where r̂k−1 = rk−1−(k−1) mod m and where the operator ℘k is a projector whose matrix
representations have rank 1 + (k − 1) mod m.

When we restart a full projection method based on Krylov subspaces, we put the
projection space of the k-th iteration to be equal to

AK1+(k−1) mod m(A, rk−1−(k−1) mod m)

and define the test space analogously.
The classical method to restart is the GMRES method because firstly the

full version asks for full, expensive orthonormalization and secondly, though we lose
by restarting the fact convergence occurs in at most n iterations, at least GMRES
generated residual norms do not increase. We will denote the GMRES method
restarted after m iterations by GMRES(m). If A is positive definite a well-known
result (Eisenstat, Elman, Schultz [18]) guarantees that residual norms even decrease
as long as all projection spaces contain the initial residual. Without assuming A is
positive definite, however, solving a linear system by restarting the GMRES method
is sometimes a laborious task. In the worst case, convergence of the method restarted
after m iterations is not guaranteed at all for m < n (for some global convergence
criteria we refer to Saad [59] and [61], for criteria in dependency of the restart
parameter m of GMRES(m) see for example Źıtko [78], the worst case for normal
matrices is discussed in Liesen, Tichý [47]). If restarted GMRES does converge,
decreasing of residual norms can still be very slow. If the process becomes unsuitable
for practical use, we shall call this phenomenon stagnation.

One expects convergence to be faster when the dimension of the projection
space grows, i.e. the restart parameter m is larger. This is not entirely true be-
cause the distance of r̂k−1 to the projection space AKm(A, r̂k−1) is also influenced
by the choice of r̂k−1. Examples exist in which convergence is faster for smaller
restart parameters than for larger ones, because the resulting vectors r̂k−1 generate
closer Krylov subspaces (see Eiermann, Ernst, Schneider [16]). To accelerate the
convergence speed of stagnating restarted projection methods, especially the GM-
RES method, various techniques have been proposed in the literature. Most of them
are based on deflation of eigenvalues.
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Deflation techniques

This strategy applies to cases where the eigenvalue distribution of the system matrix
A is known, a priori, to have a negative influence on the convergence speed of the
method. In the GMRES case, for example, we can derive the bound

‖rm+1‖
‖r0‖ ≤ ‖Z‖‖Z−1‖ε(m),

where m is the restart parameter, the columns of Z are eigenvectors of A and

ε(m) = min
ρ∈Π0

m

max
λ∈σ(A)

|ρ(λ)|, (1.48)

(see Saad, Schultz [56]). Π0
m denotes the polynomials ρ of degree m with ρ(0) = 1.

This bound however, assumes that A be diagonalizable, i.e. the existence of a
decomposition A = ZΛZ−1, where Λ is a diagonal matrix. For matrices that are
far from normal the bound might not be indicative because the conditioning of the
eigenvectors given by the columns of Z can be very poor. But on the other hand, in
several examples a convergence behaviour that is related to the spectrum has been
observed (for example in Van der Vorst, Vuik [68]). To improve the convergence of
restarted methods in such cases one can deflate the spectrum of A, that is eliminate
eigenvalues from the spectrum yielding a tighter bound due to (1.48). In particular,
it is assumed and seen in various experiments that the eigenvalues closest to the
origin hamper convergence most.

Techniques achieving deflation of the spectrum exploit the fact that the pro-
jection process of the corresponding full method implicitly provides approximations
to eigenvalues. In the case of Krylov projection spaces, approximate eigenvalues
are given by the eigenvalues (called Ritz values) of the matrix H̃k of (1.12) with-
out its last row because this matrix represents the restriction of A onto the kth
Krylov subspace. Eigenvectors of this matrix yield approximate eigenvectors of A
by multiplication with the matrix Vk from (1.12) (they are called Ritz vectors).
Information about the quality of the approximate eigenvalue-eigenvector pairs can
be easily obtained from decomposition (1.12), this will be seen later on in Chapter
4, (4.4). Thus spectral information gained during one restart cycle is exploited in
the next one. Deflation has also been studied for some methods that do not re-
quire restarting, such as the CG method for symmetric positive definite matrices
(e.g. Nicolaides [52]), because in that case the connection between convergence and
eigenvalue distribution is more or less obvious.

In the context of restarting, Morgan [50] proposes augmentation of the projec-
tion space with approximate eigenvectors. The influence of the approximate eigenva-
lues they correspond to essentially vanishes. A different approach is the construction
of a left preconditioner whose product with A yields a deflated matrix (proposed by
Baglama et al.[3]) or, similarly, use deflating right preconditioning (Erhel et al.[7]).
In Eiermann et al.[16] it is shown that Morgan’s method eventually has better con-
vergence properties than the methods based on preconditioning. A further deflating
preconditioning technique is presented in Kharchenko, Yeremin [41]. Finally, block
Krylov subspace methods (described in Chan, Wan [8], Farhat, Crivelli, Roux [10],
Fischer [21], Prasad, Keyes, Kane [40]) solving multiple right-hand sides can be used
for deflation purposes by choosing right-hand sides to be approximate eigenvectors
(Saad, Chapman [9],[60]). To illustrate at least one deflation technique, we will here
describe Erhel’s method in more detail. We have used this deflation technique to
compare it in numerical experiments with the new convergence accelerating tech-
niques presented in the following chapters.
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The construction of a right preconditioner M such that AM−1 has a deflated
spectrum is based on the following proposition due to Erhel et al. [7]. We assume
A is diagonalizable with eigenvalues satisfying

|λ1| ≤ |λ2| ≤ . . . ≤ |λn|
and we assume the columns of an orthonormal matrix U span the A-invariant sub-
space corresponding to the r eigenvalues of smallest modulus, i.e. corresponding
to λ1, . . . , λr. Furthermore, let the matrix T represent the restriction of A onto
span(U), that is T = UTAU.

Proposition 1.4.3 The matrix

M := In + U
(

1
|λn|T− Ir

)
UT

is nonsingular with
M−1 = In + U(|λn|T−1 − Ir)UT (1.49)

and the eigenvalues of AM−1 are λr+1, . . . , λn, |λn|, . . . , |λn| , where |λn| has multi-
plicity at least r.

P r o o f : Let W be the orthogonal complement of U in Rn. Then
(

UT

WT

)
A(U,W) =

(
T A1,2

0 A2,2

)
,

where A1,2 = UTAW, A2,2 = WTAW.
We can write M in the form M = 1

|λn|UTUT + (In −UUT ) = 1
|λn|UTUT +

WWT , hence

M = (U,W)
(

1
|λn|T 0

0 In−r

)(
UT

WT

)

and the inverse of M equals

M−1 = (U,W)
( |λn|T−1 0

0 In−r

)(
UT

WT

)
.

Therefore, the preconditioned matrix AM−1 takes the form

AM−1 = (U,W)
( |λn|Ir A1,2

0 A2,2

)(
UT

WT

)
,

hence its eigenvalues are |λn| and the eigenvalues of A2,2. 2

During the projective process of the projection method, however, exact invari-
ant subspaces U to construct the above preconditioner are in general not available.
Instead, we can compute at the end of every restart cycle Ritz vectors corresponding
to approximate eigenvalues of smallest modulus. Also, the value |λn| must be ap-
proximated by the largest Ritz value |λ̃|. With these approximations we can modify
the proof of the above proposition and we obtain a perturbed preconditioned matrix
AM̃

−1
that is similar to a matrix of the form

( |λ̃n|Ir Ã1,2

|λ̃n|Ã2,1T̃
−1

Ã2,2

)
,

where Ã2,1 = WTAŨ, Ũ is the approximate invariant subspace and T̃ = Ũ
T
AŨ.

The quality of the preconditioner depends upon the size of the block |λ̃n|Ã2,1T̃
−1

,
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which in turn depends on the distance of the Ritz vectors to the corresponding
eigenvectors of A. Thus the motivation for using this technique is based on somewhat
heuristic assumptions: The system matrix must be diagonalizable and Ritz values
must converge to eigenvalues, preferably beginning with the smallest values. This
last assumption has to our knowledge never been fully proved (attempts have been
made for example in Sorensen [63]), though it has been frequently observed (as in
Van der Vorst, Vuik [68]). Indeed, Erhel’s method does very well in applications
where eigenvalues of small modulus slow down convergence. The overall process can
be roughly described as follows:

1. Execute m GMRES projections for the problem Ax = b with some initial guess x0

2. Compute from the Hessenberg matrix involved in the projections the r Ritz values of
smallest modulus and their corresponding Ritz vectors

3. Construct an orthonormal matrix U whose columns span the space spanned by the
Ritz vectors and define M−1 according to (1.49)

4. Restart the process applied to the preconditioned system AM−1y = b, x = M−1y.

The method of Baglama et al.[3] differs from the above process in that precondi-
tioning is applied from the left and a more sophisticated technique to approximate
invariant subspaces, the implicitly restarted Arnoldi process (Sorensen [63]), is ex-
ploited. But the construction of the preconditioner is based on the same principle.
It is possible to successively deflate all eigenvalues if we adapt the third step of the
process:

3. Orthogonalize newly computed Ritz vectors against the orthonormal basis of the space
spanned by all previously computed Ritz vectors, obtain a new orthonormal matrix U
whose columns span the space spanned by old and new Ritz vectors and define M−1

according to (1.49)

Then, under the assumption that all Ritz vectors are exact eigenvectors, the resulting
preconditioner deflates eigenvalues corresponding to newly computed Ritz values and
previously computed Ritz values as well. This has not been worked out in the paper
of Erhel [7] and we demonstrate it below per induction:

Having executed i restart cycles, we assume we have an A-invariant sub-
space that is spanned by the orthonormal columns of U and that belongs to the
ri smallest eigenvalues of A. Let M−1

i be the corresponding preconditioner, de-
fined according to (1.49). With Proposition 1.4.3 the matrix AM−1

i has eigenvalues
λri+1, . . . , λn, |λn|, . . . , |λn|. The proof of Proposition 1.4.3 also shows that

AM−1
i U = |λn|U,

hence U is not only A-invariant but also AM−1
i -invariant. We put Ti := UTAU.

Then we execute a next cycle applied to AM−1
i and assume we find an AM−1

i -
invariant subspace U′ that belongs to the ri+1 − ri smallest eigenvalues of AM−1

i ,
that is to λri+1, . . . , λri+1 . If we orthonormalize U′ against U, i.e. we construct an
orthonormal basis (U,V) of U⊕U′, then (U,V) is AM−1

i -invariant. Moreover, if
W is the orthogonal complement in Rn of (U,V), we can write

AM−1
i = (U,V,W)



|λn|Iri A1,2 A1,3

0 Ti+1 A2,3

0 0 A3,3







UT

VT

WT


 ,

where Ti+1 := VTAM−1
i V, A1,2 := UTAM−1

i V, A1,3 := UTAM−1
i W,

A2,3 := VTAM−1
i W and A3,3 := WTAM−1

i W. The matrix A can be written as

A = AM−1
i Mi = (U,V,W)



|λn|Iri A1,2 A1,3

0 Ti+1 A2,3

0 0 A3,3







UT

VT

WT


(

In + U(Ti/|λn| − Iri)U
T
)

=
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(U,V,W)



|λn|Iri A1,2 A1,3

0 Ti+1 A2,3

0 0 A3,3










UT

VT

WT


 +




Iri

0
0


 (Ti/|λn| − Iri)U

T


 =

(U,V,W)



|λn|Iri A1,2 A1,3

0 Ti+1 A2,3

0 0 A3,3










UT

VT

WT


 +




Ti/|λn| − Iri

0
0


UT


 =

(U,V,W)



|λn|Iri A1,2 A1,3

0 Ti+1 A2,3

0 0 A3,3







Ti/|λn| 0 0
0 Iri+1−ri 0
0 0 In−ri+1







UT

VT

WT


 ,

hence

A(U,V,W) = (U,V,W)




Ti A1,2 A1,3

0 Ti+1 A2,3

0 0 A3,3




and thus (U,V) is not only AM−1
i -invariant but also A-invariant. Moreover, the

subspace spanned by (U,V) belongs to the eigenvalues λ1, . . . , λri+1 of A. Therefore
we can apply Proposition 1.4.3 to the A-invariant subspace that is spanned by the
columns of (U,V) and obtain a matrix AM−1

i+1 that has a spectrum consisting of
the eigenvalues λri+1+1, . . . , λn, |λn|, . . . , |λn|.

Other approaches

The method of Erhel et al. is a restarted method where the projection space of each
cycle depends upon the updated preconditioner. At the end of the i-th restart it
equals AM−1

i Km(AM−1
i , rim). Morgan’s method, on the other hand, seeks during

the process approximate invariant subspaces and augments the projection space
AKm(A, rim) with it. Even larger flexibility of projection spaces is enabled in a
method such as flexible GMRES (Saad [58]). This is not a method that seeks to
deflate. Decompositions of the form (1.12) are generated, but Vk and Ck are not
asked to be ascending bases of Kk(A, r̂k−1). Instead, two vectors vj and cj are
connected by the relation

cj = M−1
j vj , (1.50)

where Mj is some nonsingular and iteration dependent preconditioner that approxi-
mates A. The next basis vector vj+1 results from orthonormalization of Acj against
the previous vectors vi, i ≤ j, and Vk remains orthonormal. Therefore, the compu-
tation of iterates of the form (1.13) can be reduced to solving a (k+1)×k-dimensional
least squares problem of the form (1.21) as in full GMRES. Of course, the columns
of Ck and Vk do not span Krylov subspaces anymore. The computation of cj accor-
ding to (1.50) is referred to as inner iteration. Indeed, because the preconditioner
Mj is close to A is some sense, cj approximately satisfies Acj = vj and can be
found by executing several iterations of any iterative method, especially of the outer
method itself, applied to the same matrix but with the right hand side vj . Inner
iterations can enhance convergence and this has been attributed to the fact that
when (1.50) is solved exactly for some j, that is Acj = vj , then the (j +1)-st row of
the corresponding Hessenberg matrix H̃j from (1.12) has only zero’s. Thus (1.21)
can be solved exactly when Hj is nonsingular and in that case the residual vector
vanishes. If (1.50) is solved only approximatively, at least higher convergence speed
can be expected.

A different method that uses a double loop to keep a part of the Krylov sub-
space was presented in Van der Vorst and Vuik [69]. A last option proposed to
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accelerate the convergence of restarted methods that we would only like to men-
tion, apart from the new techniques proposed in the next chapter, is polynomial
preconditioning (Joubert [39]).
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Chapter 2

A rank-one update for the
initial cycle

In the preceding chapter we considered a large scale of methods to solve problem
(1.1). If we want to use a projection method based on Krylov subspaces we have
the choice between relatively inexpensive methods with short recurrences or more
robust methods without short recurrences. Although smoothness of convergence
of the former methods can be enhanced by exploiting quasi-minimalization as in
the QMR method or by introduction of stabilization parameters (BCGSTAB), the
latter class has naturally the most reliable convergence properties. We have seen in
Theorem 1.3.2 that oblique representants of this class, for example the FOM method,
are more susceptible to irregular behaviour than their orthogonal counterparts. If
the system matrix is nonsymmetric, the GMRES method seems most appropriate
in cases where robustness has high priority. Unfortunately, the absence of short
recurrences entails that we must restart the method in practice and this can seriously
slow down convergence speed. Therefore, an important part of today’s research in
the field of projection methods concern convergence analysis and improvement of
the restarted GMRES method.

We listed some of the best known techniques to accelerate restarted GMRES
at the end of the first chapter. It is interesting to notice that most of these tech-
niques assume convergence of restarted GMRES is related to the system matrix only,
without taking in account the given right-hand side. For example, the techniques
try to modify the spectrum of A or they search for invariant subspaces of A. But
we know from chapter one that the convergence behaviour of GMRES is given by
the evolution of the distance between projection space and the residual we project.
This residual is, of course, related to the right-hand side and also the projection
space is, because it is the Krylov subspace generated by the residual and the system
matrix.

In this chapter, we will find for the given right-hand side of (1.1) modifications
of A that yield any desired convergence curve, regardless of the properties of A.
We exploit the modified matrix to accelerate the GMRES process for the original
matrix. The connection between the proposed procedure and the right-hand side
is particularly narrow because we update A with a matrix of small rank that is
immediately constructed from b. Let us begin with this construction.

49
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2.1 The Sherman-Morrison-Woodbury theorem

One of the most powerful techniques to improve poor properties of a linear system
with regard to a certain method that is applied to it, consists of passing to a pre-
conditioned system. Preconditioning is based on the simple idea of multiplying the
matrix with another specially constructed matrix. In case of left preconditioning
the solution of the preconditioned system is the same as the solution of the original
system, when using right preconditioning one more matrix vector product is needed
to obtain the wanted solution. On the other hand, residuals of right preconditioned
systems are equal to the unpreconditioned residuals whereas residual norms can
increase with left preconditioning.

The situation becomes slightly more complicated when we subtract a specially
constructed matrix from the system matrix instead of multiplying with it. The
solution of the auxiliary system is in general not equal to the one of the first system
and, as we will see later, finding the wanted solution can lead to division by zero but
it is feasible to circumvent such cases. The formula that enables us to change the
linear system by matrix subtraction is the Sherman-Morrison formula for inversion
of rank-m updated matrices.

Theorem 2.1.1 (Sherman-Morrison-Woodbury):
Let the matrix A ∈ Rn×n be nonsingular and U,V ∈ Rn×m be rank m matrices with
m ≤ n. Then the rank-m updated matrix A+UVT is nonsingular if and only if the
m-dimensional matrix Im + VTA−1U is nonsingular and its inverse equals

(A + UVT )−1 = A−1 −A−1U(Im + VTA−1U)−1VTA−1. (2.1)

P r o o f : Under the assumption that Im + VTA−1U is nonsingular, we have

(A + UVT )(A−1 −A−1U(Im + VTA−1U)−1VTA−1) =

In−U(Im +VTA−1U)−1VTA−1 +U
(
Im −VTA−1U(Im + VTA−1U)−1

)
VTA−1.

Straightforward computation shows that
(
Im −VTA−1U(Im + VTA−1U)−1

)
(Im + VTA−1U) = Im.

Hence (A + UVT )−1 exists and (2.1) holds.
On the other hand, assuming non-singularity of A+UVT also implies non-singularity
of I + A−1UVT . Let U1 denote the n × n matrix whose first m columns coincide
with the columns of U and the remaining columns are zero vectors and let us define
V1 analogously. Then

A−1UVT = A−1U1VT
1 = A−1U1A−1AVT

1 .

When we put A−1U1 =: Ṽ
T

and AVT
1 =: Ũ, then the matrix In + Ṽ

T
A−1Ũ is

nonsingular and by the first half of the proof also A + ŨṼ
T

is. But

A + ŨṼ
T

= A + AVT
1 A−1U1 = A(In + VT

1 A−1U1).

In the last expression the matrix between brackets has the form

In + VT
1 A−1U1 =

(
Im + VTA−1U 0

0 In−m

)
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and In + VT
1 A−1U1 is nonsingular. Therefore also Im + VTA−1U is nonsingular

and (2.1) holds with the first half of the proof. 2

In order to switch to an auxiliary system we change the original matrix A of (1.1)
to

Â := A−UVT ,

for some U,V ∈ Rn×m. If A − UVT is nonsingular the solution of (1.1) can be
written as

A−1b = (Â + UVT )−1b =
(
Â
−1 − Â

−1
U(Im + VT Â

−1
U)−1VT Â

−1
)

b. (2.2)

For m = 1, U := b and V := y ∈ Rn, this equation changes to

A−1b = (Â + byT )−1b = Â
−1

b− Â
−1

b(1 + yT Â
−1

b)−1yT Â
−1

b. (2.3)

With the auxiliary system being defined by

Âx = b, (2.4)

where
Â := A− byT , det(A− byT ) 6= 0,

it is clear that we can find the solution of the original system (1.1) by solving the
auxiliary system (2.4) and substituting Â

−1
b in (2.3).

One could also choose m > 1 and thus in (2.2) V would consist of several
columns vi, i ≤ m. On one side such choice augments the number of free parameter
vectors vi, but on the other hand solving A−1b implies the computation of an expres-
sion of the form Â

−1
U in (2.2), that is of more than one linear system. We restrict

ourselves here to the case m = 1. The one parameter vector y ≡ v1 gives enough
possibilities to construct an auxiliary system (2.4) having better convergence pro-
perties than has the original system when GMRES is applied to it. In the remainder
of this chapter we always assume y ∈ Rn is such that det(A− byT ) 6= 0.

2.2 Convergence of the updated system

An interesting result in the context of arbitrary convergence speed can be found in
a series of papers by Arioli, Greenbaum, Pták and Strakoš ([2], [30] and [31]). From
these papers it follows that given a non-increasing positive sequence f0 ≥ f1 ≥ . . . ≥
fn−1 > fn = 0 and a right-hand side b with ‖b‖ = f0, the residual vectors r̂k at each
step of the GMRES method applied to Âx = b with zero initial guess satisfy

‖r̂k‖ = fk, 0 ≤ k ≤ n− 1,

if and only if Â is of the form

Â = WRH̃WT , (2.5)

where R is an arbitrary nonsingular upper triangular matrix, W = (w1, . . . , wn) is
an orthonormal matrix such that

WT b =




±
√

f2
0 − f2

1
...

±
√

f2
n−2 − f2

n−1

±
√

f2
n−1




, (2.6)
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and H̃ is given by

H̃ =




0 . . . 0 1/(bT wn)
1 0 −(bT w1)/(bT wn)

. . .
...

...
0 . . . 1 −(bT wn−1)/(bT wn)


 . (2.7)

We are particularly interested in the question whether, given the non-increasing
positive sequence f0 ≥ f1 ≥ . . . ≥ fn−1 > fn = 0 with f0 = ‖b‖, our rank-one
updated matrix A− byT belongs to the class of matrices (2.5) for some y ∈ Rn. The
answer is yes. We first give a straightforward proof based on projection properties.
After that we propose a feasible procedure to construct the parameter vector y ∈ Rn

and finally, for the sake of completeness, we address the exact form that R and W
take in (2.5) in our case of rank-one updating. This yields a second way to construct
the parameter vector y ∈ Rn.

2.2.1 Any convergence curve is possible for A− byT with x0 = 0

The convergence speed of a GMRES process is determined by the evolution of the
distance from r0 to the projection spaces. Let us first take a look at the projection
spaces generated by the auxiliary system. They have the form

ÂKk(Â, r0) = (A− byT )Kk(A− byT , r0).

The first residual norm, for example, is the distance from r0 to Ar0 − b(yT r0).
Clearly, we create optimal opportunities to minimize this distance when r0 = b,
because all projection spaces have a component in the direction of b. Moreover,
when we apply the Arnoldi process to A − byT with zero initial guess, multiples
of the first Arnoldi vector, b/‖b‖, are added to the Arnoldi vectors we would have
generated for A. Krylov subspaces therefore remain the same and the influence of
y is simple to control. This is demonstrated in the following proposition.

Proposition 2.2.1 The Arnoldi algorithm applied to the matrix Â := A − byT ,
y ∈ Rn, and first Arnoldi vector v1 := b/‖b‖ generates Arnoldi vectors vk, k ≥ 2,
that are independent from the choice of y. Moreover, if H̃k is the upper Hessenberg
matrix of the Arnoldi decomposition (1.12) associated with A and Vk = (v1, . . . , vk),
then

H̃k − ‖b‖e1(VT
k y)T

is the Hessenberg matrix for the Arnoldi decomposition associated with Â.

P r o o f : Application of the Arnoldi process to A with starting vector v1 = b/‖b‖
gives the relation

AVk = Vk+1H̃k,

where Vk is orthogonal and H̃k ∈ R(k+1)×k is a Hessenberg matrix. Hence

ÂVk = (A− byT )Vk =

Vk+1H̃k − ‖b‖Vk+1e1y
TVk = Vk+1

(
H̃k − ‖b‖e1(VT

k y)T
)

. (2.8)

The matrix H̃k−‖b‖e1(VT
k y)T differs from H̃k only in its first row. Thus it is upper

Hessenberg and (2.8) is the Arnoldi decomposition for Â that starts with v1 = b/‖b‖.
The involved orthogonal matrix is the same as for the decomposition of A. 2
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The proposition implies Kk(A, b) ≡ Kk(Â, b) and as a consequence one can
turn the planes ÂKk(Â, b) ≡ (A − byT )Kk(A, b) by changing y. The distance
between r0 ≡ b and these planes can be made as small as wanted and any convergence
speed can be forced.

Theorem 2.2.2 If the GMRES method applied to (1.1) with x0 = 0 terminates at
step n, then any convergence curve terminating at step n for the GMRES method
applied to (2.4) with x0 = 0 can be forced by the choice of y ∈ Rn.

P r o o f : With the relations of Theorem 1.3.2 we have

‖r̂1‖ = sin∠(b, Âb)‖b‖ = sin ∠(b,Ab− α0b)‖b‖,

where α0 := yT b. Hence

‖r̂1‖2 =
(

1− (bT (Ab− α0b))2

‖b‖2‖Ab− α0b‖2

)
‖b‖2 =

‖b‖2(‖Ab‖2 − 2α0b
TAb + α2

0‖b‖2)− (bTAb− α0‖b‖2)2

‖Ab‖2 − 2α0bTAb + α2
0‖b‖2

=
‖b‖2‖Ab‖2 − (bTAb)2

‖Ab‖2 − 2α0bTAb + α2
0‖b‖2

.

By choosing α0 = bTAb
‖b‖2 the first residual norm stays as large as the initial one. On

the other hand, large enough |α0| will force ‖r̂1‖ to be as small as wanted.
Now let us assume we have fixed the values α0, . . . , αk−1, αi := yTAib. Then the
(k + 1)st residual is the difference between the initial residual and its projection on
ÂKk+1(A, b), hence

‖r̂k+1‖ = sin ∠(b, ÂKk+1(A, b))‖b‖.

The Krylov subspace ÂKk+1(A, b) is given by

(A− byT ) span{b,Ab, . . . ,Akb} = span{Ab− α0b,A2b− α1b, . . . ,Ak+1b− αkb},

where αk = yTAkb. The angle ∠(b, ÂKk+1(A, b)) is the minimum angle ∠(b, c) over
all c ∈ ÂKk+1(A, b). By defining ∠(b,Ak+1b−αkb) smaller than ∠(b, ÂKk(A, b)) we
can force ‖r̂k+1‖ to take the wanted value. The angle ∠(b,Ak+1b−αkb) can be made
as small as possible by choice of αk for the same reason as above for ∠(b,Ab−α0b).
In total we obtain n−1 conditions for y ∈ Rn, namely yTAib = αi, 0 ≤ i ≤ n−2, the
last residual norm vanishes automatically. At least one y satisfying these conditions
exists.
2

In case of applying the FOM method to (2.4) we can prove an analogue result
as follows. This proof constructs the wanted y ∈ Rn from the iterates of FOM
applied to (1.1).

Proposition 2.2.3 Let f0 ≥ f1 ≥ f2 . . . > fn = 0 be a non-increasing sequence of
real values and let the system of linear equations

Âx = b (2.9)

with ‖b‖ = f0 be given by

Â := A− byT , y ∈ Rn,
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and let us choose the initial approximation x0 = 0. Let for y = 0 all iterates xk,
1 ≤ k ≤ n, be defined, be linearly independent and ‖b − Axk‖ > 0 for k < n.
Then there exists at least one y ∈ Rn such that the residual vectors r̂k obtained by
application of the FOM method to the system (2.9) satisfy

‖r̂k‖ = fk, 0 ≤ k ≤ n.

P r o o f : If x0 = 0, FOM iterates of the original system Ax = b are given by
xk = ‖b‖VkH−1

k e1, where Hk is the Hessenberg matrix from (1.12) without its last
row (see also (1.22)). If we put Ĥk = Hk − ‖b‖e1y

TVk, we have

Hku = ‖b‖e1 ⇔ Ĥku = ‖b‖(e1 − e1y
TVku) ⇔ Ĥk

u

1− yTVku
= ‖b‖e1.

Hence FOM iterates x̂k of the second system satisfy

x̂k = Vk
H−1

k ‖b‖e1

1− yTVkH−1
k ‖b‖e1

=
1

1− yT xk
‖b‖VkH−1

k e1 =
xk

1− yT xk
,

having made use of Proposition 2.2.1. If we denote by rk the residual vectors for
the first system, then

r̂k = b− Âx̂k = b− Â
xk

1− yT xk
=

1
1− yT xk

(b−Axk) =
1

1− yT xk
rk,

and
‖r̂k‖ =

1
|1− yT xk| · ‖rk‖, yT xk 6= 1.

The last equation shows that we can, by choice of the inner product yT xk, size ‖r̂k‖.
By solving, for example, the underdetermined linear system




xT
1
...

xT
n−1


 y =




1− ‖r1‖/f1
...

1− ‖rn−1‖/fn−1




we obtain the wanted y ∈ Rn. 2

2.2.2 Iterate based implementation

Next we present a technique to compute the parameter vector y that forces a given
convergence curve of GMRES when the implemented is based on (1.13). Due to the
close connection between FOM and GMRES method, one expects a result similar to
the last one, with construction of y from iterates and residuals of the first system, to
be easily derivable in the GMRES case. For example, the relations of Theorem 1.3.2
could be exploited. Unfortunately, the involved angles are dependent on the choice
of the parameter vector y, which makes working with them complicated. Moreover,
construction of y from iterates and residuals of the first system is not interesting for
practice. One would need to apply a GMRES process to the original system to be
able to define the auxiliary system. The angles of Theorem 1.3.2, used in a different
way, give the key to successive definition of the auxiliary system during the GMRES
process, as we will prove now. The proof works with the Givens rotations that are in-
volved in computing the approximations of the GMRES method. The parameters of
these rotations have an immediate influence on the convergence speed of the method.
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Definition 2.2.4 A Givens rotation for the ith row, i > 1, of a vector is a rotation
represented by left multiplication with an orthogonal matrix of the form




Ii−2 0 . . . 0

0 ci−1 si−1
...

... −si−1 ci−1

0 . . . 0 In−i


 .

Consequently, c2
i−1 + s2

i−1 = 1, and ci−1 is called Givens cosine and si−1 Givens sine.

Lemma 2.2.5 The action of k consecutive Givens rotations, from a rotation for the
2nd row till a rotation for the (k + 1)st row, on a given vector g = (g1, . . . , gk+1)T

yields a vector (g′1, . . . , g
′
k, g

∗
k+1)

T , where

g′i = sigi+1 + ci

i∑

j=1

cj−1gj

i−1∏

l=j

(−sl), i ≤ k, (2.10)

and g∗k+1 =
k+1∑

j=1

cj−1gj

k∏

l=j

(−sl),

with c0 := 1.

P r o o f : At first, note that a Givens rotation for the ith row changes only
rows (i− 1) and i. After application of the Givens rotation for the second row to g,
the first element has the form

g′1 := c1g1 + s1g2,

and the second element will change to

g∗2 := −s1g1 + c1g2.

Now, let us assume that the rotation for the ith row has been executed and that we
have

g∗i =
i∑

j=1

cj−1gj

i−1∏

l=j

(−sl).

The rotation for the (i + 1)st changes g∗i to

cig
∗
i + sigi+1 = sigi+1 + ci

i∑

j=1

cj−1gj

i−1∏

l=j

(−sl) = g′i

and gi+1 to

−sig
∗
i + cigi+1 = −si

i∑

j=1

cj−1gj

i−1∏

l=j

(−sl) + cigi+1 =
i+1∑

j=1

cj−1gj

i∏

l=j

(−sl) = g∗i+1.

2

Givens rotations for the ith row can be used to zero out the ith element of
a vector v = (v1, . . . , vn)T , vi 6= 0. To do so, we will in the present work use the
choices

ci−1 :=
vi−1√

v2
i−1 + v2

i

, si−1 :=
vi√

v2
i−1 + v2

i

. (2.11)
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The Givens cosines and sines involved in the computation of a GMRES approxima-
tion can be expressed in values that were calculated during the Arnoldi orthogona-
lization process and by previously executed Givens rotations:

Corollary 2.2.6 After the kth step of the GMRES method applied to a linear system
(1.1), let the Arnoldi process have generated an orthonormal basis v1, . . . , vk of the
associated k-dimensional Krylov subspace and an upper Hessenberg matrix H̃k ∈
R(k+1)×k with coefficients

hj,k := vT
j Avk, 1 ≤ j ≤ k, hk+1,k := ‖Avk −

k∑

j=1

hj,kvj‖.

If this Hessenberg matrix is brought to upper triangular form with the help of Givens
rotations and the rotation for the (i + 1)st row is given by ci and si, i ≤ k− 1, then
the rotation for the (k + 1)st row has Givens sine sk satisfying

s2
k =

h2
k+1,k

h2
k+1,k + (

∑k
j=1 cj−1hj,k

∏k−1
i=j (−si))2

,

with c0 := 1.

P r o o f : The Hessenberg matrix H̃k ∈ R(k+1)×k can be brought to upper triangular
form by means of Givens rotations that consecutively zero out all lower subdiagonal
elements. According to Lemma 2.2.5, after (k − 1) rotations the kth element of the
last column has the form

h∗k,k :=
k∑

j=1

cj−1hj,k

k−1∏

i=j

(−si).

To zero out the last entry hk+1,k of this column we define a Givens rotation for the
(k + 1)st row satisfying with (2.11)

s2
k :=

h2
k+1,k

h2
k+1,k + (h∗k,k)

2
.

2

By introducing the parameter-dependent matrix A − byT , y ∈ Rn, we create
the opportunity to modify the values hi,j and hence the sines sk according to our
own needs. Proposition 2.2.1 stated that only the first row of the Hessenberg matrix
involved in the GMRES process is dependent from the parameter vector y. Its
influence on the Givens sines is given by Corollary 2.2.6. We thus have to our
disposal an easy to handle tool for manipulating the associated Givens rotations. It
is a well known fact, that in the GMRES method the residual norm of an iteration
can be expressed as the product of all previously executed Givens rotation sines
and the initial residual norm. In fact, Givens sines coincide with the sines of the
angles between initial residuals and projection spaces from Theorem 1.3.2. For our
parameter-dependent matrix, these sines appear to be sensible to changes of the
parameter. The next theorem states exactly the same as Theorem 2.2.2, but it
explicitly demonstrates how to construct, during the GMRES computations, the
wanted parameter vector y.
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Theorem 2.2.7 Let f0 ≥ f1 ≥ f2 . . . > fn = 0 be a non-increasing sequence of real
values and let the system of linear equations

Âx = b (2.12)

with ‖b‖ = f0 be given by

Â := A− byT , y ∈ Rn,

and let us choose the initial approximation x0 = 0. If the Arnoldi algorithm applied
to A does not break down before the nth step, then there exists at least one y ∈ Rn

such, that the residual vectors r̂k obtained by application of the GMRES method to
the system (2.12) satisfy

‖r̂k‖ = fk, 0 ≤ k ≤ n.

P r o o f : In the GMRES method we have the following recurrence formula for the
residual norms (see for example Saad [59], p. 167):

‖r̂k‖ = |ŝk · . . . · ŝ1|β,

where β := ‖r̂0‖ = ‖b‖. As a consequence,

‖r̂k‖
‖r̂k−1‖ = |ŝk|.

The theorem is proved if we show that we can find a vector y ∈ Rn such that all
values |ŝk| satisfy

|ŝk| = fk

fk−1
, 1 ≤ k ≤ n− 1.

The last residuum vanishes automatically.
For k = 1, the Arnoldi process yields values ĥ1,1 and ĥ2,1 and the Givens sine that
zeroes out (together with the Givens cosine ĉ1) ĥ2,1 satisfies

ŝ2
1 =

ĥ2
2,1

ĥ2
2,1 + ĥ2

1,1

.

Let us denote by α1 the value yT v1. Note that ĥ2,1 is independent from α1 because
of Proposition 2.2.1. As for ĥ1,1, we have

ĥ2
1,1 = (vT

1 (A− byT )v1)2 = (vT
1 Av1 − βα1)2.

Hence ĥ2
1,1 can have whatever nonnegative value if we choose α1 accordingly. In

other words, |ŝ1| can assume, in dependency from α1, every positive value smaller
than or equal to 1. In particular it can take the wanted value f1/f0 if we solve

(
f1

f0
)2 =

ĥ2
2,1

ĥ2
2,1 + (vT

1 Av1 − βα1)2
,

that is

α1 =
±

√
1−(f1/f0)2

(f1/f0)2
ĥ2,1 − vT

1 Av1

−β
.

This puts a first condition on the vector y, namely it fixes for the chosen α1 the
value of yT v1.
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Now, let k be greater than 1 and let us assume we have chosen all values αi := yT vi

such, that |ŝi| = fi/fi−1 for i < k. According to Corollary 2.2.6,

ŝ2
k =

ĥ2
k+1,k

ĥ2
k+1,k + (

∑k
j=1 ĉj−1ĥj,k

∏k−1
i=j (−ŝi))2

.

In this expression, only ĥ1,k = vT
1 Av1 − βαk = h1,k − βαk is dependent from the

choice of αk := yT vk because of Proposition 2.2.1, hence ĥi,k = hi,k = vT
i Avk, i ≥ 2.

The second term of the denominator, including ĥ1,k, can be written as




k∑

j=1

ĉj−1ĥj,k

k−1∏

i=j

(−ŝi)




2

=


ĥ1,k

k−1∏

i=1

(−ŝi) +
k∑

j=2

ĉj−1hj,k

k−1∏

i=j

(−ŝi)




2

= (2.13)


(−βαk + h1,k)

k−1∏

i=1

(−ŝi) +
k∑

j=2

ĉj−1hj,k

k−1∏

i=j

(−ŝi)




2

. (2.14)

Again, this is a nonnegative expression that is dependent from αk and it can possibly
assume the value 0. Therefore, an appropriate choice of αk yields the desired equality
|ŝk| = fk/fk−1, 0 < fk

fk−1
≤ 1. Possible choices are given by

αk =
±

√
1−(fk/fk−1)2

(fk/fk−1)2
hk+1,k −

∑k
j=1 ĉj−1hj,k

∏k−1
i=j (−ŝi)

−β
∏k−1

i=1 (−ŝi)
. (2.15)

After n−1 steps we have defined all Arnoldi vectors v1, . . . , vn and have been putting
n− 1 conditions on the vector y:

yT (v1, . . . , vn−1) = (α1, . . . , αn−1). (2.16)

There exists at least one y ∈ Rn solving this underdetermined linear system. 2

It it this proof that we have used to implement accelerations of restarted GMRES
exploiting an auxiliary system with arbitrary convergence speed, see Algorithm 5.2.1.
In Algorithm 5.2.1 we always used the positive root of (2.15).

2.2.3 Residual based implementation

As we have seen, it is possible to find a vector y ∈ Rn such that Â = A − byT

belongs to the class of matrices given by (2.5). In other words, Â can assume the
form Â = WRH̃WT for some upper triangular matrix R and with W and H̃
satisfying the equations (2.6) and (2.7). To illustrate this, we will describe the exact
form of R and W when Â = A − byT . This yields an alternative to the preceding
section for constructing y ∈ Rn during the GMRES process. It is connected with
GMRES implementations that are based on decomposition (1.17), as for example
Walker [74] proposes, and, besides being from theoretical interest, is useful if we
want to apply Theorem 2.2.7 to the latter, residual based implementation strategy.
For this reason we explicitly display in the following proof the conditions on y ∈ Rn

necessary to force a given convergence curve.
First, we introduce the notations

g(i) :=
√

f2
i−1 − f2

i , 1 ≤ i ≤ n,

and it will be useful to have the following small lemma.



2.2. CONVERGENCE OF THE UPDATED SYSTEM 59

Lemma 2.2.8 The subdiagonal elements hk+1,k ≡ ‖Avk−
∑k

j=1 hj,kvj‖, k ≥ 1, with
hj,k ≡ vT

j Avk, j ≤ k, of Hessenberg matrices involved in the Arnoldi process satisfy
the equation

h2
k+1,k = ‖Avk‖2 −

k∑

j=1

h2
j,k.

P r o o f : We have

h2
k+1,k = ‖Avk −

k∑

j=1

hj,kvj‖2 = ‖Avk‖2 − 2(Avk,
k∑

j=1

hj,kvj) + ‖
k∑

j=1

hj,kvj‖2 =

‖Avk‖2 − 2
k∑

j=1

h2
j,k +

k∑

j=1

h2
j,k = ‖Avk‖2 −

k∑

j=1

h2
j,k,

because of the orthonormality of the Arnoldi vectors vi, i ≥ 1. 2

Proposition 2.2.9 Let f0 ≥ f1 ≥ f2 . . . > fn = 0 be a non-increasing sequence of
real values. If the Arnoldi algorithm applied to A with x0 = 0 does not break down
before the nth step, then there exists at least one y ∈ Rn such that (2.5) holds for
Â = A− byT with W satisfying (2.6) and H̃ satisfying (2.7).

P r o o f : We will search for an appropriate y ∈ Rn by successively imposing
conditions on the vector y during the computation of a suitable orthonormal matrix
W. This matrix will be computed by applying the Arnoldi process to Â with w1 :=
Âb/‖Âb‖. The process cannot break down because by assumption dimKi(A, b) = i
for all i ≤ n and also dim(span{b,Ab + γ1b, . . . ,Ai−1b + γi−1b}) = i for arbitrary
real scalars γj . In particular,

dim ÂKi−1(Â, b) = dim ÂKi−1(A, b) =

dim(span{Ab + (yT b)b, . . . ,Ai−1b + (yTAi−1b)b}) = i− 1.

Hence, for all possible choices of y the Arnoldi vectors wi, i ≤ n, are non-vanishing.
Let the first condition on y be that the Arnoldi vector w1 satisfies bT w1 = g(1).

This condition can be fulfilled by fixing the value yT b, which we denote by α0. We
have

bT w1 =
bT (A− byT )b
‖Ab− α0b‖ =

bTAb− α0‖b‖2

√
‖Ab‖2 − 2α0bTAb + α2

0‖b‖2
. (2.17)

The right-hand side of this equation is well defined because w1 never vanishes, it
is continuously dependent from α0 and takes values between −‖b‖ and ‖b‖, among
others it can take the value g(1) < ‖b‖ if we choose α0 accordingly. Squaring both
sides of the above equation yields the roots

α0± =
−bTAb(‖b‖2 − g(1)2)
−‖b‖2(‖b‖2 − g(1)2)

±
√

(bTAb(‖b‖2 − g(1)2))2 + ‖b‖2(‖b‖2 − g(1)2)(g(1)2‖Ab‖2 − (bTAb)2)
−‖b‖2(‖b‖2 − g(1)2)

.

Because the term ‖b‖2−g(1)2 = f2
1 is positive, one sees that only the smallest of the

two roots (α0+) can give a positive right side in (2.17). The value bT w1 is positive
by definition, thus the smaller root is the unique value for α0 that solves (2.17).
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Now let us assume we have defined orthonormal w1, . . . , wi for some i and, by the
choices of the values αj−1 := yT wj−1, forced these wj to satisfy bT wj = g(j) for
2 ≤ j ≤ i. The next step of the Arnoldi orthogonalization process, that is orthogo-
nalization of Âwi against w1, . . . , wi, yields a vector

w̃i+1 = Âwi −
i∑

j=1

(wT
j Âwi)wj .

The dependency of this vector from y is restricted to the value yT wi which we will
denote by αi. The Arnoldi vector wi+1 results from normalizing w̃i+1 and it must
satisfy

bT wi+1 = g(i + 1)

because of (2.6). The inner product bT wi+1 equals

bT (Âwi −
∑i

j=1(w
T
j Âwi)wj)

‖w̃i+1‖ =
bT Âwi −

∑i
j=1(w

T
j Âwi)g(j)√

‖Âwi‖2 −∑i
j=1(w

T
j Âwi)2

=

bTAwi − αi‖b‖2 −∑i
j=1 g(j)(wT

j Awi − g(j)αi)√
‖Awi‖2 + ‖b‖2α2

i − 2αibTAwi −
∑i

j=1(w
T
j Awi − g(j)αi)2

=

bTAwi −
∑i

j=1(w
T
j Awi)g(j)− αif

2
i√

‖Awi‖2 −∑i
j=1(w

T
j Awi)2 + α2

i f
2
i − 2αi(bTAwi −

∑i
j=1 g(j)wT

j Awi)
,

where we have made use of Lemma 2.2.8. This is an expression that is continuously
dependent from αi, it is defined on the entire real axis because ‖w̃i+1‖ never vanishes,
for αi → −∞ it tends to fi and for αi →∞ to −fi. Thus, due to

fi >
√

f2
i − f2

i+1 = g(i + 1),

the value g(i+1) is assumed for some αi 6= ∞. More precisely, we can apply the same
computation as for the first step and with the abbreviation γ = bTAwi −

∑i
j=1 g(j)(wT

j Awi),
we obtain the following value for αi :

αi =
−γ(f2

i − g(i + 1)2)
−f2

i (f2
i − g(i + 1)2)

+

√
γ2(f2

i − g(i + 1)2) + f2
i (f2

i − g(i + 1)2)(g(i + 1)2(‖Awi‖2 −∑i
j=1(w

T
j Awi)2)− γ2)

−f2
i (f2

i − g(i + 1)2)
.

For reasons analogue to the case above, this solution is unique.
After (n − 2) Arnoldi steps we have defined w1, . . . , wn−1 and we have obtained
n− 1 conditions for y, namely yT wi = αi for i ≤ n− 2 and the condition yT b = α0.
Because of f0 ≥ f1 ≥ f2 . . . > fn = 0 the sequence {b, w1, . . . , wn−2} is linearly
independent and thus at least one y ∈ Rn satisfying these conditions exists. For the
same reason, {b, w1, . . . , wn−1} is a basis of Rn. Let us put

wn =
Awn−1 −

∑n−1
j=1 (wT

j Awn−1)wj

‖Awn−1 −
∑n−1

j=1 (wT
j Awn−1)wj‖

.

Then wn is one of the two unit vectors that are orthogonal to all w1, . . . , wn−1. In
the basis {b, w1, . . . , wn−1} it has the form

wn =
±1

‖b−∑n−1
i=1 (bT wi)wi‖

(b−
n−1∑

i=1

(bT wi)wi)
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and

bT wn = ± bT b−∑n−1
i=1 (bT wi)2

‖b−∑n−1
i=1 (bT wi)wi‖

= ± bT b−∑n−1
i=1 g(i)2√

bT b−∑n−1
i=1 (bT wi)2

= ±fn−1.

If bT wn happens to be negative, we can change the sign of wn without loss of gene-
rality. With W being the orthonormal matrix whose columns consist of w1, . . . , wn,
we thus can define an y so that (2.6) is satisfied. To complete the proof it remains
to choose elements of R for whom (2.5) holds. To achieve this, define the upper
triangular elements of R as follows

r1,1 := ‖Âb‖, ri,j := wT
i Âwj−1, i < j, rj,j := ‖w̃j‖, j ≥ 2.

From the Arnoldi orthonormalization procedure that we have applied, we obtain

Â(w1, . . . , wn−1) = W




r1,2 . . . r1,n

r2,2 r2,n

. . .
...

0 . . . rn,n


 = WR




0 . . . 0
1 0

. . .
...

0 . . . 1


 . (2.18)

The missing product in (2.18), Âwn, equals

Âwn = Â
1

bT wn
(b−

n−1∑

i=1

(bT wi)wi) =
1

bT wn
(Âb−

n−1∑

i=1

(bT wi)Âwi) =

1
bT wn


Âb−

n−1∑

i=1

bT wi


‖w̃i+1‖wi+1 +

i∑

j=1

(wT
j Âwi)wj





 .

This vector is equal to the last column of WRH̃, where H̃ is given by (2.7):

WRH̃en =
1

bT wn
WR




1
−bT w1

...
−bT wn−1


 =

1
bT wn

(
‖Âb‖ −

n−1∑

i=1

(bT wi)(wT
1 Âwi)

)
w1+

1
bT wn

(
−(bT w1)‖w̃2‖ −

n−1∑

i=2

(bT wi)(wT
2 Âwi)

)
w2+ . . .+

1
bT wn

(−(bT wn−1)‖w̃n‖
)
wn.

Hence, (2.18) augmented with the vector Âwn is easily transformed to equation
(2.5). 2

2.3 The backtransformed approximation

We now turn our attention to options of substituting the solution of the auxiliary
system in the Sherman-Morrison formula (2.3) to obtain the solution of the original
system. In case the solution of the second system is exact, Sherman-Morrison also
yields the exact solution of the first system. A first way to improve the GMRES
method with the help of the Sherman-Morrison formula that comes to mind, is to
try to define an auxiliary system that finds its exact solution earlier than the original
system does. This, unfortunately, is not possible. As soon as the second system has
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found the exact solution, the corresponding Krylov subspace has maximal dimension.
But at the same iteration number the Krylov subspace of the original system would
have reached maximal dimension, because the Krylov subspaces of both systems are
identical (see Proposition 2.2.1).

As a second option, one could substitute only approximate solutions of the
second system in the Sherman-Morrison formula. As we were able in the previous
section to construct auxiliary systems with arbitrary convergence speed, finding a
,,good” approximate solution x̂k, k < n, for such system should not be too diffi-
cult. Having done so, we can back-transform with the Sherman-Morrison formula
as follows:

A−1b = (Â + byT )−1b = Â
−1

b− Â
−1

b(1 + yT Â
−1

b)−1yT Â
−1

b ≈

x̂k − (1 + yT x̂k)−1x̂ky
T x̂k =

(
1− yT x̂k

1 + yT x̂k

)
x̂k =

x̂k

1 + yT x̂k
.

As far as yT x̂k 6= −1, we can use

x̄k ≡ x̂k

1 + yT x̂k
(2.19)

as an approximation for the original system. Due to the fact that x̄k is only a scalar
multiple of x̂k, we have x̄k ∈ Kk(Â, b). But again the equality Kk(Â, b) = Kk(A, b)
prevents any improvement with regards to the classical GMRES method, because
the classical GMRES iterate xk for the original system already minimizes

‖b−Ax‖ over all x ∈ Kk(A, b) = Kk(Â, b).

Summarizing, application of the Sherman-Morrison formula to the full GMRES
method in the above proposed manner will not improve its convergence and this
is essentially due to the identity of the involved Krylov subspaces. But initially we
were interested in overcoming stagnation of the restarted GMRES method. When
we use the restarted version, initial guesses at the beginning of every restart are
nonzero and therefore Proposition 2.2.1 does not hold anymore and one can expect
some improvement. In fact, we could use Theorem 2.2.7 to construct an auxiliary
system whose say k first iterations do not stagnate and apply GMRES(m) for m ≥
k, to that specific auxiliary system. The philosophy behind this way of doing is
that non-stagnation of the k very first steps might cause non-stagnation during
the k first steps of restarts that follow too. Having found an approximation x̂k of
the second system, back-transformation with Sherman-Morrison according to (2.19)
yields an approximation to the original system that is perhaps not as accurate as
x̂k is for the auxiliary system, but it is not unreasonable to expect x̄k to be a
better approximation than the approximations of the original, possibly stagnating
GMRES(m). An algorithm based on this idea is Algorithm 5.2.1. Let us demonstrate
the procedure with some examples.

Example 1. PDE stiffness matrix of dimension 400.

We consider a linear system that arises from the discretization of the differential
equation

−e−xy 4 u + (10 + ye−xy)ux + (10 + xe−xy)uy − 60u = 1 (2.20)

on the unit square with Dirichlet boundary condition u = 0 on ∂([0, 1])2. Finite
difference approximation on a 20× 20 grid yields the stiffness matrix A ∈ R400×400
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PDE stiffness matrix 400 x 400

-11

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

1 5 9 13 number of restarts

 log(||r||/||r0||)

GMRES(30)

GMRES(30)^

BACKTRANSFORMED GMRES(30)^

Figure 2.1: Auxiliary system and back-transformed residuals

and our right-hand side b has only elements which have the value 0.5 . Thus ||b|| = 10
and we choose x0 = 0.

When we apply the GMRES method restarted after 30 steps to this system,
the process stagnates. With Theorem 2.2.7 one can construct an auxiliary system
with non-stagnating initial iterations. For example, let us ask the first 10 residual
norms to fulfill

‖r̂0‖ = 10, ‖r̂1‖ = 9, ‖r̂2‖ = 8, ‖r̂3‖ = 7, ‖r̂4‖ = 6, ‖r̂5‖ = 5,

‖r̂6‖ = 4, ‖r̂7‖ = 3, ‖r̂8‖ = 2, ‖r̂9‖ = 1.5, ‖r̂10‖ = 1.

Having defined a vector y forcing such residual norms, we can apply GMRES(30)
to the resulting system with the same right-hand side and matrix A − byT . This
process does not stagnate anymore. Moreover, when we use the approximations of
this system to back-transform according to (2.19), the approximations to the original
system do not stagnate either. This is shown in Figure 2.1. Graph GMRES(30)
displays restarted GMRES(30) applied to the first system and graph GMRES(30)∧

concerns the auxiliary system.

Example 2. PDE stiffness matrix of dimension 102400.

Similar behaviour is observed when we proceed to larger dimensions. When we
discretize differential equation (2.20) on a 320×320 grid, we obtain a stiffness matrix
of dimension 102400 × 102400. It has 510720 nonzero elements and the right-hand
side belonging to this problem is b = (9.7 ·10−6, . . . , 9.7 ·10−6)T with ‖b‖ = 0.003104.
We choose, in order to apply Theorem 2.2.7, the initial guess zero. The system is
so large that even with restart parameter 50, GMRES does not converge at all. A
relatively stable projection method with short recurrences, the QMR method, meets
with similar problems.

When we apply Algorithm 5.2.1 restarted after 50 iterations and with an
auxiliary system with 4 prescribed residual norms, ‖r̂1‖ := 0.003, ‖r̂2‖ := 0.002,



64 CHAPTER 2. A RANK-ONE UPDATE FOR THE INITIAL CYCLE

‖r̂3‖ := 0.001 and ‖r̂4‖ := 0.0005, then the process converges (both auxiliary and
original system after back-transformation). During initial restart cycles residual
norms temporarily increase due to denominators 1 + yT x̂50 in (2.19) being compa-
ratively small.

We address this problem in the next section. The resulting curve (after back-
transformation) is SHERMOR(50,4) in Figure 2.2.

Example 3. Convection-diffusion matrix of dimension 4720.

This is an example that is hard to accelerate for preconditioning techniques as well
as with our strategy. We consider the convection-diffusion equation

−ε4u + b · ∇u + cu = f in Ω, u = ub on ∂Ω,

where Ω ⊂ R2 is a bounded domain with a polygonal boundary ∂Ω, ε ∈ (0, 1) is con-
stant, b ∈ W 1,∞(Ω)2, c ∈ L∞(Ω), f ∈ L2(Ω), and ub ∈ H3/2(∂Ω). With ε = 10−8

we create a very convection dominated problem, for details see Knobloch, Tobiska
[43]. In this paper a streamlined diffusion term with control parameter δK is intro-
duced for discretization purposes. It is shown that the resulting discrete problem
has a unique solution when δK is chosen small enough. We wittingly took the large
control parameter δK = 50 to build a corresponding stiffness matrix with bad conver-
gence properties. On a grid with 21 inner points we obtained a matrix of dimension
4720 with 23284 nonzero elements. In addition, we applied restarted GMRES to
the linear system with the small restart parameter 16. Figure 2.3 illustrates the
troubles projection methods have with this kind of problem. GMRES(16) converges
very slowly, it needs 30000 matrix vector products to reduce the initial residual norm
with a factor 10−5. The QMR method makes a promising start but stagnates after-
wards. Especially uncontrolled is the behaviour of the BCG method. This example
demonstrates very well the smoothing influence QMR has on its oblique parallel.

Concerning our acceleration technique, we could not achieve any improvement
by forcing arbitrarily chosen non-stagnating residual norms for the auxiliary system.
It was necessarily to select the prescribed values very carefully. We applied the
following strategy: We used the first 5 residual norms that classical GMRES(16)
generates and modified them very slightly in order to stimulate convergence but to
avoid too large norm decreasing. In this case too large norm decreasing occurs very
easily. With the prescribed values

‖r̂1‖ = 3.552793222, ‖r̂2‖ = 3.323801355, ‖r̂3‖ = 3.106983257, ‖r̂4‖ = 2.91

and ‖r̂5‖ = 2.4497933359, we obtained the curve SHERMOR(16,5), which reaches a
residual norm reduction of 10−5 after about 3 times less iterations than GMRES(16).

In the sample experiment of Chapter 5 a last application of this strategy is presented.

2.4 The gap between original and auxiliary system

In the preceding section we have proposed a strategy to exploit fast converging au-
xiliary systems to accelerate original systems. The philosophy consisted of forcing
non-stagnation for one system and expecting that this non-stagnation is transferred
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PDE stiffness matrix 102400 x 102400
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-3

-2

-1

0

1
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matrix vector products

log(||r||/||r0||)

SHERMOR(50,4)

GMRES(50)

QMR

Figure 2.2: QMR, GMRES(50) and GMRES(50) with prescribed auxiliary system
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Convection-diffusion matrix 4720 x 4720 
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-3

-2

-1

0

1

2

3

1 5000 9999 14998 19997 24996 29995

matrix vector products

log(||r||/||r0||)
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GMRES(16)

QMR

SHERMOR(16,5)

Figure 2.3: QMR, BCG, GMRES and SHERMOR for a convection dominated prob-
lem

to the other system. But it is logical to expect that we lose a part of the conver-
gence speed during the transfer, especially when the original system has very poor
convergence properties. In Figure 2.1 the loss of quality is expressed by the gap
between GMRES30∧ and the back-transformed curve. In the other examples we did
not display the curve of the auxiliary system anymore. The gap between the curve
for the first system after back-transformation and the curve for the second system
can be explained by the following equation:

b−Ax̄ = b−A
(

x̂

1 + yT x̂

)
=

b + byT x̂−Ax̂

1 + yT x̂
=

b− (A− byT )x̂
1 + yT x̂

=
b− Âx̂

1 + yT x̂
,

hence

‖b−Ax̄‖ =
‖b− Âx̂‖
|1 + yT x̂| .

The loss of quality after back-transformation grows particularly large when the scalar
1 + yT x̂ tends to 0. Due to Theorem 2.1.1 and the non-singularity of Â + byT = A,
the expression 1 + yT Â

−1
b cannot vanish when Â is nonsingular. In other words,

when 1 + yT x̂ is very small and x̂ is a good approximation of Â
−1

b, then Â must
be close to singular. Non-singularity of Â appears to be in danger whenever we
force the auxiliary system to have too fast convergence speed. This is expressed by
the following proposition. The result is not surprising since when we ask for fast
convergence, our parameter vector y must have comparatively large elements (see
equation (2.15)). The matrix A− byT can become merely a perturbation of byT , a
singular rank-one matrix.
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Proposition 2.4.1 With the assumptions and notations of Theorem 2.2.7, let x̂k

denote the kth approximation calculated by the GMRES method applied to the system

Âx = b, (2.21)

and let k < n. Let αi := yT vi, i ≤ k, and R̂k denote the upper triangular matrix
obtained by elimination of the lower subdiagonal elements of the kth Hessenberg
matrix with the help of the Givens parameters ĉi, ŝi. Let further rk denote the last
column without last element of the matrix obtained by applying the first k−1 Givens
rotations associated with (2.21) to the kth Hessenberg matrix associated with the
original system (1.1). Then

1 + yT x̂k =
(
1 + yT x̂k−1

)
(

ŝ2
k +

ŝkĉk(
∑k

j=1 ĉj−1hj,k
∏k−1

l=j (−ŝl))
hk+1,k

)
(2.22)

− β
ŝk ĉk

hk+1,k

k−1∏

l=1

(−ŝl)(α1, . . . , αk−1)R̂
−1
k−1rk.

P r o o f : After the kth GMRES iteration applied to (2.21), let Vk denote the matrix
whose columns are the first k Arnoldi vectors, H̃k denote the upper Hessenberg
matrix of dimension (k + 1)× k obtained together with the computation of Vk and
let β = ‖b‖. In the kth step we have k conditions for y:

yTVk = (α1, . . . , αk). (2.23)

With a := (α1, . . . , αk)T , solutions for y all satisfy

y ∈ Vka + U,

where U is the orthogonal complement in Rn to span{v1, . . . , vk}. The kth ap-
proximation x̂k has because of the zero initial guess the form Vkwk with wk ∈ Rk

minimizing ‖βe1 − H̃kw‖. Hence,

yT x̂k = (Vka + U)T (Vkwk) = aT wk. (2.24)

The vector wk can be obtained by computing the QR-decomposition of H̃k, H̃k =
QkR̃k. With R̂k being the upper triangular matrix given by R̃k without its last
row and g being QT

k βe1 without last element, we have

wk = R̂
−1
k g.

When we denote the last column of R̂k without its last element by r̂k, then according
to Lemma 2.2.5

eT
i r̂k = ŝiĥi+1,k + ĉi

i∑

j=1

ĉj−1ĥj,k

i−1∏

l=j

(−ŝl), i ≤ k − 1,

and the element of R̂k on position k × k equals

r̂k,k = ŝkĥk+1,k + ĉk

k∑

j=1

ĉj−1ĥj,k

k−1∏

l=j

(−ŝl).
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Similarly, g has elements

gi = ĉiβ
i−1∏

l=1

(−ŝl), i ≤ k. (2.25)

For the upper triangular matrix the following recurrence formula holds:

R̂
−1
k =

(
R̂
−1
k−1 −R̂

−1
k−1 · r̂k/r̂k,k

0 1/r̂k,k

)
,

with R̂k−1 being the left upper (k − 1)× (k − 1) part of R̂k. If g = (g∗, gk)T , then

wk = R̂
−1
k g =

(
R̂
−1
k−1 −R̂

−1
k−1 · r̂k/r̂k,k

0 1/r̂k,k

)(
g∗

gk

)
=

(
R̂
−1
k−1(g

∗ − gkr̂k/r̂k,k)
gk/r̂k,k

)
,

and hence

aT wk = (α1, . . . , αk−1)R̂
−1
k−1(g

∗ − gkr̂k/r̂k,k) + αkgk/r̂k,k. (2.26)

Combined with (2.24) this yields

1 + yT x̂k = 1 + yT x̂k−1 − (α1, . . . , αk−1)R̂
−1
k−1gkr̂k/r̂k,k + αkgk/r̂k,k. (2.27)

The last term of this expression equals

αkgk

r̂k,k
=

αk ĉkβ
∏k−1

l=1 (−ŝl)

ŝkĥk+1,k + ĉk
∑k

j=1 ĉj−1ĥj,k
∏k−1

l=j (−ŝl)
.

Because ŝk and ĉk must zero out ĥk+1,k we choose them according to (2.11) as

ŝk =
ĥk+1,k√

ĥ2
k+1,k + (

∑k
j=1 ĉj−1ĥj,k

∏k−1
l=j (−ŝl))2

, (2.28)

ĉk =

∑k
j=1 ĉj−1ĥj,k

∏k−1
l=j (−ŝl)√

ĥ2
k+1,k + (

∑k
j=1 ĉj−1ĥj,k

∏k−1
l=j (−ŝl))2

. (2.29)

Hence
αkgk

r̂k,k
=

αkβ
∏k−1

l=1 (−ŝl)(
∑k

j=1 ĉj−1ĥj,k
∏k−1

l=j (−ŝl))

ĥ2
k+1,k + (

∑k
j=1 ĉj−1ĥj,k

∏k−1
l=j (−ŝl))2

(2.30)

=
ĉ2
k∑k

j=1 ĉj−1ĥj,k
∏k−1

l=j (−ŝl)
αkβ

k−1∏

l=1

(−ŝl).

Only ĥ1,k = h1,k − βαk depends upon y, otherwise ĥj,k = hj,k = vT
j Avk. Values for

αk that yield a Givens sine of the form (2.28) are given by (2.15) and straightforward
computation shows that in (2.15) only the positive root gives the Givens cosine of
(2.29). Thus

αk =
ĉk
ŝk

hk+1,k −
∑k

j=1 ĉj−1hj,k
∏k−1

l=j (−ŝl)

−β
∏k−1

l=1 (−ŝl)
(2.31)

and exploiting twice this equation we obtain

αkgk

r̂k,k
= ĉ2

k

ĉk
ŝk

hk+1,k −
∑k

j=1 ĉj−1hj,k
∏k−1

l=j (−ŝl)

αkβ
∏k−1

l=1 (−ŝl)− h1,k
∏k−1

l=1 (−ŝl)−
∑k

j=2 ĉj−1hj,k
∏k−1

l=j (−ŝl)
=
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ĉ2
k

ĉk
ŝk

hk+1,k −
∑k

j=1 ĉj−1hj,k
∏k−1

l=j (−ŝl)

− ĉk
ŝk

hk+1,k

= −ĉ2
k +

ĉkŝk
∑k

j=1 ĉj−1hj,k
∏k−1

l=j (−ŝl)
hk+1,k

.

Thus (2.27) changes to

1+yT x̂k = 1+yT x̂k−1−(α1, . . . , αk−1)R̂
−1
k−1gkr̂k/r̂k,k−ĉ2

k+
ĉkŝk

∑k
j=1 ĉj−1hj,k

∏k−1
l=j (−ŝl)

hk+1,k
=

ŝ2
k +

ĉkŝk
∑k

j=1 ĉj−1hj,k
∏k−1

l=j (−ŝl)
hk+1,k

+yT x̂k−1−(α1, . . . , αk−1)R̂
−1
k−1gkr̂k/r̂k,k. (2.32)

Concerning the last term of this expression, we have

gk

r̂k,k
eT
i r̂k = ĉkβ

k−1∏

l=1

(−ŝl)
ŝihi+1,k + ĉi

∑i
j=1 ĉj−1ĥj,k

∏i−1
l=j (−ŝl)

ŝkhk+1,k + ĉk
∑k

j=1 ĉj−1ĥj,k
∏k−1

l=j (−ŝl)
=

ĉkβ
∏k−1

l=1 (−ŝl)
ŝkhk+1,k + ĉk

ĉk
ŝk

hk+1,k


ŝihi+1,k + ĉi

(
(h1,k − βαk)

i−1∏

l=1

(−ŝl)

)
+ ĉi

i∑

j=2

ĉj−1hj,k

i−1∏

l=j

(−ŝl)


 ,

having used (2.31). Again with (2.31) this expression equals

ĉkŝkβ
∏k−1

l=1 (−ŝl)
hk+1,k

×


ŝihi+1,k + ĉi

k−1∏

l=i

(
−1
ŝl

)


 ĉk

ŝk
hk+1,k −

k∑

j=1

ĉj−1hj,k

k−1∏

l=j

(−ŝl)


 + ĉi

i∑

j=1

ĉj−1hj,k

i−1∏

l=j

(−ŝl)


 .

Thus

gkr̂k/r̂k,k = β
ĉkŝk

∏k−1
l=1 (−ŝl)

hk+1,k
rk +

(
ĉ2
k −

ĉkŝk
∑k

j=1 ĉj−1hj,k
∏k−1

l=j (−ŝl)
hk+1,k

)


βĉ1
∏0

l=1(−ŝl)
...

βĉk−1
∏k−2

l=1 (−ŝl)


 .

The claim follows by substitution in (2.32) and when we realize that



βĉ1
∏0

l=1(−ŝl)
...

βĉk−1
∏k−2

l=1 (−ŝl)


 = g∗.

2

Proposition 2.4.1 shows that for too fast prescribed convergence, that is for
ŝk ≈ 0, the value 1 + yT x̂k vanishes. Thus attempts to overcome stagnation of
the restarted GMRES method become ineffective when we ask for too dramatic
residual norm decreasing in the auxiliary system. On the other hand, a reasonably
defined, non-stagnating curve of the second system and back-transformation with
Sherman-Morrison can successfully overcome stagnating, as was seen in the above
examples.
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2.5 Open questions

The procedure we proposed in this chapter needs some more investigation concerning
the following points. First of all, the algorithm we constructed from it (Algorithm
5.2.1), is not a classical algorithm in the sense that it needs prescribed auxiliary
system residual norms as input. One can easily implement default auxiliary system
residual norms but we did not yet find out what prescribed iterations yield best
convergence in general. We do know from the preceding that too fast decreasing
norms spoil the back-transformation, on the other hand we must at least define a
non-stagnating second system. In some cases this is a very delicate problem. Let us
give an extreme example.

Example 4. PDE matrix of dimension 400.

Let us consider the first example of Section 2.3, where we prescribed the first 10
residual norms of the auxiliary system. Here we will describe only 4 residual norms
of GMRES applied to A− byT , namely

‖r̂1‖ := 9, ‖r̂2‖ := 8, ‖r̂3‖ := 7, ‖r̂4‖ := 6.

The resulting auxiliary system perfectly converges, the back-transformed curve is
seen in Figure 2.4 and denoted by pmpm6. But when we force the initial residual
norms to equal

‖r̂1‖ := 9, ‖r̂2‖ := 8, ‖r̂3‖ := 7, ‖r̂4‖ := 5,

we obtain a stagnating auxiliary system, and consequently back-transformed itera-
tions stagnate too. This is expressed by the curve pmpm5. Apparently, the distance
between third and fourth residual norm was chosen too large.

A different matter of concern is the choice of the concrete parameter vector
that forces certain residual norms. If we prescribe k norms, the proof of Theorem
2.2.7 finds 2k possible sequences of k conditions to put on y ∈ Rn (see (2.15)).
We are confronted with the choice of conditions and after that with the choice of
y that satisfies the chosen conditions. We solved the latter problem by putting
y := Vk(α1, . . . , αk)T when we have the conditions yT vi = αi, i ≤ k. Thus the
computation of y ∈ Rn is the least expensive option, but other choices yield of
course other auxiliary systems. Concerning the choice of the conditions, we have
used so far only the conditions with positive root in (2.15). An example of the
influence of this choice is the following:

Example 5. PDE matrix of dimension 400.

We consider again the first example of Section 2.3, and describe as before 4 residual
norms of GMRES applied to A− byT , namely

‖r̂1‖ := 9, ‖r̂2‖ := 8, ‖r̂3‖ := 7, ‖r̂4‖ := 6.

The curve pmpm6 that we have seen in the preceding example (in Figure 2.4) was
obtained by choosing for the first condition on y in (2.15) the plus sign, for the
second the minus sign, for the third plus and minus for the last (the same holds for
pmpm5). If we inverse these choices, i.e. choose minus-plus-minus-plus, we obtain
the curve mpmp6. The original nor the auxiliary system converges.

The only thing we can do to overcome these difficulties for the moment is
adding, when a prescribed auxiliary system yields stagnation, a correcting condition
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Figure 2.4: Sensibility of prescribed curve and parameter vector choice when apply-
ing SHERMOR(30,4)

for y in the following sense. We have seen in the preceding section that the quality of
the back-transformation depends on the denominator 1+yT x̂k. With the information
gained from Proposition 2.4.1 we can compute, when the (k−1)st prescribed residual
norms yield stagnation, at iteration number k a denominator that is as far from
zero as possible. In case the stagnation is indeed caused by a too small denominator
1+yT x̂k−1, it is reasonable to expect that the new denominator 1+yT x̂k corrects at
least for a while the problem of the back-transformation. And when the stagnation
has a different cause it can still be stimulating to have an auxiliary matrix that is
further away from singularity than at step k − 1. The correcting condition for y is
obtained as follows.

Let us consider a given value γk 6= 0 and determine the values of ŝk in (2.22)
that make the denominator equal γk. For this purpose we introduce the following
notations:

Tk :=
β

hk+1,k

k−1∏

l=1

(−ŝl)(α1, . . . , αk−1)R̂
−1
k−1rk, Sk :=

∑k
j=1 ĉj−1hj,k

∏k−1
l=j (−ŝl)

hk+1,k
,

and 1 + yT x̂k−1 =: γk−1. Then

1 + yT x̂k = γk ⇐⇒ γk−1ŝ
2
k + (γk−1Sk − Tk)ŝk ĉk − γk = 0

⇐⇒ γk−1ŝ
2
k − γk = ±(γk−1Sk − Tk)ŝk

√
1− ŝ2

k,
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Figure 2.5: Intervention to enhance the quality of the back-transformation when
applying SHERMOR(30,4) and SHERMOR(30,10)

yielding for ŝ2
k the roots

ŝ2
k =

(γk−1Sk − Tk)2 + 2γk−1γk ± (γk−1Sk − Tk)
√

(γk−1Sk − Tk)2 + 4γk(γk−1 − γk)
2(γ2

k−1 + (γk−1Sk − Tk)2)
.

(2.33)
From every root we can extract one value for ŝk that forces the kth denominator to
equal γk as long as the above square root is defined. Thus the term under the square
root in (2.33), the determinant, can tell us what values the denominator assumes
at all. To correct k − 1 prescribed residual norms we choose a possibly large γk in
the interval that is determined by the roots of the determinant in (2.33). From the
corresponding values for ŝ2

k we obtain a correcting condition on y. To illustrate this,
we will apply the procedure to the stagnating curves of examples 4 and 5.

In curve pmpm5 we have prescribed 4 auxiliary system residual norms. The
roots of the determinant of (2.33) with k = 5 are -0.008333 and 0.175647. We choose
a relatively large fifth denominator in this interval, namely

1 + yT x̂5 := 0.17

and obtained two Givens sines forcing such denominator, ŝk = 0.999265 or ŝk =
0.924693. We have chosen to force the smallest one and we computed the resulting
condition for y. Having defined the auxiliary system with these 5 conditions for y,
the corresponding back-transformed curve pmpm5 in Figure 2.5 converges very well.

As for curve mpmp6 from Example 5, we applied exactly the same strategy:
The roots of the determinant of (2.33) with k = 5 are -0.004602 and 0.457942.
We choose in this interval 1 + yT x̂5 := 0.4 and obtained two Givens sines forcing
such denominator, ŝk = 0.965911 or ŝk = 0.895302. Of course, we have chosen the
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smallest, the second one. Having defined the auxiliary system with these 5 conditions
for y, the corresponding auxiliary system curve mpmp6∧ in Figure 2.5 converges
and the back-transformed curve mpmp6 does so too. We see the gap between the
two systems stays, after the initial cycles, very constant. It even corresponds to
a denominator of size about 0.3 but this is certainly coincidence because the gap
changes heavily after the moment of intervention, the 5th iteration.

Finally, we showed the positive influence an extra condition can have on a
system that converges already. We prescribed the 10 residual norms of Example
1 and choose the conditions with alternating plus and minus sign in (2.15). This
system converges slower than the one displayed in Example 1. When we apply a
correcting eleventh iteration in the same manner as before, we obtain the curve
pm10 in Figure 2.5. It is even steeper than the one of Figure 2.1.

Of course, the motivation for using this last strategy is rather heuristic. But
we believe that observation of the denominator is the key to optimal prescribed
convergence curves. As we mentioned above, this item and the choice of the concrete
parameter vector need further investigation.
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Chapter 3

Rank-one updates after the
initial cycle

In the preceding chapter we succeeded in prescribing the convergence speed of the
GMRES method when applied to the rank-one updated matrix A−byT by the choice
of y. This was possible because we considered processes with zero initial guess. The
power of exploiting A − byT in a GMRES cycle with x0 = 0 is mainly caused by
the fact that adding the rank-one matrix −byT , where b equals the initial residual
itself, one can make the distance between this residual and the projection space as
small as wanted. For x0 6= 0 this does not hold anymore. But we can apply the
results of Chapter 2 to an original system with nonzero first guess in a simple way
by considering Theorem 2.2.7 with

b := v1 = (b′ −Ax0)/‖b′ −Ax0‖,

b′ being the right-hand side of the original system. Then we obtain whatever con-
vergence curve for

Â = A− v1y
T

with right-hand side v1. With (2.3) one could find an approximate solution x̄ of

Ax = v1,

and hence
A(‖b′ −Ax0‖x̄ + x0) ≈ b′.

We have seen convincing examples of the effectiveness of the technique from
Chapter 2, but we also presented an example where stagnation could not be over-
come. In principle it is possible to define, as soon as a process stagnates, an auxiliary
system with the nonzero approximate from the preceding cycle as initial guess in
the way just described. One must only realize that transition to a new system after
every restart does not make sense, because an auxiliary system never improves the
iterates of the original system as long as it is not restarted. We have pointed this
out earlier in Section 2.3.

Thus we can translate the advantages of zero initial guesses to arbitrary
guesses, but we also have to deal with the problems we formulated in the end of
the preceding chapter. Unfavorably prescribed residual norms can spoil the conver-
gence of the first cycle during later restarts and moreover, the auxiliary system can
converge but back-transformation leads to division by nearly zero. It would be very
useful to be able to improve a given matrix in a different way after the first GMRES
cycle, that is when iterates start to converge and to be further away from the origin.

75
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3.1 Local minimization

If x0 6= 0, Proposition 2.2.1 is not valid anymore. Instead of the first row elements, all
the elements of the Hessenberg matrix generated by an Arnoldi process for A− byT

are dependent on y. The dependency from the lower subdiagonal elements is not
even linear anymore. As a consequence, also the property Kk(Â, r0) = Kk(A, r0) is
lost. This has one advantage, namely that back-transformation from an auxiliary
system can improve convergence during non-restarted, that is full GMRES processes
too. On the other hand, the computation of a favorable parameter vector exploiting
a modified Hessenberg matrix as we did in Section 3.2 is significantly more compli-
cated. But modification of projection angles with the help of Givens sines is still a
useful tool. With Corollary 2.2.6 Givens sines satisfy

ŝk
2 =

ĥ2
k+1,k

ĥ2
k+1,k + (

∑k
j=1 ĉj−1ĥj,k

∏k−1
i=j (−ŝi))2

, ĉ0 := 1.

With ĥk+1,k depending upon y it is clear we cannot prescribe arbitrary small sines
anymore. In fact, all we can do is minimize them.

Before we proceed to minimization techniques we would like to remark the
following. We are primarily interested in acceleration of stagnating systems. When
a process stagnates we have very large Givens sines, or equivalently, nearly vanishing
Givens cosines. Thus the term

k∑

j=1

ĉj−1ĥj,k

k−1∏

i=j

(−ŝi)

approximately equals ±ĥ1,k ! Only the first row element and the lower subdiagonal
one do really matter if stagnation occurs and we have

ŝ2
k ≈

ĥ2
k+1,k

ĥ2
k+1,k + ĥ2

1,k

=
‖Âv̂k‖2 −∑k

j=1 ĥ2
j,k

‖Âv̂k‖2 −∑k
j=2 ĥ2

j,k

due to Lemma 2.2.8. Interestingly, this remark is the more valid the worse a system
converges. As in the previous chapter, a relatively large choice of ĥ1,k will stimulate
convergence. This fact has already been observed in the past in the context of
GMRES processes before. Indeed, large numbers h1,k = vT

1 Avk imply that the
normed residual v1 is close to the kth dimension of the projection space AKk(A, r0).
Hence the kth residual is small.

Now let us investigate minimization of Givens sines. A new possibility with
nonzero initial guesses is that we can intervene already from the initial residual norm
on:

‖r̂0‖2 = ‖b− Âx0‖2 = ‖r0 + b(yT x0)‖2 = ‖r0‖2 + 2(yT x0)(rT
0 b) + (yT x0)2‖b‖2.

The choice

yT x0 = − rT
0 b

‖b‖2

minimizes the initial residual norm and the minimized residual equals

r̂0 = r0 − rT
0 b

‖b‖2
b. (3.1)
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Concerning the residual norms to follow, we have

‖r̂k‖ = ‖r̂0‖|ŝ1 · . . . · ŝk|,

and again with Corollary 2.2.6

ŝ2
k =

ĥ2
k+1,k

ĥ2
k+1,k + (

∑k
j=1 ĉj−1ĥj,k

∏k−1
i=j (−ŝi))2

,

with ĉ0 := 1. Having minimized ‖r̂1‖ until ‖r̂k−1‖, minimizing the kth residual norm
amounts to maximizing

∣∣∣∣∣

∑k
j=1 ĉj−1ĥj,k

∏k−1
i=j (−ŝi)

ĥk+1,k

∣∣∣∣∣ . (3.2)

If we have minimized the initial residual norm as above and consecutively minimize
all following norms, we obtain the following result.

Proposition 3.1.1 Let us consider minimization of residual norms by the choice
of y ∈ Rn when the GMRES method is applied to the system

Âx = b, Â = A− byT , (3.3)

with nonzero initial guess and assume that the k +1st Krylov subspace Kk+1(Â, r̂0),
k+1 ≤ n, has dimension k+1 and is spanned by {v1, . . . , vk+1}. If we have minimized
the initial residual norm by requiring

yT x0 = − rT
0 b

‖b‖2
,

and consecutively minimize the first k residual norms, then the condition

yT v̂k+1 =
bTAv̂k+1

‖b‖2

minimizes the (k + 1)st residual norm. Moreover, the Arnoldi process with these
choices generates a Krylov subspace Kk+1(Â, r̂0) that is orthogonal to b.

P r o o f : Per induction. k = 1:
Because of (3.1) we have

v̂T
1 b =

1
‖r̂0‖bT (r0 − rT

0 b

‖b‖2
b) = 0.

The first Hessenberg element therefore equals

ĥ1,1 = v̂T
1 (A− byT )v̂1 = v̂T

1 Av̂1.

Minimizing the first Givens sine is in this case the same as minimizing ĥ2,1 because
of (3.2). We have with Lemma 2.2.8

ĥ2
2,1 = ‖Âv̂1‖2 − ĥ2

1,1 = ‖(A− byT )v̂1‖2 − ĥ2
1,1 =

‖Av̂1‖2 − 2yT v̂1b
TAv̂1 + (yT v̂1)2‖b‖2 − ĥ2

1,1
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and ĥ2,1 is minimized by the choice

yT v̂1 =
bTAv̂1

‖b‖2
.

k → k + 1:
Let us assume we have minimized the first k Givens sines with

yT v̂i =
bTAv̂i

‖b‖2
, i ≤ k,

and have proved that v̂T
i b = 0, i ≤ k.

From these assumptions it follows that

v̂T
k+1b =

1

ĥk+1,k

bT (Âv̂k −
k∑

j=1

ĥj,kv̂j) =
1

ĥk+1,k

bT (Av̂k − (yT v̂k)b)

=
1

ĥk+1,k

bT (Av̂k − bTAv̂k

‖b‖2
b) = 0.

Therefore all

ĥi,k+1 = v̂T
i (A− byT )v̂k+1 = v̂T

i Av̂k+1, i ≤ k + 1,

are independent from further conditions on y. Minimizing the (k + 1)st Givens sine
is in this case the same as minimizing ĥk+2,k+1 because of (3.2). We have with
Lemma 2.2.8

ĥ2
k+2,k+1 = ‖Âv̂k+1‖2 −

k+1∑

j=1

ĥ2
j,k+1 = ‖(A− byT )v̂k+1‖2 −

k+1∑

j=1

ĥ2
j,k+1 =

‖Av̂k+1‖2 − 2yT v̂k+1b
TAv̂k+1 + (yT v̂k+1)2‖b‖2 −

k+1∑

j=1

ĥ2
j,k+1

and hence ĥk+2,k+1 is minimized by the choice

yT v̂k+1 =
bTAv̂k+1

‖b‖2
.

2

The dependency of the Hessenberg matrix from y, which was concentrated
on its first row in the previous chapter, for nonzero initial guesses moves to the
lower subdiagonal. With the foregoing proposition, one can easily find a vector
y ∈ Rn such, that the GMRES method applied to the alternative system (3.3)
with nonzero initial guess reduces the residual norm of every step maximally. The
resulting algorithm, Algorithm 5.2.5, is amazingly simple. Let us give an example
with this kind of minimization.

Example 1. Nonnormal test matrix.

This highly nonnormal matrix is taken from Erhel [7]. It has the form A = SDS−1

with A,D,S ∈ R100×100. D is a diagonal matrix, D=diag(1, . . . , 100) and S is bidi-
agonal with the element 1 on the diagonal and 1.1 on the upper subdiagonal. The re-
sulting matrix has 5050 nonzero elements, we used the right-hand side b = (1, . . . , 1)T
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Nonnormal 100 x 100 matrix
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Figure 3.1: QMR, GMRES(20) and local minimization

and in this case a nonzero initial guess is needed. We chose x0 = (0.001, . . . , 0.001).
Successive minimization of the auxiliary system during the first 10 iterations over-
comes the stagnation of GMRES(20). The curve after back-transformation from the
auxiliary system is denoted by LOCAL(20,10). The QMR method, however, gives
about as satisfactory a convergence curve and is computational less expensive due
to three term recurrences.

The minimization we achieve with Algorithm 5.2.5 must be understood in depen-
dency from the iteration number. Moreover, maximal norm reducing of one step
can prevent the next steps from being reasonably minimalizable and in the worst
case a cycle without any minimization converges better than stepwise minimization.
In the example at the end of Chapter 5 this is exactly what happens. GMRES(50)
converges very slowly but it converges and our minimization stagnates without any
convergence. This phenomenon reminds us on the paradox that we already men-
tioned in Section 1.4 and that is due to Eiermann, Ernst and Schneider [16]: Ex-
amples exist in which convergence is faster for smaller restart parameters than for
larger ones, because the resulting vectors r̂k−1 generate closer Krylov subspaces.

3.2 Global minimization

The process of Proposition 3.1.1 minimizes residual norms at every single iteration
in relation with the foregoing residual, that is only locally. One would expect better
results when globally minimizing the residual norm after say k steps, regardless of
the norms of previous residual vectors. This is what we will do next.
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To begin with, let us assume we do not try to minimize the initial residual.
Instead let yT x0 be zero, so that ‖r0‖ = ‖r̂0‖.
When GMRES is applied to the system (3.3), the residual norm of the kth iterate
is the distance from the initial residual to the subspace

span(Âr0, . . . , Â
k
r0).

Let us take a closer look at this subspace.

Lemma 3.2.1 The vector Â
k
r0, k ≥ 1, has the form:

Â
k
r0 = Akr0 +

k−1∑

j=0

αk−jAjb,

with

α1 = −yT r0 and αk = −yTAk−1r0 −
k−2∑

j=0

(yTAjb)αk−1−j , k > 1.

P r o o f : By induction. k = 1 :

Âr0 = (A− byT )r0 = Ar0 − byT r0.

k − 1 → k :

Â
k
r0 = (A− byT )(

k−2∑

j=0

αk−1−jAjb + Ak−1r0) =

k−2∑

j=0

αk−1−jAj+1b+Akr0−b




k−2∑

j=0

αk−1−j(yTAjb) + yTAk−1r0


 =

k−1∑

j=0

αk−jAjb+Akr0,

with

αk := −



k−2∑

j=0

(yTAjb)αk−1−j + yTAk−1r0


 . 2

As a consequence, we have

ÂKk(Â, r0) ⊆ span{Ar0, . . . ,Akr0, b, . . . ,Ak−1b}.
In order to investigate the behaviour of the subspace ÂKk(Â, r0) in current stable
GMRES implementations we need to express its elements in terms of orthonormal
bases for AKk(A, r0) and Kk(A, b).
Let {v1, . . . , vk} be an orthonormal basis of Kk(A, b) with v1 := b/‖b‖ and Arnoldi
decomposition

AVk = Vk+1H̃k, hi,j = (H̃k)i,j ,

and let {w1, . . . , wk} be an orthonormal basis of AKk(A, r0) with w1 := Ar0/‖Ar0‖
and Arnoldi decomposition

AWk = Wk+1G̃k, gi,j = (G̃k)i,j .

We will propose a basis {ŵ1, . . . , ŵk} for ÂKk(Â, r0) that consists of linear combi-
nations of {w1, . . . , wk} and {v1, . . . , vk}.
For k = 1 we have

Âr0 = (A− byT )r0 = ‖Ar0‖w1 − ‖b‖yT r0v1.
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We initialize by putting

ŵ1 := w1 + α1,1v1, α1,1 := −‖b‖y
T r0

‖Ar0‖ . (3.4)

Clearly, span{ŵ1, Âŵ1} = ÂK2(Â, r0). We have

Âŵ1 = Aw1+α1,1Av1−b(yT ŵ1) = g1,1w1+g2,1w2+α1,1(h1,1v1+h2,1v2)−‖b‖yT ŵ1v1.

But ÂK2(Â, r0) also equals span{ŵ1, (Âŵ1 − g1,1ŵ1)/g2,1}, giving a basis that is
more easy to work with. The second basis vector ŵ2 then equals

ŵ2 := (Âŵ1−g1,1ŵ1)/g2,1 =
(
g2,1w2 + (α1,1h1,1 − α1,1g1,1 − ‖b‖yT ŵ1)v1 + α1,1h2,1v2

)
/g2,1.

In general, we define

ŵi+1 := (Âŵi −
i∑

j=1

gj,iŵj)/gi+1,i. (3.5)

Note that this is not the same as Gram-Schmidt orthonormalization.

Lemma 3.2.2 The basis {ŵ1, . . . , ŵi+1} for ÂKi+1(Â, r0) described by (3.5) has
(i + 1)st basis vector of the form

ŵi+1 = wi+1 + α1,i+1v1 + . . . + αi+1,i+1vi+1, (3.6)

where

α1,i+1 = (−‖b‖yT ŵi +
i∑

k=1

αk,ih1,k − α1,kgk,i)/gi+1,i ,

αj,i+1 = (
i∑

k=j−1

αk,ihj,k−
i∑

k=j

αj,kgk,i)/gi+1,i , 2 ≤ j ≤ i, and αi+1,i+1 =
αi,ihi+1,i

gi+1,i
.

P r o o f : If ŵi = wi + α1,iv1 + . . . + αi,ivi, then

Âŵi =
i+1∑

j=1

gj,iwj +
i∑

j=1

αj,i

j+1∑

k=1

hk,jvk − byT ŵi.

Hence, with the definition of (3.5),

gi+1,iŵi+1 =
i+1∑

j=1

gj,iwj−
i∑

j=1

gj,iŵj+
i+1∑

j=2

vj

i+1∑

k=j

αk−1,ihj,k−1−‖b‖yT ŵiv1+v1

i∑

k=1

αk,ih1,k =

gi+1,iwi+1−
i∑

j=1

gj,i(
j∑

k=1

αk,jvk) +
i+1∑

j=2

vj

i∑

k=j−1

αk,ihj,k − v1(‖b‖yT ŵi−
i∑

k=1

αk,ih1,k) =

gi+1,iwi+1 −
i∑

j=1

vj

i∑

k=j

αj,kgk,i +
i+1∑

j=2

vj

i∑

k=j−1

αk,ihj,k − v1(‖b‖yT ŵi −
i∑

k=1

αk,ih1,k) =

gi+1,iwi+1 −
i∑

j=2

vj(
i∑

k=j

αj,kgk,i −
i∑

k=j−1

αk,ihj,k) + αi,ihi+1,ivi+1

−v1(‖b‖yT ŵi −
i∑

k=1

αk,ih1,k +
i∑

k=1

α1,kgk,i). 2
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Thus elements of ÂKk(Â, r0) can be expressed as linear combinations of or-
thonormal bases for AKk(A, r0) and Kk(A, b).

A more interesting result is that by choice of the free parameter vector y ∈ Rn,
we can nearly make true the opposite: If we have given an element of the form

k∑

i=1

βiwi +
k∑

i=1

γivi ∈ span(Ar0, . . . ,Akr0, b, . . . ,Ak−1b)

with real coefficients βi, γi. Then we consider

k∑

i=1

βiŵi =
k∑

i=1

βi(wi +
i∑

j=1

αj,ivj) =
k∑

i=1

βiwi +
k∑

i=1

vi(
k∑

j=i

βjαi,j),

because of (3.6). This expression equals
∑k

i=1 βiwi +
∑k

i=1 γivi when the values αi,j

happen to be such that
∑k

j=i βjαi,j = γi for all i. In matrix vector representation,




α1,1 α1,2 α1,k

0 α2,2 α2,k

. . .
0 αk,k







β1

...
βk


 =




γ1

...
γk


 , (3.7)

where the elements of the matrix are the unknowns ! But they are dependent the
one on the other. For example, from αi+1,i+1 = αi,ihi+1,i

gi+1,i
in Lemma 3.2.2 follows

that

αk,k = α1,1

k−1∏

j=1

hj+1,j

gj+1,j

and similarly for the other diagonal elements. Fortunately, we can attribute α1,1

whatever value by choice of yT r0 due to (3.4), especially a value that makes αk,k

equal γk
βk

. The only case this does not work is when βk = 0. In a similar way, all
elements of other upper diagonals depend upon the first row element of the diagonal
they belong to. We can solve our ,,linear system” (3.7) by diagonally defining the
elements of the involved matrix: Having computed the value an element of the last
column must take to solve the system, that is having put

αk−i,k = (γk−i −
k−1∑

j=k−i

αk−i,jβj)/βk, i ≥ 0,

we compute the values that follow for the other elements on that same diagonal,
including the corresponding first row value. This last value is dependent on y ∈ Rn

and thus yields a condition for y. From Lemma 3.2.2 we easily obtain the following
recursion to diagonally define the unknowns of (3.7).

for i = 0, k − 2
for j = 0, k − i− 2
αk−i−j−1,k−j−1 = αk−i−j,k−jgk−j,k−j−1+

∑k−j−1
m=k−i−j αk−i−j,mgm,k−j−1−αm,k−j−1hk−i−j,m

αk−i−j−1,k−j−1 = 1
hk−i−j,k−i−j−1

αk−i−j−1,k−j−1

enddo
enddo
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With the α1,i obtained by this recursion, the conditions to put on y are

yT ŵi =

(
i∑

k=1

(αk,ih1,k − α1,kgk,i)− α1,i+1gi+1,i

)
/‖b‖, i ≤ k − 1, (3.8)

yT r0 =
−α1,1‖Ar0‖

‖b‖ , yT x0 = 0.

We have proved the following result.

Theorem 3.2.3 Let k ≤ n − 1 be such that ÂKk−1(Â, r0) has full dimension and
r0 as well as x0 are excluded from this subspace and linearly independent from
each other. Furthermore, let {v1, . . . , vk} be an orthonormal basis of Kk(A, b) and
{w1, . . . , wk} be an orthonormal basis of AKk(A, r0). We can choose y ∈ R such
that an element of the form

k∑

i=1

βiwi +
k∑

i=1

γivi

with real coefficients βi, γi and with βk 6= 0, is also an element from ÂKk(Â, r0).

The theorem states that when we minimize, by the choice of the parameter vector,
residual norms of an auxiliary system with nonzero initial guess, we have the op-
portunity to create a system that finds during the kth GMRES iteration a residual
norm that is equal to the distance from the initial residual to a subspace of maximal
dimension 2k, namely span{Ar0, . . . ,Akr0, b, . . . ,Ak−1b}. In this sense, the theorem
describes the possibilities as well as the restrictions of global minimization. It also
partly explains what happens if we apply the strategies of the preceding chapter:
During restarts of an auxiliary system with a number of prescribed residual norms,
Krylov subspaces that are subspaces from span{Ar0, . . . ,Akr0, b, . . . ,Ak−1b} are
being generated. The prescribed norms can, apart from elimination of convergence
hampering properties of A, produce favorable Krylov subspaces. They can spoil the
convergence properties of projection spaces too, but the spaces Kk(A, r0) causing
stagnation already, we do not expect the auxiliary spaces to be worse.

Concerning options to apply the last theorem to practice, we have postponed
this item to the last section of the chapter.

3.3 Preconditioning with the Sherman-Morrison formula

All proposed applications of the Sherman-Morrison formula that we have seen so
far work with the rank-one updated matrix A− byT . With this choice, the solution
of the auxiliary system with right-hand side b suffices to compute the solution of
the original problem, see (2.3). But this choice also implies troubles when the scalar
1+yT x̂ in (2.19) tends to 0. For that reason, we propose an alternative way to define
the auxiliary system. The rank-one updated matrix is different, but the right-hand
side remains. It avoids the singularity at yT x̂ = −1 and moreover, the decreasing of
residual norms of auxiliary and original system will go hand in hand.

In contrast with the preceding sections, let us define the auxiliary matrix Â
as follows:

Â := A−AdyT , y, d ∈ Rn, d 6= 0.

The first condition to put on y is

yT d = γ, (3.9)
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for some scalar γ ∈ R, γ 6= 1. Then we have

Âd = (A−AdyT )d = (1− γ)Ad.

Denoting by x̂ the calculated approximation of the auxiliary system, the Sherman-
Morrison formula yields

A−1b = (Â + AdyT )−1b = Â
−1

b− Â
−1

Ad(1 + yT Â
−1

Ad)−1yT Â
−1

b ≈

x̂− d

1− γ

(
1 +

yT d

1− γ

)−1

yT x̂ = x̂− d

1− γ

(
1− γ + γ

1− γ

)−1

yT x̂ = x̂− (yT x̂)d =: x̄.

(3.10)
The singularity at yT d = 1 is excluded because of (3.9). Also, in comparison with the
previous strategies, the error of the back-transformed solution is far less sensible to
the error at the auxiliary system, because the expression Â

−1
Ad is known to exactly

equal d
1−γ . The residual vectors of original and auxiliary system even appear to be

equal if we use (3.10) to compute the approximation of the first system:

b− Âx̂ = b− (A−AdyT )x̂ = b−Ax̂ + AdyT x̂ = b−A(x̂− (yT x̂)d) = b−Ax̄.

In fact, this application of the Sherman-Morrison formula can be seen as right pre-
conditioning with the preconditioner

M := In − dyT ,

satisfying the restriction yT d 6= 1. An approximate solution ẑ of

AMz = b

yields an approximation x̄ = Mẑ = ẑ− (yT ẑ)d of the unpreconditioned system with
the same residual norm.

In analogy with the beginning of this chapter we formulate a process of mini-
mization of residual norms by considering Givens sines. Again, the Krylov subspaces
Kk(A, r0) and Kk(Â, r0) are in general not equal anymore and elements of the au-
xiliary Hessenberg matrix are not anymore independent from the parameter vector
y. Instead, we have

ĥj,k = vT
j Âvk = vT

j (A−AdyT )vk = hj,k − vT
j Adαk, (3.11)

where hj,k := vT
j Avk represents elements of the Hessenberg matrix of the original

system and αk := yT vk. The subdiagonal elements change to

ĥk+1,k = ‖Âvk −
k∑

j=1

ĥj,kvj‖ = ‖Avk −
k∑

j=1

hj,kvj +




k∑

j=1

(vT
j Ad)vj −Ad


αk‖.

Minimizing the Givens sines from Corollary 2.2.6 amounts to maximizing

(
∑k

j=1 ĉj−1(
∏k−1

i=j (−ŝi))ĥj,k)2

ĥ2
k+1,k

With w :=
∑k

j=1(v
T
j Ad)vj −Ad and because of (w,Avk−

∑k
j=1 hj,kvj) = (w,Avk),

the denominator equals

ĥ2
k+1,k = ‖Avk −

k∑

j=1

hj,kvj + αkw‖2 = h2
k+1,k + 2αk(w,Avk) + α2

k‖w‖2.
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From (3.11) it can be seen that also the numerator consists of an expression that is
quadratically dependent from the variable αk. In other words, we have to maximize
a value that can be expressed as

a1α
2
k + a2αk + a3

b1α2
k + b2α + b3

,

for some ai, bi ∈ R, 1 ≤ i ≤ 3. Straightforward computations show that

a1α
2
k + a2αk + a3

b1α2
k + b2α + b3

=
a1

b1

(
1 +

(a2b1 − a1b2)αk + a3b1 − a1b3

a1b1α2
k + a1b2αk + a1b3

)
.

Extrema of this expression are the roots of the first derivative of the involved quo-
tient.

∂

∂αk

(a2b1 − a1b2)αk + a3b1 − a1b3

a1b1α2
k + a1b2αk + a1b3

=

(a2b1 − a1b2)b3 − (a3b1 − a1b3)b2 − 2(a3b1 − a1b3)b1αk − (a2b1 − a1b2)b1α
2
k

a1(b1α2
k + b2αk + b3)2

= 0.

(3.12)
As far as ĥk+1,k is dependent on αk, it seems reasonable to minimize ŝk and hence
the corresponding residual norm by taking for αk the smallest root of the equation
above if (a2b1 − b2a1) is negative and the largest root if (a2b1 − a1b2) is positive. In
the exceptional case that ĥk+1,k is independent from αk we can force whatever norm
reducing (as in the preceding chapter).

In theory one could successively minimize all ŝk with the help of (3.12) and
define y by solving

yT (v1, . . . , vn−1, d) = (α1, . . . , αn−1, γ),

which is merely a question of orthogonalizing d against (v1, . . . , vn−1) and one matrix
vector multiplication. The resulting convergence curve cannot be drawn arbitrarily,
but it will at every step find steepest possible descent (in dependency of the chosen
vector d). In practice, as we aim to avoid stagnation of the restarted GMRES(m)
method, we will put only k, k ≤ m ¿ n, conditions on y. The corresponding
algorithm could have the form of Algorithm 5.2.2, which we denote by PSHERMOR.
In this version we have chosen γ = 0 and the auxiliary vector d to be equal to the
actual approximation. In that way, with convergence, Â will tend to have the form
A− byT as was the case in the previous sections.

Example 2. Non-normal test matrix.

We used the same 100× 100 matrix as in Example 1. Our initial guess is

x0 = (3.44 · 10−5, . . . , 3.44 · 10−5).

This guess minimizes ‖b−ρA(1, . . . , 1)T ‖ over all ρ ∈ R, where b = (1, . . . , 1)T . Full
GMRES converges quickly. GMRES(25) stagnates and stagnation can be overcome
with PSHERMOR(25, k), though minimization of the first Givens sine only is not
sufficient to do so (PSHERMOR(m, k) denotes Algorithm 5.2.2 with restart para-
meter m and k sine minimizations at the beginning of every restart). We compare
PSHERMOR with an other technique to accelerate restarted GMRES, with a de-
flation technique. The technique was proposed in Erhel [7]. At the ith restart of
ERHEL(m, k1, k2, . . .) the system is preconditioned by right multiplication with a
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Nonnormal 100x100 matrix 
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Figure 3.2: Comparison of GMRES, PSHERMOR and ERHEL for a non-normal
test matrix.

matrix that tries to eliminate ki eigenvalues from the spectrum of the original ma-
trix. The construction of the preconditioner is based on addition of Ritz vectors (see
also Chapter 1, Section 1.4). Erhel’s method starts to converge when we add at least
4 Ritz vectors: ERHEL(25, 4) converges a little faster than PSHERMOR(25, 6). On
the other hand, adding very few Ritz vectors at every restart seems to be less ad-
vantageous for this technique. ERHEL(25, 2, 2, 1) has convergence speed comparable
with PSHERMOR(25, 2). The curves are shown in Figure 3.2.

Example 3. PDE stiffness matrix of dimension 10000.

This is the stiffness matrix resulting from discretization of (2.20) on a 100× 100 grid.
It has 49600 nonzero elements, the right-hand side is b = (9.803 · 10−5, . . . , 9.803 ·
10−5)T and we chose x0 = (0.01, . . . , 0.01)T . The relatively large dimension, 10.000,
seems to ask for large restart parameters before PSHERMOR becomes effective.
When we restart after 60 steps the curves of Figure 3.3 show an interesting behaviour:
During about 100 restarts the system appears to stagnate, but then all of a sudden
the action of Givens sine minimization becomes visible. In this example we compare
the influence of different Givens minimization numbers per restart: As is to be
expected, only one Givens minimization at the beginning of every restart cycle yields
slower convergence than 10 minimizations per cycle. Especially, the steep descent
of the curve is postponed when using a smaller amount of minimizations. But this
observation must be handled with care: Too many minimizations spoil the effect, as
curve PSHERMOR(60,25) shows.
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Figure 3.3: PSHERMOR for different numbers of minimizations

Example 4. Steam1 from Matrix Market.

This is an example where minimization does extremely well. It is more a curiosity
than an indicative example. The matrix ,,Steam1”, taken from the Matrix Market
collection, has dimension 240× 240, 3762 nonzero entries and its spectrum consists
of 160 evenly distributed eigenvalues with norms ranging from 21711984 to 20918
and the last 80 eigenvalues lie evenly distributed between 19.565531 and −0.768583.
With right-hand side b = e1 and initial guess x0 = (0.01, . . . , 0.01)T , the convergence
curves of GMRES and PSHERMOR are displayed in Figure 3.4. For all experiments
residual norm reduction of a factor 10−6 is not problematic at all (the ini-tial residual
norm is relatively large, ‖r0‖ = 8407), but further convergence appears to be a
laborious task. In this example the eigenvalue distribution of Steam1 probably
has a hampering influence on GMRES’s behaviour. Stagnation of the restarted
GMRES(m) starts to disappear for m > 60. But PSHERMOR with only one mi-
nimization reaches residual norm reduction of 10−8 about 5 times faster than full
GMRES itself.

3.4 Open questions

An obvious item that should be investigated concerning the preceding procedure is
the choice of the free vector d ∈ Rn in the update AdyT and the scalar γ 6= 1 in (3.9).
An inexpensive way to optimize these parameters could enhance the effectiveness of
the preconditioning technique.

One has to realize that although this algorithm yields better results than
Algorithm 5.2.5 from Section 3.1, the involved minimization is local in the sense we
described in Section 3.1. We expect even better results when we manage to apply to
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Figure 3.4: GMRES and PSHERMOR applied to the matrix ,,Steam1”

our preconditioning technique the theory of global minimization presented in Section
3.2. We outline an application of the theoretical results about global minimization
in the remaining of this section.

Theorem 3.2.3 has shown we can minimize the distance from r0 to ÂKk(Â, r0)
as follows: We calculate the projection of r0 onto span{Ar0, . . . ,Akr0, b, . . . ,Ak−1b}
and as long as the projection can be forced to belong to ÂKk(Â, r0) by the choice of
y, we calculate that y with the help of the conditions (3.8). Then GMRES applied
to the auxiliary system with this special y finds at the kth step the projection we
calculated and the kth residual norm has been implicitly minimized over a subspace
of maximal dimension 2k. In fact, it is not necessary to execute the first cycle
of k auxiliary system iterations because we have computed the resulting residual
before, during the projection on span{Ar0, . . . ,Akr0, b, . . . ,Ak−1b}. In order to
obtain the iterates that belong to this residual inexpensively, we can exploit the
following lemma.

Lemma 3.4.1 Let {v1, . . . , vk} be an orthonormal basis of Kk(A, b) with Arnoldi de-
composition AVk = Vk+1H̃k and {w1, . . . , wk} be an orthonormal basis of AKk(A, r0)
with Arnoldi decomposition AWk = Wk+1G̃k. Any element of the form

k∑

j=1

βjwj +
k∑

j=1

γjvj

for some real coefficients βj and γj can be written as

k∑

j=1

βjwj +
k∑

j=1

γjvj = Â


µ0r0 +

k−1∑

j=1

(µjwj + νjvj)


 (3.13)
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if y ∈ Rn is chosen such that yT x0 = 0 and

yT


µ0r0 +

k−1∑

j=1

(µjwj + νjvj)


 = −ν0. (3.14)

The coefficients µj and νj, 0 ≤ j ≤ k − 1, are recursively defined through

µj =
βj+1 −

∑k−1
i=j+1 µigj+1,i

gj+1,j
, νj =

γj+1 −
∑k−1

i=j+1 νihj+1,i

hj+1,j
,

where g1,0 := ‖Ar0‖ and h1,0 := ‖b‖.

P r o o f : With the notations introduced above we have

µ0Ar0 + Â
k−1∑

j=1

µjwj = µ0g1,0w1 + A
k−1∑

j=1

µjwj − b
k−1∑

j=1

µjy
T wj

= µ0g1,0w1 +
k−1∑

j=1

µj

j+1∑

i=1

gi,jwi − b
k−1∑

j=1

µjy
T wj =

k∑

i=1

wi

k−1∑

j=i−1

µjgi,j − b
k−1∑

j=1

µjy
T wj

=
k∑

i=1

wi(µi−1gi,i−1 +
k−1∑

j=i

µjgi,j)− b
k−1∑

j=1

µjy
T wj =

k∑

i=1

βiwi − b
k−1∑

j=1

µjy
T wj .

Similarly,

ν0b + Â
k−1∑

j=1

νjvj =
k∑

i=1

γivi − b
k−1∑

j=1

νjy
T vj .

Hence

Â


µ0r0 +

k−1∑

j=1

(µjwj + νjvj)


 + ν0b =

k∑

j=1

βjwj − b
k−1∑

j=1

µjy
T wj +

k∑

j=1

γjvj − b
k−1∑

j=1

νjy
T vj − µ0y

T r0b.

For an y ∈ Rn satisfying (3.14) the scalars before b vanish. 2

A sketch of the resulting globally minimizing algorithm is the following pro-
cedure:

1. Compute (v1, . . . , vk), an orthonormal basis of Kk(A, b) with Arnoldi decom-
position

A(v1, . . . , vk) = (v1, . . . , vk+1)H̃k,

where v1 = b/‖b‖.
Compute an orthonormal basis (w1, . . . , wk) of AKk(A, r0) with Arnoldi de-
composition

A(w1, . . . , wk) = (w1, . . . , wk+1)G̃k,

where w1 = Ar0/‖Ar0‖.
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2. In order to minimize the kth residual norm, we project r0 onto
span(Ar0, . . . ,Akr0, b, . . . ,Ak−1b): If the projection is given by Pr0 =

∑k
j=1 γjvj+∑k

j=1 βjwj , then we obtain the conditions

vT
i (r0 −

k∑

j=1

γjvj −
k∑

j=1

βjwj) = rT
0 vi − γi −

k∑

j=1

βjw
T
j vi = 0, 1 ≤ i ≤ k,

and

wT
i (r0 −

k∑

j=1

γjvj −
k∑

j=1

βjwj) = rT
0 wi − βi −

k∑

j=1

γjw
T
i vj = 0, 1 ≤ i ≤ k.

With the abbreviations

γ :=




γ1
...

γk


 , β :=




β1
...

βk


 , rT

0 v :=




rT
0 v1
...

rT
0 vk


 , rT

0 w :=




rT
0 w1
...

rT
0 wk


 ,

and
(B)i,j := vT

i wj , 1 ≤ i, j ≤ k,

these conditions can be written as the system of linear equations
(

Ik B
BT Ik

)(
γ
β

)
=

(
rT
0 v

rT
0 w

)
.

Equivalently,
(

0 BTB− Ik

BT Ik

)(
γ
β

)
=

(
BT rT

0 v − rT
0 w

rT
0 w

)
,

which means that we have to solve 2 systems of dimension k,

BTBβ − β = BT rT
0 v − rT

0 w, BT γ = rT
0 w − β.

3. The orthogonal projection of r0 onto span{Ar0, . . . ,Akr0, b, . . . ,Ak−1b} is
given by

Pr0 =
k∑

j=1

βjwj +
k∑

j=1

γjvj

As long as βk 6= 0, it is possible to calculate with (3.8) an y such, that

Pr0 ∈ ÂKk(Â, r0).

4. When we add to y condition (3.14), the calculated kth residual equals

r̂k = r0−Pr0 = b−Ax0−
k∑

j=1

βjwj−
k∑

j=1

γjvj = b−Â


x0 + µ0r0 +

k−1∑

j=1

(µjwj + νjvj)


 ,

hence the kth iterate of the auxiliary system is given by

x̂k = x0 + µ0r0 +
k−1∑

j=1

(µjwj + νjvj)

and the iterate of the original system by

xk =
x̂k

1 + yT x̂k
.



3.4. OPEN QUESTIONS 91

Thus the new matrix A − byT builds a Krylov subspace that is, given the nonzero
initial guess x0, after k iterations as close to r0 as possible. The distance results
from projection on a space of maximal dimension 2k. Of course, the expenses
to achieve this are comparable with 2k classical GMRES iterations, but one ex-
pects that restarting with this auxiliary matrix is less susceptible to stagnation
than with A. Would stagnation occur nevertheless, then one can apply the same
algorithm to A − byT to define a second parameter vector y′ and continue with
A − b(y + y′)T . Note that in that case the basis {v1, . . . , vk} needs not be com-
puted again. On the other hand, the separate orthonormal bases for AKk(A, r0)
and Kk(A, b) are certainly numerically not as stable as a unit orthonormal basis
for span{Ar0, . . . ,Akr0, b, . . . ,Ak−1b}. The construction of a basis for the auxiliary
Krylov subspace ÂKk(Â, r0) presented in Section 3.2 (see (3.5)) was based on theo-
retical considerations and is also susceptible to become unstable in practice. Clearly,
the above algorithm makes only sense if x0 6= 0.
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Chapter 4

Spectral properties of the
updated matrix

Most of the techniques to accelerate convergence of the restarted GMRES method
that we considered in the first chapter are based on the idea that the eigenvalue
distribution of the system matrix has an influence on the convergence of GMRES,
as is the case for the Conjugate Gradient method for symmetric positive definite
matrices. In particular, it is assumed that eigenvalues lying comparatively close
to the origin hamper convergence and the mentioned techniques try, in some way
or another, to eliminate unwanted eigenvalues from the spectrum. Though many
well-known bounds for GMRES generated residual norms do in fact refer to the
spectrum (see, for example, Saad [61]) and in many cases the eigenvalue distribution
does have an influence on the residual norms, it is also known this is not generally
true. In Greenbaum, Pták, Strakoš [31] it has even been proved one can construct
for whatever spectrum and whatever convergence curve a linear system (1.1) such,
that A has that specific spectrum and GMRES applied to (1.1) yields the prescribed
convergence curve.

Nevertheless, nonsymmetric linear systems whose convergence behaviour is
immediately connected with the spectrum of the involved matrix can arise in prac-
tical applications. This chapter applies to problems where we know a priori that the
spectrum of the system has a crucial influence on convergence speed. For these cases
it is worth investigating possibilities to achieve spectral deflation with the help of the
Sherman-Morrison formula and rank-one update of A. We design two new deflation
techniques, test them on such cases and compare them with a known deflation tech-
nique. We computed eigenvalues and -vectors with the help of an implementation
of the QZ method. Conversely, we try to gain information about the spectrum of
a given updated matrix, for example an auxiliary matrix that is obtained by one of
the techniques from the preceding chapters.

4.1 Prescription of spectra

As we have just mentioned, it has been proved that one can construct for whatever
spectrum and whatever convergence curve a linear system (1.1) such, that A has that
specific spectrum and GMRES applied to (1.1) yields the prescribed convergence
curve. In the second chapter we showed that the rank-one update of our auxiliary
system can be chosen such that the system belongs to the class of systems with a
given convergence curve. We can also prove the spectral part of the specialization
of the result from Greenbaum, Pták and Strakoš to our rank-one updated systems.

93
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4.1.1 Any spectrum is possible for A− byT

Theorem 4.1.1 Let the Krylov subspace Kn(A, b) have dimension n and {θ1, . . . , θn}
be a set of complex values. Then there exists a vector y ∈ Rn such that A− byT has
the eigenvalues θ1, . . . , θn.

P r o o f : If
n∏

i=1

(λ− θi) = λn + αn−1λ
n−1 + . . . + α1λ + α0,

for scalars αi ∈ R, then the theorem is proved when we show that A− byT is similar
to 



0 . . . 0 −α0

1 0 . . . −α1
...

. . .
...

0 . . . 1 −αn−1




for some y ∈ Rn. We will construct a similarity transformation represented by the
matrix X = (x1, . . . , xm). Let the first column x1 of X be the vector b. Because X
must satisfy

(A− byT )X = X




0 . . . 0 −α0

1 0 . . . −α1
...

. . .
...

0 . . . 1 −αn−1


 , (4.1)

we have to define x2 as (A − byT )x1. Thus x2 = Ab − bγ1 when we denote (yT b)
with γ1. Similarly, x3 = (A− byT )2x1 = A2b−Abγ − bγ2 with γ2 := yT x2 and we
can in this manner continue until we have

xn = (A− byT )n−1b = An−1b−An−2bγ1 − . . .−Abγn−2 − bγn−1, γi = yT xi.

Note that for all y ∈ Rn the space Kn(A − byT , b) has dimension n because by as-
sumption Kn(A, b) has. Thus the vectors x1, . . . , xn span Rn and X is a nonsingular
matrix and (4.1) holds except for the last column. The last column of the right side
is given by

α0x1 − α1x2 − . . .− αn−1xn =

−α0b− α1 (Ab− bγ1)− αn−1

(
An−1b−An−2bγ1 − . . .−Abγn−2 − bγn−1

)
.

On the left side we have

(A− byT )xn = Anb−An−1x1γ1 . . .−A2bγn−2 −Abγn−1 − bγn) =

n−1∑

i=0

(βi − γn−i)Aib,

when we write Anb in the basis {b, . . . ,An−1b} as
∑n−1

i=0 βiAib. Hence equality of
the two sides follows if we can find values γ1, . . . , γn with




1 αn−1 . . . α1

0 1
. . .
. . . αn−1

0 . . . 1







γn
...

γ2

γ1


 =




α0 + β0
...

αn−2 + βn−2

αn−1 + βn−1


 .
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Trivially, this system has exactly one solution and the obtained values γ1, . . . , γn

yield a matrix X that satisfies (4.1). Due to the non-singularity of X, we can put

y := X−T




γ1
...

γn−1

γn


 .

2

Clearly, application of this result to the system matrix A of (1.1) is not fea-
sible for large n. But we can ,,project” our matrix to its restriction on a Krylov
subspace of small dimension and consider the Hessenberg matrix that resulted from
the Arnoldi (or Householder) process. Fortunately, this Hessenberg matrix is a rank-
one updated matrix too when the process has zero initial guess. By Proposition 2.2.1,
the Hessenberg matrix of the auxiliary system equals

Ĥk = Hk − e1z
T , z = ‖b‖VT

k y, (4.2)

where the columns of Vk are the generated Arnoldi vectors. We know from the pre-
ceding theorem that any spectrum can be forced by the choice of z when Kk(Hk, e1)
has full dimension. Methods that try to improve the spectrum during GMRES com-
putations (Erhel [7], Calvetti [3]), have shown that the eigenvalues of the Hessenberg
matrix Hk from the related Arnoldi process can provide useable approximations to
the eigenvalues of A. Moreover, elimination of the smallest eigenvalues of Hk can
successfully remove the smallest eigenvalues of A. Thus it is worth to investigating
options to modify certain convergence hampering eigenvalues of Hk by exploiting
Ĥk. In principle one can even replace the total spectrum of Hk, but we restrict
ourselves to elimination of the smallest eigenvalue or when this value is complex,
the smallest complex eigenvalue pair.

4.1.2 Initial cycle deflation

Let the eigenvalue-eigenvector pairs of Hk be given by

(θj , cj), 1 ≤ j ≤ k, (4.3)

and be ordered such that

|θj | ≥ |θj+1|, 1 ≤ j ≤ k − 1.

Then the Ritz vectors Vkcj , 1 ≤ j ≤ k, approximate the eigenvectors of A. This
can be seen from the Arnoldi decomposition

AVk = VkHk + ṽk+1e
T
k ,

where ṽk+1 is the unscaled (k + 1)st Arnoldi vector. Hence

AVkcj = (VkHk + ṽk+1e
T
k )cj = θjVkcj + ṽk+1e

T
k cj (4.4)

and the quality of the Ritz vector depends upon ‖ṽk+1‖|eT
k cj |. Even so does the

quality of the Ritz value θj as eigenvalue for A depend on this value.
If we assume θk is real, we can easily force all eigenvalues of Ĥk but the

smallest one, θk, to be equal to the those of Hk by imposing the conditions

yTVkcj = 0, 1 ≤ j ≤ k − 1.
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The spectrum (θ̂1, . . . , θ̂k) of Ĥk satisfies the trace equation

k∑

j=1

θ̂j =
k∑

j=1

ĥj,j ,

and because all eigenvalues are fixed except for the last one, this last one follows
from the only diagonal element that is dependent from y, the value ĥ1,1, and can
be chosen arbitrarily. To force a prescribed Ritz value θ̂k, ĥ1,1 must satisfy the
condition

ĥ1,1 = h1,1 − ‖b‖yT v1 =
k−1∑

j=1

θj + θ̂k −
k∑

j=2

hj,j ,

which is achieved by appropriate choice of yT v1. Not only are the ,,good” eigenvalues
of Hk preserved in Ĥk, they also remain practically unchanged with respect to
A− byT : The approximate eigenvector of A, the Ritz vector corresponding to θj , is
Vkcj . For j ≤ k − 1 this is a Ritz vector of A− byT too, because

(A− byT )Vkcj ≈ θjVkcj − b(yTVkcj) = θjVkcj .

In case θk is complex the situation is a little more complicated. We can only
modify the real part of θk by the procedure that we just described. For full prescrip-
tion of the value of θ̂k we need Corollary 4.1.2 and we change θ̄k simultaneously.
The corollary is nothing else but a specialization of Theorem 4.1.1 for Hessenberg
matrices.

Corollary 4.1.2 Let H ∈ Rk×k be a nonsingular Hessenberg matrix with nonzero
subdiagonal elements and {θ1, . . . , θk} be a set of complex values. Then a vector
z ∈ Rk exists such that the rank-one updated Hessenberg matrix H − e1z

T has
eigenvalues θ1, . . . , θk.

P r o o f : Let us denote the matrix H − e1z
T by Ĥ and the elements that differ

from those of H by ĥ1,j . If

k∏

i=1

(λ− θi) = λk + αk−1λ
k−1 + . . . + α1λ + α0,

for scalars αi ∈ R, then the corollary is proved when we show that Ĥ is similar to




0 . . . 0 −α0

1 0 . . . −α1
...

. . .
...

0 . . . 1 −αk−1




for some z ∈ Rk. We will construct a similarity transformation represented by the
matrix X = (x1, . . . , xk). Let the first column x1 of X be the first unit vector e1.
Because X must satisfy

HX = X




0 . . . 0 −α0

1 0 . . . −α1
...

. . .
...

0 . . . 1 −αk−1


 , (4.5)
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we have to define x2 as Hx1. Thus

x2 =




ĥ1,1

h2,1

0
...




and similarly

x3 = Hx2 =




ĥ2
1,1 + ĥ1,2h2,1

h2,1ĥ1,1 + h2,2h2,1

h3,2h2,1

0
...




.

We facilitate the expression of xj , j ≥ 4, by introducing the auxiliary values

gj :=
j−2∏

i=1

hi+1,i(
j−1∑

i=2

hi,i), j ≤ k

and

fj :=
j−3∏

i=1

hi+1,i




j−2∑

i=2

h2
i,i +

j−2∑

i,l=2, i<l

hi,ihl,l +
j−2∑

i=2

hi,i+1hi+1,i


 , j ≤ k.

Note none of these values depends upon z ∈ Rk. For j ≥ 4 straightforward compu-
tation shows we can write

xj =




∗
...
∗

(ĥ2
1,1 + ĥ1,2h2,1 + ĥ1,1

∑j−2
i=2 hi,i)

∏j−3
i=1 hi+1,i + fj

ĥ1,1
∏j−2

i=1 hi+1,i + gj∏j−1
i=1 hi+1,i

0
...




,

where ∗ represents elements whose values do not matter. Having constructed x1

until xk, the matrix X is nonsingular due to the non-vanishing lower subdiagonal
elements and equation (4.5) is satisfied except for the last column. By choice of
z ∈ Rk we can force the last columns to coincide too: The element on the right-
hand side of (4.5) on position (k, k) is independent from z ∈ Rk, but its left side
parallel equals

eT
k Ĥxk = hk,k−1(ĥ1,1

k−2∏

i=1

hi+1,i + gk) + hk,k

k−1∏

i=1

hi+1,i (4.6)

and can be modified by the choice of ĥ1,1 = h1,1 − z1 because the scalar before
ĥ1,1 does not vanish. With the choice that gives the element on position (k, k) the
wanted value, the element on position (k − 1, k) depends only on ĥ1,2 = h1,2 − z2

and equals

eT
k−1Ĥxk = hk−1,k−2

(
(ĥ2

1,1 + ĥ1,2h2,1 + ĥ1,1

k−2∑

i=2

hi,i)
k−3∏

i=1

hi+1,i + fk

)
+



98 CHAPTER 4. SPECTRAL PROPERTIES OF THE UPDATED MATRIX

hk−1,k−1(ĥ1,1

k−2∏

i=1

hi+1,i + gk) + hk−1,k

k−1∏

i=1

hi+1,i. (4.7)

Again this value can be made to coincide with the corresponding element on the left
side of (4.5) and one can continue until modifying the first row element. It is readily
seen that the element on position (k − i + 1, k) depends on ĥ1,1, . . . , ĥ1,i and that
the dependency on ĥ1,i is linear with a non-vanishing scalar before the element due
to the nonzero subdiagonal elements of Ĥ. 2

The proof of the corollary has been formulated in such a way that we can easily
derive from it an implementation that modifies the two smallest eigenvalues of the
Hessenberg matrix Hk from (4.2). If we prescribe a complex eigenvalue pair θk, θ̄k

by their real and complex part and leave the remaining eigenvalues unchanged, the
characteristic polynomial of Ĥk is

(λ2 − 2Re(θ̂k)λ + Re(θ̂k)2 + Im(θ̂k)2)(λk−2 + αk−3λ
k−3 + . . . + α0)

for some coefficients αi ∈ R. As a consequence, the scalar before λk−1 is given by
αk−3 − 2Re(θ̂k) = −∑k−2

i=1 θi − 2Re(θ̂k), as straightforward computation of αk−3

shows. Similarly, we have

αk−4 :=
k−2∑

i,l=1, i<l

θiθl.

The scalar before λk−2 then equals

Re(θ̂k)2 + Im(θ̂k)2 + 2Re(θ̂k)
k−2∑

i=1

θi + αk−4.

We now obtain the value of ĥ1,1 by forcing (4.6) to equal

(
−2Re(θ̂k)−

k−2∑

i=1

θi

)
k−1∏

i=1

hi+1,i.

It is not difficult to see that we achieve this by assigning yT v1 the value

yT v1 =
∑k

i=1 hi,i − 2Re(θ̂k)−
∑k−2

i=1 θi

β
=

2(Re(θk)− Re(θ̂k))
β

,

which is not surprising when we compare with the case θk ∈ R. With this value we
can compute (4.7) and similarly obtain ĥ1,2 by forcing (4.7) to equal

(
Re(θ̂k)2 + Im(θ̂k)2 + 2Re(θ̂k)

k−2∑

i=1

θi + αk−4

)
k−2∏

i=1

hi+1,i+

(
−2Re(θ̂k)−

k−2∑

i=1

θi

)(
ĥ1,1

k−2∏

i=1

hi+1,i + gk

)
.

This yields

yT v2 =
1

h2,1β


αk−4 − (ĥ1,1 + 1)

k∑

j=2

hj,j −
k−1∑

i,l=2, i<l

hi,ihl,l +
k−1∑

i=1

hi,i+1hi+1,i


 .
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Eigenvalue of H10 of Ĥ10 of Ĥ10∗
θ1 98.772599 300 212 + 212i

θ2 89.609416 300 212 – 212i

θ3 71.44979 98.772599 98.772599

θ4 50.023387 89.609416 89.609416

θ5 34.983112 71.44979 71.44979

θ6 23.434997 50.023387 50.023387

θ7 12.759248 34.983112 34.983112

θ8 8.471585 23.434997 23.434997

θ9 1.656424 + 0.819941i 12.759248 12.759248

θ10 1.656424 – 0.819941i 8.471585 8.471585

Table 4.1: Smallest Ritz values of a non-normal test matrix before and after rank-one
update with DEFSHERMOR

With these values of yT v1 and yT v2 we have two conditions for y. The others are

yTVkcj = 0, 1 ≤ j ≤ k − 2.

A concrete y is best found by first searching for a vector z ∈ Rk with



eT
1

eT
2

cT
1
...

cT
k−2




z =




yT v1

yT v2

0
...
0




.

and then putting y := Vkz. Thus computations are kept as much as possible in
the k-dimensional subspace. We have worked out one example where the smallest
complex eigenvalue pair is modified.

Example 1. Non-normal test matrix.

This matrix A is the same we used in Example 1 of Chapter 3. It satisfies

‖AAT −ATA‖F

‖A‖F
= 102080.49.

Our right-hand side is b = (1, . . . , 1) and x0 = 0. Though there is no extremely small
eigenvalue, the broad spectrum {1, . . . , 100} and the high non-normality may cause
stagnation of GMRES(10). Deflation according to Erhel [7] needs many eigenvalue
modifications to overcome stagnation: Convergence starts to be apparent when we
use all 10 Ritz-vectors in the first cycle, 9 other ones in the second and 4 during
the third cycle, see the curve ERHEL(10,10,9,4). Deflation with less eigenvalue
modifications were not able to overcome stagnation.

On the other hand, deflation after only the initial cycle according to Algorithm
5.2.4 can give faster convergence than the repeated deflation in ERHEL(10,10,9,4).
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Nonnormal 100 x 100 matrix

-14

-12

-10

-8

-6

-4

-2

0

2
1 6 11 16 21

restart number

log(||r||/||r0||)  

GMRES(10)

ERHEL(10,10,9,4)

DEFSHERMOR(10)

DEFSHERMOR(10)*

Figure 4.1: ERHEL, GMRES(10) and DEFSHERMOR

After the first cycle of 10 GMRES iterations, the Ritz values can be taken from
the second column of Table 4.1. All Ritz values are real but for the complex pair
1.6564±0.8199i. This pair badly approximates the eigenvalues 1 and 2, which causes
probably the technique of Erhel not to be too effective in this case. By moving the
pair to the other end of the spectrum of the Hessenberg matrix, we hope to increase
the norms of the corresponding eigenvalues of A−byT too. In addition, we can force
the spectrum of the Hessenberg matrix to be completely real.

The best convergence is obtained when we move the small pair to be about
three times as large as the Ritz value θ1. When we choose it to equal 300, the
convergence curve for the initial system after back-transformation is DEFSHER-
MOR(10) and can be seen below in Figure 4.1. The Ritz values for the auxiliary
system after 10 iterations are displayed in the third column of Table 4.1. The 2
large Ritz va-lues approximate the largest eigenvalues of A − byT very accurately,
the remaining Ritz values are not such good approximations. The smallest eigen-
value of Â has become 1.698716. Alternatively, we moved the smallest Ritz value
pair to a pair with approximately norm 300 too, but now it is the complex pair
−212± 212i. The corresponding curve is denoted by DEFSHERMOR(10)* and the
first cycle Ritz values of the auxiliary system form the last column of Table 4.1.
Again, the 2 large Ritz values approximate the largest eigenvalues of A− byT very
accurately and the remaining Ritz values are not such good approximations. But
the smallest eigenvalue of Â is 2.833255, that is larger than in the preceding case.
This probably causes this example to converge even faster.
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In the sample example at the end of Chapter 5 we have applied Algorithm 5.2.4 to
a Hessenberg matrix that has a completely real spectrum.

4.2 The spectrum of a given updated matrix

In this section we invert the problem of the preceding section and try to find useful
relations between the spectrum of A and the spectrum of Â = A− byT for a given
parameter vector y ∈ Rn. Under such assumptions as diagonalizability of A at least
theoretical information can be gained in a relatively simple manner. In Huhtanen,
Nevanlinna [35] one finds spectral properties of Â that are related with the ones of
A for the case where Â is normal and is a small rank perturbation of A but not
necessarily a rank-one update.

For updated diagonal matrices spectral investigation is trivial and in addition
useful for generalization to the case of diagonalizable matrices.

Lemma 4.2.1 Let D =diag(d1, . . . , dn) be a nonsingular diagonal matrix. The
value dj is an eigenvalue of (D− byT ) if and only if eT

j y = 0 or eT
j b = 0 or dj = di

for some i 6= j.

P r o o f : First, let eT
j y = 0. Clearly, ej is eigenvector of D corresponding to the

eigenvalue λj . Thus

0 = (D− djI)ej = (D− djI)ej − b(yT ej),

hence
(D− byT )ej = djej .

Next, let eT
j b equal zero. Then

0 = (D− djI)ej = (D− djI)ej − y(bT ej)

and therefore dj is eigenvalue from D−ybT . The spectrum from D−ybT equals the
spectrum of its transposed matrix D− byT .
Finally, let dj = di, j 6= i. If eT

j b = 0 the result follows from the foregoing, otherwise
we can execute a Givens rotation GT that works on the ith and jth rows and zeroes
out eT

j b. Due to di = dj we have

GTDG =




I
c s

I
−s c

I







. . .
di

. . .
dj

. . .







I
c −s

I
s c

I




=




. . .
c2di + s2dj −scdi + scdj

. . .
−csdi + csdj s2di + c2dj

. . .




= D,
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where c, s denote the Givens parameters that zero out eT
j b. Hence

GT (D− byT )G = D−GT byTG

and eT
j (GT b) = 0. By the previous case, dj is an eigenvalue of D −GT byTG and

therefore also of D− byT .
To prove the other direction, let us assume none of the previous cases occur and
dj ∈ σ(D− byT ). Then for some v ∈ Rn

(D− byT )v = djv.

Thus
0 = eT

j ((D− djI)v − b(yT v)) = −(yT v)eT
j b.

Hence yT v must be zero and Dv = djv. By assumption dj is a single eigenvalue
of D and ej is the corresponding unit eigenvector. Therefore v ∈ span{ej} and
0 = yT v = αeT

j y for some α 6= 0, a contradiction. 2

Theorem 4.2.2 Let D =diag(d1, . . . , dn) be a nonsingular diagonal matrix with
d1 > . . . > dn and let b and y have no zero elements. Then the roots of the rational
function

f(λ) = 1− yT (D− λI)−1b

are the eigenvalues of D− byT .

P r o o f : Let λ be an eigenvalue of D− byT with eigenvector v ∈ Rn. Then

(D− λI)v − b(yT v) = 0.

By Lemma 4.2.1, det(D− λI) 6= 0. Multiplication with yT (D− λI)−1 yields

yT v(1− yT (D− λI)−1b) = 0.

If yT v = 0 then λ is also eigenvalue of D, which contradicts Lemma 4.2.1. Thus we
obtain

1− yT (D− λI)−1b = 0

whenever λ ∈ σ(D− byT ). On the other hand,

f(λ) := 1− yT (D− λI)−1b =

∏n
i=1(di − λ)− y1b1

∏n
i 6=1(di − λ)− y2b2

∏n
i6=2(di − λ)− . . .− ynbn

∏n−1
i=1 (di − λ)∏n

i=1(di − λ)
(4.8)

has exactly n (complex) roots. 2

The result from this theorem can also be obtained by straightforward computation
of the characteristic polynomial, which is relatively simple because D is diagonal.
Clearly, the characteristic polynomial of D− byT is given by

n∏

i=1

(di − λ)− y1b1

n∏

i=2

(di − λ)− y2b2

n∏

i=1, i 6=2

(di − λ)− . . .− ynbn

n−1∏

i=1

(di − λ) (4.9)

As a corollary from Theorem 4.2.2 we obtain
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Corollary 4.2.3 Let A be diagonalizable with A = SDS−1 where D is diagonal
with distinct eigenvalues. If S−1b and ST y have no zero elements, the eigenvalues
of A− byT are the roots of the function

1− yT (A− λI)−1b.

P r o o f : The spectrum of A− byT equals the spectrum of

S−1(A− byT )S = D− S−1byTS.

By Theorem 4.2.2 the eigenvalues of D− S−1byTS are given by the roots of

1− yTS(D− λI)−1S−1b = 1− yT (S(D− λI)S−1)−1b = 1− yT (A− λI)−1b. 2

This result may be useful for the theoretical investigation of A− byT when spectral
information of A is available and the parameter vector y is given.

4.2.1 Deflation with nearly normal matrices

In practice direct modification of the eigenvalues of A with the preceding corollary
is impossible as long as we do not have the eigenvalue basis given by the columns
of S. Computation of this basis, as a well-known matter of fact, is not feasible for
large n and in addition the basis can be very badly conditioned. Thus we cannot
predict what elements of ST y and S−1b are susceptible to be zero.

But if A is normal, a unitary eigenvalue basis, expressed by the columns of S,
exists and the eigenvalue basis is more simple to handle than in general. For this
case we can derive the following procedure.

After the k-th iteration of a GMRES process applied to a matrix A with
AS = SD where D is diagonal and S is unitary, let the eigenvalue eigenvector pairs
of the Hessenberg matrix Hk from the Arnoldi process be given by (4.3). Let us
assume that in equation (4.4)

‖ṽk+1‖|eT
k ck| ≤ ‖Hk‖ε (4.10)

is satisfied for some small ε > 0 and that the eigenvector ck of Hk is real. Then we
can consider the pair (θk,Vkck) a good approximation to an eigenvalue eigenvector
pair of A and this pair must be real too. We will denote it by (dk, sk). If we choose
y to be a multiple of the normed Ritz vector corresponding to θk, i.e.

y := ρVkck/‖Vkck‖ =
ρ

‖ck‖Vkck

for some ρ ∈ R, then y ≈ ρsk and SHy ≈ ρek. Thus

σ(A− byT ) = σ(D− S−1byTS) ≈ σ(D− ρSHbeT
k )

and the last spectrum is, with (4.9), given by the roots of

(dk − λ− ρ(SHb)k)
n∏

i=1, i 6=k

(di − λ). (4.11)

As well as for SHy, we have a good approximation of eT
k SHb to our disposal, namely

eT
k SHb = sT

k b ≈ cT
k VT

k b/‖ck‖. As long as this value is not 0, we can modify the one
eigenvalue dk of A, which is approximated by θk, by choice of ρ. Note that with a
zero initial guess we have cT

k VT
k b/‖ck‖ = βeT

1 ck/‖ck‖.
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When ck is complex, however, then ck and c̄k approximate a pair of complex
conjugated eigenvectors of A. Let (4.10) hold and let the approximated eigenvalue
eigenvector pairs be denoted by (dk, sk) and (d̄k, s̄k). When we define

y := ρVkck/‖ck‖+ δVk c̄k/‖ck‖, ρ, δ ∈ C

we obtain SHy ≈ (0, . . . , 0, δ, ρ, 0, . . . , 0)T . But if we want to keep A−byT real, then
so must be y, thus we have to choose δ = ρ ∈ R and hence SHy ≈ (0, . . . , 0, ρ, ρ, 0, . . . , 0)T .
The characteristic polynomial of A− byT is with this choice approximated by

(
(dk − λ)(d̄k − λ)− ρeT

k−1S
Hb(d̄k − λ)− ρeT

k SHb(dk − λ)
) n∏

i=1, i 6=k−1,k

(di − λ).

We can estimate the influence of the choice of ρ on the eigenvalues dk and d̄k

as follows: Instead of the values eT
k−1S

Hb and eT
k SHb we will use

eT
k−1S

Hb = sH
k b = s̄T

k b ≈ bTVk c̄k/‖ck‖, eT
k SHb = s̄H

k b = sk
T b ≈ bTVkck/‖ck‖.

Let us denote real and imaginary part of θk by θkR ∈ R respectively θkI ∈ R and
real and imaginary part of bTVkck/‖ck‖ by bR ∈ R respectively bI ∈ R. Then the
part of the characteristic polynomial we modify is close to the polynomial

(θk − λ)(θ̄k − λ)− ρ(bR − bIi)(θ̄k − λ)− ρ(bR + bIi)(θk − λ) =

λ2 + (2bRρ− 2θkR)λ + θ2
kR + θ2

kI − 2ρ(bRθkR + bIθkI).

The roots of this polynomial stay far from zero if the determinant of this expression
is far from (2bRρ − 2θkR)/2, that is if θ2

kR + θ2
kI − 2ρ(bRθkR + bIθkI) is far from

(2bRρ− 2θkR)2/4. We have

θ2
kR + θ2

kI − 2ρ(bRθkR + bIθkI) =
(bR(2ρ)− 2θkR)2

4
⇔

−4θ2
kI + 8ρbIθkI + (2ρ)2(bR)2 = 0.

Large enough ρ will keep the modified eigenvalues far from zero, but a too large
choice is suspicious to make A− byT singular. Alternatively, one can use the value
between the roots for which the eigenvalues vanish (as long as it is not a double
root), that is

ρ :=
−θkIbI

b2
R

.

With the last considerations it is of course possible to estimate all the values that we
can move the complex pair to and to approximate a specific value. But the quality
of these estimations depends on the quality of the Ritz values expressed by (4.10).

This deflation process can be repeated after the first cycle, yielding a matrix

A− b(y1 + y2 + . . . + yl)T

which, in the ideal case of accurate Ritz vectors, modifies the l smallest eigenvalues
of A. One complication with repeated inflation is that this auxiliary matrix does
not have to be normal anymore. The further it is from normality, the less will the
above described strategy work. Another complication is that with approximations
at the beginning of restarts not being zero anymore, we must guarantee that

‖b− (A− b(y1 + y2 + . . . + yl)T )xk‖ = ‖b− (A− b(y1 + y2 + . . . + yl+1)T )xk‖,
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Eigenvalue of A of Â, ρ = 100 of Â, ρ = 10 of Â, ρ = 0.1

θ1 1.7428 197.2352 19.4867 1.7454

θ2 -0.1359 + 9.416i 1.7181 1.7155 -0.1359+ 9.416i

θ3 -0.1359 - 9.416i -0.1359 + 9.4175i -0.1359 + 9.417i -0.1359 - 9.416i

θ4 -0.1359+ 9.258i -0.1359 - 9.4175i -0.1359 - 9.417i -0.1359+ 9.2589i

θ5 -0.1359 - 9.258i -0.1359 + 9.258i -0.1359 + 9.2589i -0.1359 - 9.2589i

θ396 -0.0809 + 0.061i -0.1132 -0.1132 -0.1131

θ397 -0.0809 - 0.061i 0.10956 0.1095 0.1095

θ398 -0.0747+ 0.0303i -0.0809 + 0.061i -0.0809 + 0.061i -0.0809 + 0.061i

θ399 -0.0747 - 0.0303i -0.0809 - 0.061i -0.0809 - 0.061i -0.0809 - 0.061i

θ400 0.0735 0.0735 0.0735 0.0735

Table 4.2: Extreme eigenvalues of PDE matrix before and after rank-one update
with Algorithm 5.2.3

hence yT
l+1xk = 0. This can be achieved by putting for example

yl+1 := ρVkck/‖Vkck‖+ δVkc1/‖Vkc1‖.

Then yT
l+1xk = 0 implies

δ = −ρ
xT

k Vkck

xT
k Vkc1

‖Vkc1‖
‖Vkck‖ , if xT

k Vkc1 6= 0.

We have chosen here to modify also the largest eigenvalue because linear combination
of the two might yield new eigenvectors between the extreme ones. We assumed both
first and largest Ritz vector are real. Generalization for the complex case along the
same lines as we have just done for zero initial guesses is straightforward.

In the algorithm we constructed from this technique (Algorithm 5.2.3) we
restricted ourselves to deflation during the initial cycle. We demonstrate its effec-
tiveness with one example for a real smallest Ritz value and one example with a
smallest complex pair of Ritz values.

Example 2. Deflation of the PDE stiffness matrix of dimension 400.

This is the same matrix as the one considered in Chapter 2, it results from discretiza-
tion of (2.20) on a 20 × 20 grid, has 1920 nonzero elements and b = (0.5, . . . , 0.5)T

so that with x0 = 0 we have ‖r0‖ = 10. It is close to normal with

‖AAT −ATA‖F

‖A‖F
≈ 0.15726.

and has relatively small eigenvalues, the largest one has norm 1.74288, the remai-
ning ones lie evenly distributed in the interval [0.1, 1], except for the last three ones:
One complex pair ≈ −0.074724 ± 0.0303087i and the real eigenvalue ≈ 0.073544,
see Table 4.2 . GMRES(25) stagnates. The smallest Ritz values after 25 iterations
are a complex pair: −0.078117± 0.043132i, fairly good approximations of the small
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PDE stiffness matrix 400 x 400
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Figure 4.2: ERHEL, GMRES(25) and DEFSHERMORN

eigenvalue pair. With the DEFSHERMORN technique we can move these eigenva-
lues to different places in the spectrum. For the extreme large choice ρ = 100 (the
Frobenius norm of A is about 9.9), we leave unchanged the single small eigenvalue
≈ 0.073544, but the second and third smallest eigenvalues are the fourth and fifth
smallest of the original matrix, thus we have moved exactly the smallest complex
pair. One eigenvalue of this pair has assumed the extreme large value 197.235,
the second one is part of the rest of the spectrum lying in the interval [0.1, 1].
This is also seen in the third column of Table 4.2. For the more moderate choice
ρ = 10, similar behaviour can be observed in the fourth column of Table 4.2. With
ρ = 0.1 convergence is fastest, the larger values caused the denominator 1 + yT x̂25

of (2.19) at the end of restart cycles to be small and reduced the quality of the
back-transformation. The curve DEFSHERMORN(25,1) in Figure 4.2 belongs to
the choice ρ = 0.1.

Compared with another deflation technique, right preconditioning proposed
in Erhel [7] (see also Chapter 1, Section 1.4 and Example 2 in Chapter 3), we
notice that it behaves similarly. When executing 2 modifications, ERHEL(25,2)
stagnates, whereas we needed only 2 modifications for the DEFSHERMORN curve.
But ERHEL(25,3) is faster than DEFSHERMORN.

Example 3. Deflation of a bidiagonal matrix.

In this example the smallest Ritz values are not very good approximations to the
smallest eigenvalues, but still deflation with Algorithm 5.2.3 works very well. It is
an academic example that was constructed to test deflation techniques (i.g. Morgan
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uses it in [50]). The system matrix is nearly normal with

‖AAT −ATA‖F

‖A‖F
≈ 0.006.

It has diagonal entries 0.006, 0.008, 3, 4, . . ., 100 and the upperdiagonal elements
all equal 0.1. With b = (1, . . . , 1)T , the two very small eigenvalues 0.006 and 0.008
prevent GMRES(20) from converging. In case of applying Erhels deflative precon-
ditioning, the first GMRES(20) cycle seems not to give satisfactory Ritz values to
approximate the two smallest eigenvalues. At least ERHEL(20,2) is not able to
modify them in order to overcome stagnation. Neither does successive eigenvalue
modification help (ERHEL(20,1,1)). Attempts to remove three eigenvalues are ne-
cessary (see the curve ERHEL(20,2,1) in Figure 4.3), and still the order of removing
is crucial (ERHEL(20,1,2) does not converge). When using Algorithm 5.2.3 with
one eigenvalue modification, DEFSHERMORN(20,1), this is enough to overcome
stagnation. The smallest Ritz value after 20 steps, 0.057647, is not a good ap-
proximation to the eigenvalue 0.008 at all, but still we can try to enlarge it. With
eT
99S

Hb ≈ −1.412554 in (4.11), we have chosen ρ = 2 with the objective to cre-
ate a second smallest eigenvalue ≈ 3, that is equally large as the third smallest
eigenvalue. The result is curve DEFSHERMORN(20,1) in Figure (4.3). The one
deflative step modified the 2 smallest eigenvalues to equal -0.039778 and 2.56045.
The wanted eigenvalue 3 could not exactly be forced because of the poor quality of
the initial Ritz values. On the other hand, the new smallest eigenvalue is quite well
approximated by the new smallest Ritz value (-0.034988) and above all, the smallest
eigenvalue has been considerably enlarged. The auxiliary matrix satisfies

‖ÂÂ
T − Â

T
Â‖F

‖Â‖F

≈ 2.599856,

thus further deflation with the technique proposed above is susceptible to become
less effective.

4.3 Open questions

Clearly, the two deflation techniques of this chapter have to be extended to appli-
cation during an arbitrary number of restart cycles in order to become competitive
with other techniques. We managed to prescribe initial Ritz values due to the sim-
ple form of the updated Hessenberg matrix. When the process is repeated auxiliary
Hessenberg matrices are not anymore rank-one updates of the original Hessenberg
matrices. But if arbitrary spectra can be achieved with rank-one update we expect
it can be achieved with updates of a larger rank too. The concrete choice of the
spectrum of the Hessenberg matrix of the initial cycle, which we can completely pre-
scribe, is a question comparable with the choice of prescribed residual norms in the
SHERMOR technique from Chapter 2. In fact, we have too many free parameters
and do not know how to exploit them best.

As for the second technique, which is restricted to nearly normal matrices,
generalization for repeated restart cycles does not seem to be complicated. But it
will be a serious problem to keep the auxiliary matrix close to normal as the process
proceeds.

Nevertheless, if one or both methods could be formulated for nonzero initial
guesses in an attractive way, we would have to our disposal a deflation technique
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that enables inexpensive and precise eigenvalue modification. Of course, its effec-
tiveness would depend on the quality of the Ritz values, but this is a problem all
deflation methods deal with. On the other hand, our computations are kept as
much as possible in the projected subspace of a small dimension say m, m << n,
and multiplications of order n are restricted to one matrix vector product of dimen-
sion n×m per restart. This might be less expensive than the orthogonalization of
n-dimensional vectors that other methods require.



Chapter 5

Algorithms and sample
experiment

It is possible to see this chapter as an appendix of the previous ones. The first
part presents the algorithms we referred to in the first chapter while describing full
projection methods. In principle, they concern only the basis generating algorithm
for the test and projection spaces of the corresponding methods. But in some cases
these basis vectors turn out to be at the same time residuals. In addition, we prove
some lemma’s that are immediately connected with the algorithms and needed to
complete the theory of the first chapter. For all lemma’s we assume the involved
Krylov subspaces have full dimension. In the second part we formulate implemen-
tations of several applications of the Sherman-Morrison formula from chapters two,
three and four. They all consist of modifications of the GMRES method and we
discuss the computational costs they add to this method. Finally, we apply the new
algorithms to a unit problem from practice.

5.1 Basis generating algorithms

Algorithm 5.1.1 Modified Gram-Schmidt Orthogonalization

Initialization: Choose a vector v1 with ‖v1‖ = 1.

Calculus:
vskip1pt do j = 1, m

ṽj+1 = Avj

do l = 1, j

hl,j = vT
l ṽj+1

ṽj+1 = ṽj+1 − hl,jvl

enddo

γj+1 = ‖ṽj+1‖
if γj+1 = 0 stop

hj+1,j = γj+1

vj+1 = ṽj+1/γj+1

enddo

109
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Algorithm 5.1.2 Householder reflection

Initialization: Choose a vector v; z1 = v.

Calculus:

do j = 1, m + 1

Compute the Householder unit vector wj satisfying:

1) eT
i wj = 0, i = 1, . . . , j − 1 and

2) eT
i (Pjzj) = 0, i = j + 1, . . . , n, where Pj = In − 2wjw

T
j

hj−1 = Pjzj

vj = P1P2 . . .Pjej

if ‖vj‖ = 0 stop

if j ≤ m then compute zj+1 = PjPj−1 . . .P1Avj

enddo

Lemma 5.1.3 If vj 6= 0 for j ≤ m, then Algorithm 5.1.2 generates an orthonormal
sequence {v1, . . . , vm+1} that spans Km+1(A, v) with Arnoldi decomposition (1.12)
where Cm = Vm.

P r o o f : If we put
Πj = PjPj−1 . . .P1,

the algorithm implies the relation

hj = Pj+1zj+1 = Pj+1ΠjAvj = Πj+1Avj .

Hence

Avj = ΠT
j+1

j+1∑

i=1

hijei =
j+1∑

i=1

hijΠT
j+1ei

because Πj+1 is orthogonal as a product of Householder reflections. Since Pkei = ei

for i < k, we have

ΠT
j+1ei = P1 . . .Pj+1ei = vi, i ≤ j + 1.

This yields Avj =
∑j+1

i=1 hijvi, for j = 1, . . . , m, which can be written as (1.12)
when H̃m ∈ R(m+1)×m consists of the (m+1) upper rows of the matrix (h1, . . . , hm)
and with Vm := (v1, . . . , vm). From this decomposition it can easily be seen that
the columns of Vm+1 span Km+1(A, v). These columns have unit norm because
‖vj‖ = ‖P1P2 . . .Pjej‖ = ‖ej‖ = 1 and orthogonality follows from

vT
i vj = (P1P2 . . .Piei)TP1P2 . . .Pjej = eT

i Pi+1 . . .Pjej = eT
i ej = 0, i < j,

because eT
i Pl = eT

i for l > i. 2
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Algorithm 5.1.4 Lanczos process for symmetric matrices

Initialization: Choose a vector v1 with ‖v1‖ = 1; γ1 = 0; v0 = 0.

Calculus:

do j = 1, m

ṽj+1 = Avj − γjvj−1

αj = ṽT
j+1vj

ṽj+1 = ṽj+1 − αjvj

γj+1 = ‖ṽj+1‖
if γj+1 = 0 stop

vj+1 = ṽj+1/γj+1

enddo

Lemma 5.1.5 If γj+1 6= 0 for all j ≤ m and AT = A then Algorithm 5.1.4 gene-
rates an orthornormal basis {v1, . . . , vm+1} of Km+1(A, v1) with Arnoldi decomposi-
tion (1.12) where Cm = Vm and where the Hessenberg matrix is tridiagonal.

P r o o f : The algorithm computes unit vectors vj+1 with

γj+1vj+1 = Avj − γjvj−1 − vT
j (Avj − γjvj−1)vj .

For j = 1 we have

vT
1 γ2v2 = vT

1 (Av1 − (vT
1 Av1)v1) = 0 = vT

0 v2.

Assuming vT
i vl = δil for i, l ≤ j, where j is some integer smaller than m, we obtain

vT
j γj+1vj+1 = vT

j (Avj − γjvj−1 − (vT
j Avj)vj) = 0,

vT
j−1γj+1vj+1 = vT

j−1(Avj − γjvj−1 − (vT
j Avj)vj) = vT

j Avj−1 − γj

= vT
j (γjvj + γj−1vj−2 + (vT

j−1Avj−1)vj−1)− γj = 0,

and

vT
i γj+1vj+1 = vT

i (Avj − γjvj−1 − (vT
j Avj)vj) = vT

j Avi = 0, i ≤ j − 2

because Avi ∈span{v0, . . . , vj−1}. Thus the algorithm yields a decomposition

A(v1, . . . , vm) = (v1, . . . , vm+1)T̃m,

where T̃m ∈ R(m+1)×m is triangular with diagonal elements vT
i Avi and two identical

subdiagonals with elements γ2, . . . , γm+1. This decomposition implies span{v1, . . . , vm+1} =
Km+1(A, v1). 2
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Algorithm 5.1.6 Bi-orthogonal Lanczos process for nonsymmetric ma-
trices

Initialization: Choose vectors v1 and w1 with vT
1 w1 = 1; β1 = δ1 = 0; w0 = v0 = 0.

Calculus:

do j = 1, m

αj = wT
j Avj

ṽj+1 = Avj − αjvj − βjvj−1

w̃j+1 = AT wj − αjwj − δjwj−1

δj+1 =
√
|ṽT

j+1w̃j+1|
if δj+1 = 0 stop

βj+1 = ṽT
j+1w̃j+1/δj+1

vj+1 = ṽj+1/δj+1

wj+1 = w̃j+1/βj+1

enddo

Lemma 5.1.7 If ṽT
j+1w̃j+1 6= 0 for j ≤ m then the columns of Vm+1 := (v1, . . . , vm+1)

span Km+1(A, v1), the columns of Wm+1 := (w1, . . . , wm+1) span Km+1(AT , w1)
and

WT
m+1Vm+1 = Im+1.

Moreover, both AVm and ATWm can be decomposed according to (1.12) where
Cm = Vm, respectively Cm = Wm and where the Hessenberg matrices are tridia-
gonal.

P r o o f : The algorithm yields decompositions

AVm = Vm+1

(
Tm

0 . . . δm+1

)

and

ATWm = Wm+1

(
TT

m

0 . . . βm+1

)
,

where

Tm =




α1 β2

δ2 α2 β3
. . . . . . . . .

δm−1 αm−1 βm

δm αm




.

From them it is clear that span{v1, . . . , vm+1} = Km+1(A, v1) and span{w1, . . . , wm+1} =
Km+1(AT , w1). Concerning bi-orthogonality we will proceed by induction:
Assuming that vT

l wi = δli, 1 ≤ l, i ≤ j, where δli denotes the Kronecker symbol (not
to be confounded with the elements δi from the algorithm), we have

vT
j+1wj = δ−1

j+1

(
wT

j Avj − αjw
T
j vj − βjw

T
j vj−1

)
= δ−1

j+1

(
wT

j Avj − (wT
j Avj)wT

j vj

)
= 0.

Furthermore,

vT
j+1wi = δ−1

j+1((Avj)T wi − αjv
T
j wi − βjv

T
j−1wi) =

δ−1
j+1(v

T
j AT wi − βjv

T
j−1wi) = δ−1

j+1(v
T
j (βi+1wi+1 + αiwi + δiwi−1)− βjv

T
j−1wi),
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an expression that vanishes for i ≤ j − 2 by assumption and for i = j − 1 holds

vT
j+1wj−1 = δ−1

j+1(v
T
j (βjwj + αj−1wj−1 + δj−1wj−2)− βjv

T
j−1wj−1)

= δ−1
j+1(βjv

T
j wj − βjv

T
j−1wj−1) = 0.

In a similar way we can prove that wT
j+1vi = 0 for i ≤ j. Finally, vT

j+1wj+1 = 1 by
construction. 2

Lemma 5.1.8 The residuals of the BCG method applied to first and dual system
(see (1.33)), can be defined with short term recurrences as follows:

Algorithm 5.1.9 BCG residuals with two term recurrences

• ξj = rT
j r∗j /pT

j AT p∗j

• rj+1 = rj − ξjApj , r∗j+1 = r∗j − ξjAT p∗j

• φj = rT
j+1r

∗
j+1/rT

j r∗j

• pj+1 = rj+1 + φjpj , p∗j+1 = r∗j+1 + φjp
∗
j

P r o o f : Let us consider the BCG projection method described in chapter 1. If
we generate bases with Algorithm 5.1.6 and apply Proposition 1.2.5, the procedure
would consist of the following steps:

• Execute the jth step of the Bi-orthogonal Lanczos process (Algorithm 5.1.6), yielding
δj+1, βj+1 and the basis vectors vj+1, wj+1. Compute also αj+1 = vT

j+1Awj+1.

• Define recursively the parameters connected with the LDU decomposition of Tj+1

from Lemma 5.1.7 proposed in Proposition 1.2.5:
lj+1 = δj+1/dj , uj,j+1 = βj+1/dj , dj+1 = αj+1−δj+1βj+1/dj and ζj = −δj+1ζj−1/dj+1.

• With the help of the auxiliary sequence {s0, . . . , sj} define the residual vector: sj =
vj+1 − uj,j+1sj−1,
rj+1 = rj − ζjAsj .

In this algorithm the starting vector for the bi-orthogonalization process must be
v1 := r0. Then the sequence of residual vectors is closely connected with the sequence
{v1, . . . , vj+1}. In fact, rj ∈ Kj+1(A, r0) can be written as rj =

∑j+1
i=1 αivi for some

αi ∈ R, and the Galerkin condition of the BCG projector yields αi = 0 for all i but
for i = j + 1. Thus rj = ‖rj‖vj+1 and with pj := ‖rj‖sj , p0 := r0 the last point of
the above recurrence becomes:

• With the help of the auxiliary sequence {p0, . . . , pj} define the residual vector: pj =
rj − uj,j+1

‖rj‖
‖rj−1‖pj−1,

rj+1 = rj − ζj

‖rj‖Apj .

Similarly, two-term recurrences for the projector ℘∗j of the dual system can be defined
with the help of the Bi-orthogonal Lanczos process when we initialize with w1 := r∗0,
the initial residual of the dual system. This projector projects onto ATKj(AT , r∗0),
orthogonal to Kj(A, r0). When we extract from the LDU composition of Tj+1 from
Lemma 5.1.7 an auxiliary sequence {s∗0, . . . , s∗j} by putting S∗j := Wj+1L−T

j , exploit
r∗j = ‖r∗j‖wj+1, and define p∗j := ‖r∗j‖s∗j , p∗0 := r∗0, the algorithm would be

• Execute the jth step of the Bi-orthogonal Lanczos process (Algorithm 5.1.6), yielding
δj+1, βj+1 and the basis vectors vj+1, wj+1. Compute also αj+1 = vT

j+1Awj+1.

• Define recursively the parameters connected with the LDU decomposition of Tj+1

from Lemma 5.1.7:
lj+1 = δj+1/dj , uj,j+1 = βj+1/dj , dj+1 = αj+1−δj+1βj+1/dj and ζ∗j = −βj+1ζ

∗
j−1/dj+1.
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• With the help of the auxiliary sequence {p∗0, . . . , p∗j} define the residual vector: p∗j =

r∗j − lj+1
‖r∗j ‖
‖r∗j−1‖p

∗
j−1,

r∗j+1 = r∗j −
ζ∗j
‖r∗j ‖A

T p∗j .

The auxiliary sequences of first and dual system are related by the underlying LDU
decomposition. With the abbreviations Pj = (p0, . . . , pj) and P∗

j = (p∗0, . . . , p
∗
j ),

Sj = (s0, . . . , sj) and S∗j = (s∗0, . . . , s
∗
j ), we obtain

(P∗
j )

TAPj = diag(‖r∗0‖, . . . , ‖r∗j‖)(S∗j )TASjdiag(‖r0‖, . . . , ‖rj‖) =

diag(‖r∗0‖, . . . , ‖r∗j‖)L−1
j+1W

T
j+1AVj+1U−1

j+1diag(‖r0‖, . . . , ‖rj‖) =
diag(‖r∗0‖, . . . , ‖r∗j‖)Dj+1diag(‖r0‖, . . . , ‖rj‖),

a diagonal matrix. Due to this ,,A-bi-orthogonality” property and the bi-orthogonality
of the two residual vector sequences, we have

−ζj−1lj+1‖r∗j‖dj = − ζj−1

‖rj−1‖ lj+1

‖r∗j‖
‖r∗j−1‖

‖r∗j−1‖dj‖rj−1‖ =

− ζj−1

‖rj−1‖(p∗j + lj+1

‖r∗j‖
‖r∗j−1‖

p∗j−1)
TApj−1 = (rj−1 − ζj−1

‖rj−1‖Apj−1)T r∗j = rT
j r∗j

Hence,

− ‖r∗j‖
‖r∗j−1‖

lj+1 = − ‖r∗j‖lj+1δjdj

ljdj‖r∗j−1‖dj−1
=

ζj−1lj+1‖r∗j‖dj

ζj−2lj‖r∗j−1‖dj−1
=

rT
j r∗j

rT
j−1r

∗
j−1

(5.1)

because of the recurrences for lj and ζj−2. Analogue considerations yield

−ζ∗j−1uj,j+1‖rj‖dj = rT
j r∗j ,

and

− ‖rj‖
‖rj−1‖uj,j+1 =

rT
j r∗j

rT
j−1r

∗
j−1

. (5.2)

Finally,

ζ∗j
‖r∗j‖

=
−dj+1ζ

∗
j

−βj+1

uj,j+1dj

dj+1‖r∗j‖
=
−ζ∗j−1uj,j+1‖rj‖dj

‖r∗j‖dj+1‖rj‖ =
rT
j r∗j

pT
j AT p∗j

, (5.3)

and in a similar way
ζj

‖rj‖ =
rT
j r∗j

pT
j AT p∗j

. (5.4)

With (5.1), (5.2), (5.3) and (5.4) we can now reformulate the third point of the
above algorithms and combine both algorithms to obtain the desired one. 2
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Algorithm 5.1.10 Look-ahead Lanczos process for nonsymmetric matri-
ces

Initialization: Choose vectors v1 and w1 with ‖v1‖ = ‖w1‖ = 1; V0 = D0 = W0 =
∅; v0 = w0 = 0, V1 = (v1), W1 = (w1), D1 = WT

1 V1; k1 = 1, i = 1, ρ1 =
ξ1 = 1.

Calculus:

do j = 1, m

if Di is nonsingular then

ṽj+1 = Avj−ViD−1
i WT

i Avj−Vi−1D−1
i−1W

T
i−1Avj

w̃j+1 = AT wj−WiD−T
i VT

i AT wj−Wi−1D−T
i−1V

T
i−1A

T wj

ki+1 = j + 1; i = i + 1; Vi = Wi = ∅
else

ṽj+1 = Avj − vj −Vi−1D−1
i−1W

T
i−1Avj

w̃j+1 = AT wj − wj −Wi−1D−T
i−1V

T
i−1A

T wj

if j 6= ki + 1 then

ṽj+1 = ṽj+1 − vj−1/ρj

w̃j+1 = w̃j+1 − wj−1/ξj

endif

endif

ρj+1 = ||ṽj+1||
ξj+1 = ||w̃j+1||
if ρj+1 = 0 or ξj+1 = 0 stop

vj+1 = ṽj+1/ρj+1

wj+1 = w̃j+1/ξj+1

Vi = (Vi, vj+1); Wi = (Wi, wj+1); Di = WT
i Vi

enddo

Lemma 5.1.11 If ρj and ξj do not vanish for any j ≤ m+1, then span{v1, . . . , vm+1} =
Km+1(A, v1) and span{w1, . . . , wm+1} = Km+1(AT , w1) and A(v1, . . . , vm) can be
decomposed in the form (1.12) with a block-tridiagonal Hessenberg matrix and with
Cm = (v1, . . . , vm). Moreover, the algorithm divides the bases {v1, . . . , vm} and
{w1 . . . , wm} of Km(AT , ṽ1) into i blocks

Vl = (vkl
, vkl+1, . . . , vkl+1−1), Wl = (wkl

, wkl+1, . . . , wkl+1−1), l = 1, 2, . . . , i−1,
(5.5)

Vi = (vki , vki+1, . . . , vk), Wi = (wkl
, wki+1, . . . , wk),

where
1 = k1 < k2 < . . . < ki ≤ m < ki+1,

with the properties

WT
j Vl = 0, for j 6= l, WT

j Vl = Dl, for j = l, j, l = 1, 2, . . . , i,

where

Dl is nonsingular for l = 1, 2, . . . , i− 1, Di is nonsingular for k = ki+1 − 1.
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With Dm being the block-diagonal matrix with the blocks (D1, . . . ,Di) on its diago-
nal, we thus have the block-bi-orthogonality property

(w1, . . . , wm)T (v1, . . . , vm) = Dm. (5.6)

P r o o f : It is not difficult to see the algorithm decomposes A(v1, . . . , vm) and
AT (w1, . . . , wm) in

A(v1, . . . , vm) = (v1, . . . , vm+1)H̃m and AT (w1, . . . , wm) = (w1, . . . , wm+1)H̃
T
m,

where H̃m is block tridiagonal and has the form

H̃m =




α1 β2 0 . . . 0

γ2 α2
. . . . . .

...

0
. . . . . . . . . 0

...
. . . . . . . . . βi

0 . . . 0 γi αi

0 . . . . . . ρm+1




,

for some block matrices αl, βl and γl. If we put gl = kl+1 − kl for l = 1, . . . , i − 1,
and g̃i = m − ki, then the blocks αl, βl a γl of H̃m have respective dimensions
gl×gl, gl−1×gl, and gl×gl−1 for l ≤ i−1. The matrices αi, βi and γi corresponding
to the current blocks have dimensions respectively g̃i × g̃i, gi−1 × g̃i, and g̃i × gi−1.
The blocks have the following form:

αl =




∗ ∗ 0 . . . 0 ∗
ρkl+1 ∗ . . . . . .

...
...

0 ρkl+2
. . . . . . 0

...
...

. . . . . . . . . ∗ ∗
...

. . . . . . ∗ ∗
0 . . . . . . 0 ρkl+1−1 ∗




,

where ∗ denotes an entry that is not necessarily 0, and

γl =




0 . . . 0 ρkl

...
. . . 0

...
. . .

...
0 . . . . . . 0


 .

The blocks βl are in general full matrices. Thus H̃m is upper Hessenberg and there-
fore span{v1, . . . , vm+1} = Km+1(A, v1) and span{w1, . . . , wm+1} = Km+1(AT , w1).

We will show the block-orthogonality by induction. Trivially, WT
1 V0 = 0 =

WT
2 V0. We get WT

2 V1 = 0 when wT
I V1 = 0 for I = k2, . . . , k3 − 1. This indeed

holds due to

wT
k2

V1 =
1

ξk2

(wT
k2−1A−wT

k2−1AV1D−1
1 WT

1 )V1 =
1

ξk2

(wT
k2−1AV1−wT

k2−1AV1) = 0,

because WT
1 V1 = D1 and

wT
k2+1V1 =

1
ξk2+1

(wT
k2

A− wT
k2
− wT

k2
AV1D−1

1 WT
1 )V1 = 0.



5.1. BASIS GENERATING ALGORITHMS 117

In addition,

wT
k2+IV1 =

1
ξk2+I

(wT
k2+I−1A−wT

k2+I−1−
1

ξk2+I−1
wT

k2+I−2−wT
k2+I−1AV1D−1

1 WT
1 )V1 = 0

for 1 < I < k3 − k2.
Similarly, WT

0 V1 = 0 = WT
0 V2 and we have WT

1 V2 = 0 if and only if WT
1 (ṽk2 , . . . , ṽk3−1) =

0. Indeed,
WT

1 ṽk2 = WT
1 (Avk2−1 −V1D−1

1 WT
1 Avk2−1) = 0 ;

WT
1 ṽk2+1 = WT

1 (Avk2 − vk2 −V1D−1
1 WT

1 Avk2) = 0 ;

WT
1 ṽk2+I = WT

1 (Avk2+I−1−vk2+I−1−vk2+I−2/ρk2+I−1−V1D−1
1 WT

1 Avk2+I−1) = 0,

for 1 < I < k3 − k2.
Now let us assume WT

j Vl = 0 for j 6= l, where j, l ≤ I − 1 and I ≥ 3.
We first show that WT

I Vj = 0 pro j < I. This is true as far as wT
l Vj = 0 for

l = kI , . . . , kI+1 − 1, j < I. Thus we have the following cases:

• l = kI , j = I − 1:

wT
kI

VI−1 =
1

ξkI

(wT
kI−1A−wT

kI−1AVI−1D−1
I−1W

T
I−1−wT

kI−1AVI−2D−1
I−2W

T
I−2)VI−1 =

1
ξkI

(wT
kI−1AVI−1 − wT

kI−1AVI−1) = 0.

• l = kI , j = I − 2:

wT
kI

VI−2 =
1

ξkI

(wT
kI−1A−wT

kI−1AVI−1D−1
I−1W

T
I−1−wT

kI−1AVI−2D−1
I−2W

T
I−2)VI−2 =

1
ξkI

(wT
kI−1AVI−2 − wT

kI−1AVI−2) = 0

• l = kI , j < I − 2:

wT
kI

Vj =
1

ξkI

(wT
kI−1A−wT

kI−1AVI−1D−1
I−1W

T
I−1−wT

kI−1AVI−2D−1
I−2W

T
I−2)Vj =

wT
kI−1AVj = wT

kI−1(Avkj , . . . ,Avkj+1−1),

where Avkj+J = ṽkj+J+1 + ∗vkj+J + ∗vkj+J−1 + Vj−1(D−1
j−1W

T
j−1Avkj+J) ∈

span{Vj−1,Vj} for some not necessarily 0 values ∗ when J < kj+1 − kj − 1,
and for J = kj+1 − kj − 1 we obtain

Avkj+1−1 = ṽkj+1+Vj(D−1
j WT

j Avkj+1−1)+Vj−1(D−1
j−1W

T
j−1Avkj+1−1) ∈ span{Vj−1,Vj ,Vj+1}.

The expression j + 1 equals at most I − 2 and wkI−1 ∈ WI−1. Hence with the
assumption of the induction we always have wT

kI−1AVj = 0.

• l = kI + 1, j = I − 1:

wT
kI+1VI−1 =

1
ξkI+1

(wT
kI

A− wT
kI
− wT

kI
AVI−1D−1

I−1W
T
I−1)VI−1 =

1
ξkI+1

(wT
kI

AVI−1 − wT
kI

AVI−1) = 0.
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• l = kI + 1, j ≤ I − 2:

wT
kI+1Vj =

1
ξkI+1

(wT
kI

A− wT
kI
− wT

kI
AVI−1D−1

I−1W
T
I−1)Vj

=
1

ξkI+1
(wT

kI
AVj),

where, as above, AVj ∈ span{Vj−1,Vj ,Vj+1}. This means wT
kI+1Vj = 0 due

to the foregoing cases.

• l = kI + J, j = I − 1 with 1 < J < kI+1 − kI :

wT
kI+JVI−1 =

1
ξkI+J

(wT
kI+J−1A−wT

kI+J−1−
1

ξkI+J−1
wT

kI+J−2−wT
kI+J−1AVI−1D−1

I−1W
T
I−1)VI−1 =

1
ξkI+J

(wT
kI+J−1AVI−1 − wT

kI+J−1AVI−1) = 0.

• l = kI + J, j ≤ I − 2 with 1 < J < kI+1 − kI :

wT
kI+JVj =

1
ξkI+J

(wT
kI+J−1A−wT

kI+J−1−
1

ξkI+J−1
wT

kI+J−2−wT
kI+J−1AVI−1D−1

I−1W
T
I−1)Vj =

1
ξkI+J

(wT
kI+J−1AVj),

where, as above, AVj ∈ span{Vj−1,Vj ,Vj+1}, implying wT
kI+JVJ = 0 be-

cause of the preceding cases. The second half of the induction, i.e. WT
j VI = 0

for j < I, can be proven similarly.

Algorithm 5.1.12 Transpose free Lanczos process for nonsymmetric ma-
trices

Initialization: Choose vectors q0 and q∗0 ; p0 = c0 = q0.

Calculus:

do j = 0, m

α2j = qT
2jq

∗
0/(Ap2j)T q∗0

α2j+1 = α2j

c2j+1 = c2j − α2jAp2j

q2j+1 = q2j − α2jAc2j

q2j+2 = q2j+1 − α2j+1Ac2j+1

if α2j = 0 stop

β2j = qT
2j+2q

∗
0/qT

2jq
∗
0

c2j+2 = q2j+2 + β2jc2j+1

p2j+2 = c2j+2 + β2j(c2j+1 + β2jp2j)

enddo
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Lemma 5.1.13 If αi 6= 0 for i ≤ 2m then Algorithm 5.1.12 generates sequences
{c0, . . . , c2m+2} and {q0, . . . , q2m+2} that both span K2m+3(A, q0). Moreover, the
sequences {c0, . . . , c2m+1} and {q0, . . . , q2m+1} both span K2m+2(A, q0).

P r o o f : By induction.
Trivially, span{c0} =span{q0} = K1(A, q0).
Let us assume span{c0, . . . , c2i} =span{q0, . . . , q2i} = K2i+1(A, q0) for all i ≤ j and
for some j ≤ m, and

p2j =
2j∑

i=0

δiAiq0, δ2j 6= 0,

for some δi ∈ R, which holds for j = 0.
Then

c2j+1 = c2j − α2jAp2j =
2j∑

i=0

γiAiq0 − α2jA(
2j∑

i=0

δiAiq0), δ2j 6= 0,

for some γi ∈ R. Hence span{c0, . . . , c2j+1} = K2j+2(A, q0). Moreover,

q2j+1 = q2j − α2jAc2j ∈ K2j+2(A, q0) \ K2j+1(A, q0),

because α2j 6= 0 and {c0, . . . , c2j} is an ascending basis of K2j+1(A, q0). Hence
span{q0, . . . , q2j+1} = K2j+2(A, q0). Similarly, we obtain from

q2j+2 = q2j+1 − α2j+1Ac2j+1 ∈ K2j+3(A, q0) \ K2j+2(A, q0)

that span{q0, . . . , q2j+2} = K2j+3(A, q0). Furthermore,

c2j+2 = q2j+2 + β2jc2j+1 ∈ K2j+3(A, q0) \ K2j+2(A, q0),

because {q0, . . . , q2j+2} is an ascending basis of K2j+3(A, q0). This shows that
span{c0, . . . , c2j+2} = K2j+3(A, q0). Finally,

p2j+2 = c2j+2 + β2j(c2j+1 + β2jp2j),

proving that

p2j+2 =
2j+2∑

i=0

δiAiq0, δ2j+2 6= 0,

for some δi ∈ R. 2

Lemma 5.1.14 The sequence {q0, . . . , q2j} generated by Algorithm 5.1.12 with q0 :=
r0 has the property that when the jth BCG residual has the form

r
BCG

j = ρj(A)r0, (5.7)

for some polynomial ρj of degree j with ρj(0) = 1, then

q2j = (ρj(A))2r0.

P r o o f : Let us square, in Algorithm 5.1.9, the polynomials for both residuals and
auxiliary sequences, assuming

pj = πj(A)r0 (5.8)
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for some polynomial πj of degree j with πj(0) = 1. If we exploit the recurrences
given in Algorithm 5.1.9, then

ρ2
j+1(t) = ρj(t)2 − 2ξjtπj(t)ρj(t) + ξ2

j t2π2
j (t)

and
π2

j+1(t) = ρj+1(t)2 + 2φjρj+1(t)πj(t) + φ2
jπ

2
j (t).

Short recurrences for the squared polynomials can be obtained when we introduce
a second auxiliary vector sequence, namely

sj := ρj+1(A)πj(A)r0.

Together with
qj := ρ2

j (A)q0, p′j := π2
j (A)q0

and with q0 = r0 we obtain the recurrences

qj+1 = qj − ξjA(2qj + 2φj−1sj−1 − ξjAp′j),

sj = qj + φj−1sj−1 − ξjAp′j ,

p′j+1 = qj+1 + 2φjsj + φ2
jp
′
j .

In Algorithm 5.1.9, it is obvious that the polynomial for rj from (5.7) also defines
the dual residual r∗j , namely through r∗j = ρj(AT )r∗0 and the same holds for the
polynomials πj with πj(0) = 1 that express the auxiliary sequences in terms of their
initial vector:

if pj = πj(A)r0, then p∗j = πj(AT )r∗0 (5.9)

and vice versa. With these BCG polynomials, we can define both ξj and φj from
Algorithm 5.1.9 in terms of the squared polynomials qj and p′j :

φj =
(r∗j+1)

T rj+1

(r∗j )T rj
=

(r∗0)
T (ρ2

j+1(A)r0)
(r∗0)T (ρ2

j (A)r0)
=

(r∗0)
T qj+1

(r∗0)T qj
,

ξj =
(r∗j )

T rj

(p∗j )TApj
=

(r∗0)
T (ρ2

j (A)r0)
(r∗0)T (Aπ2

j (A)r0)
=

(r∗0)
T qj

(r∗0)TAp′j
.

Note that both coefficients can be defined without transposing the matrix A. This
is the original motivation of squaring BCG polynomials. A last simplification to
the recurrence can be made by using the vectors cj := qj + φj−1sj−1. The resulting
algorithm, initialized with p′0 = c0 = q0, s0 = 0 and φ0 = 0, would have the form

• ξj = (q∗0)T qj/(q∗0)T Ap′j

• sj = cj − ξjAp′j

• qj+1 = qj − ξjA(cj + sj)

• φj = (q∗0)T qj+1/(q∗0)T qj

• cj+1 = qj+1 + φjsj

• p′j+1 = qj+1 + φj(2sj + φjp
′
j)

Algorithm 5.1.12 now follows by multiplying all indexes by two, by putting c2j+1 :=
s2j and dividing the computation of the vector q2j+2 into two steps, by replacing p′2j

by p2j and finally with α2j := ξ2j , β2j := φ2j for all j. 2
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Algorithm 5.1.15 Transpose free Lanczos process for nonsymmetric ma-
trices with stabilization parameters ω2j

Initialization: Choose vectors q0 and q∗0 ; p−2 = c−2 = 0 ;α−2 = 0 ;ω−2 = ρ−2 = 1.

Calculus:

do j = 0, m

ρ2j = qT
2jq

∗
0

if ρ2j−2ω2j−2 = 0 stop

β2j−2 = (α2j−2ρ2j)/(ρ2j−2ω2j−2)

p2j = q2j + β2j−2p2j−2 − β2j−2ω2j−2c2j−2

c2j = Ap2j

γ2j = cT
2jq

∗
0

if γ2j = 0 stop

α2j = ρ2j/γ2j

q2j+1 = q2j − α2jc2j

c2j+1 = Aq2j+1

ω2j = cT
2j+1q2j+1/cT

2j+1c2j+1

q2j+2 = q2j+1 − ω2jc2j+1

enddo

Lemma 5.1.16 If γ2i 6= 0, ρ2i 6= 0 and ω2i 6= 0 for 0 ≤ i ≤ m then Algorithm
5.1.15 generates a sequence {q0, . . . , q2m+2} that spans K2m+3(A, q0) and a sequence
{c0, . . . , c2m+1} spanning AK2m+2(A, q0).

P r o o f : By induction.
Note that by assumption we have α2i 6= 0 and β2i 6= 0 for 0 ≤ i ≤ m. For j = 0 we
have p0 = q0 , c0 = Aq0 , q1 = q0 − α0Aq0 , c1 = A(q0 − α0Aq0) and q2 = q1 − ω0c1.
Hence {q0, q1, q2} is an ascending basis of K3(A, q0) and {c0, c1} an ascending basis
of AK2(A, q0).

Now for some j ≤ m we assume span{q0, . . . , q2i} = K2i+1(A, q0), span{c0, . . . , c2i−1} =
AK2i(A, q0) for all i ≤ j and

p2j−2 ∈ K2j−1(A, q0),

which holds for j = 1. We have

c2j = A (q2j + β2j−2p2j−2 − β2j−2ω2j−2c2j−2) ∈ AK2j+1(A, q0) \AK2j(A, q0).

Therefore span{c0, . . . , c2j} = AK2j+1(A, q0). Even so,

q2j+1 = q2j − α2jc2j ∈ K2j+2(A, q0) \ K2j+1(A, q0),

hence span{q0, . . . , q2j+1} = K2j+2(A, q0). Furthermore,

c2j+1 = Aq2j+1 ∈ AK2j+2(A, q0) \AK2j+1(A, q0),

thus span{c0, . . . , c2j+1} = AK2j+2(A, q0). Finally,

q2j+2 = q2j+1 − ω2jc2j+1 ∈ K2j+3(A, q0) \ K2j+2(A, q0),

implying span{q0, . . . , q2j+2} = K2j+3(A, q0) and, to complete the induction,

p2j = q2j + β2j−2p2j−2 − β2j−2ω2j−2c2j−2 ∈ K2j+1(A, q0).

2
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Lemma 5.1.17 Algorithm 5.1.15 with q0 := r0 generates a sequence {q0, . . . , q2m+2}
with the property that if BCG residuals are given by (5.7), then

q2j =

(
j−1∏

i=0

(In − ω2iA)

)
ρj(A)r0, j ≤ m + 1.

P r o o f : Let us define the stabilizing polynomial

κj(t) :=

(
j−1∏

i=0

(1− ω2it)

)

and use the polynomial πj from (5.8) to express the auxiliary vectors pj of Algorithm
5.1.9. For polynomials κj we have the relation

κj+1(A) = (In − ω2jA)κj(A).

If we define
q2j := κj(A)ρj(A)r0, p′2j := κj(A)πj(A)r0,

and use Algorithm 5.1.9 where we replace ξj by αj and φj by βj , then we obtain the
two-term recurrences

p′2j+2 = κj+1(A)πj+1(A)r0 =
κj+1(A)ρj+1(A)r0 + βj(In − ω2jA)κj(A)πj(A)r0 = q2j+2 + βj(p′2j − ω2jAp′2j)

and similarly
q2j+2 = (q2j − αjAp′2j)− ω2jA(q2j − αjAp′2j).

In contrast with the CGS polynomials, our BCG coefficients αj and βj cannot im-

mediately be calculated from q2j and p′2j . The coefficient βj is given by
rT
j+1r∗j+1

rT
j r∗j

and

the value rT
j r∗j can be written as follows. The coefficient for the highest order term

of the BCG polynomial ρj is equal to (−1)jα0α1 . . . αj−1 and we have

r∗j = (−1)jα0α1 . . . αj−1(AT )jr∗0 + w∗j ,

for some w∗j ∈ Kj(AT , r∗0). With the orthogonality condition of the BCG projection
we obtain

rT
j r∗j = (−1)jα0α1 . . . αj−1r

T
j (AT )jr∗0.

Similarly, the coefficient for the highest order term of the polynomial κj is equal to
(−1)jω0ω2 . . . ω2j−2 and we have

κj(AT )r∗0 = (−1)jω0ω2 . . . ω2j−2(AT )jr∗0 + w∗∗j ,

for some w∗∗j ∈ Kj(AT , r∗0). Thus

δj := qT
2jr

∗
0 = rT

j κj(AT )r∗0 = (−1)jω0ω2 . . . ω2j−2r
T
j (AT )jr∗0.

We can now express coefficients βj in terms of coefficients δj :

βj =
rT
j+1r

∗
j+1

rT
j r∗j

= −αj

rT
j+1(A

T )j+1r∗0
rT
j (AT )jr∗0

= (
δj+1

δj
)(

αj

ω2j
).
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In a similar way it is possible to write the coefficient αj with the help of δj . Per
definition,

αj =
(ρj(A)r0)T ρj(AT )r∗0

(Aπj(A)r0)T πj(AT )r∗0
.

The leading coefficients for ρj(AT )r∗0 and πj(AT )r∗0 are identical, as can be seen
from Algorithm 5.1.9, and therefore, with the orthogonality conditions of the BCG
residuals and auxiliary sequences,

αj =
(ρj(A)r0)T ρj(AT )r∗0

(Aπj(A)r0)T ρj(AT )r∗0
=

(ρj(A)r0)T κj(AT )r∗0
(Aπj(A)r0)T κj(AT )r∗0

=
(r∗0)

T κj(A)ρj(A)r0

(r∗0)TAκj(A)πj(A)r0
.

Since p′2j = κj(A)πj(A)r0, this yields

αj =
δj

(r∗0)TAp′2j

.

Algorithm 5.1.15 now results from the above recurrences if we replace δj by ρ2j , r∗0
by q∗0 and r2j by q2j , multiply the indexes of α and β by two, replace p′2j by p2j ,
divide the computation of the residual into two steps and define a second auxiliary
vector sequence through c2j := Ap2j and c2j+1 := Aq2j+1. 2
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5.2 Implementations applying rank-one update

We display here several implementations that try to improve the restarted GMRES
method with the help of the Sherman-Morrison formula according to the theory
of chapters two, three and four. In most cases we have formulated an interactive
algorithm, that is an algorithm where the user has the possibility to influence the
calculus during the execution of the programm. For example, the user can prescribe
residual norms of the auxiliary matrix or prescribe eigenvalues. Of course, modifi-
cations for fixed prescribed values are straightforward. All algorithms assume full
dimensional Krylov subspaces, i.e. the involved Modified Gram Schmidt orthogona-
lization process does not break down. In addition, we assume back-transformation
with (2.19) does not lead to overflow due to too small denominators.

The algorithms are followed by a brief computational and cost storage compa-
rison with restarted GMRES. In this context, one should note that it is never needed
to explicitly compute Â, only matrix-vector products with Â are required. While
multiplying with Â = A− byT , respectively Â = A−AdyT , its special form can be
exploited and the advantages of operations with structured matrices are preserved.
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Algorithm 5.2.1 SHERMOR(m,k) - restarted GMRES with a predefined
auxiliary system

Input: A . . . matrix; b . . . right-hand side; ε . . . tolerance for residual norm;
m. . . number of steps after which GMRES is restarted;
k . . . number of prescribed residual norms at the first cycle.

Initialization: y = 0; x0 = 0; r0 = b; β = ‖r0‖; r = r0; g1 = βe1; init = 0.

while ‖r‖/‖r0‖ > ε do

do i = 1, m

ṽ = (A− byT )vi

do j = 1, i

hj,i = vT
j ṽ

ṽ = ṽ − hj,ivj

enddo

hi+1,i = ‖ṽ‖, vi+1 = ṽ/hi+1,i

if i ≤ k and init = 0 then

read ‖ri‖

αi =

√
1−(‖ri‖/‖ri−1‖)2
(‖ri‖/‖ri−1‖)2

hi+1,i−
∑i

j=1 cj−1hj,i
∏i−1

l=j (−sl)

−β
∏i−1

l=1(−sl)

h1,i = h1,i − βαi

endif

compute the Givens parameters ci and si that zero out hi+1,i

H̃i =




Ii−1 0 . . .
0 ci si
... −si ci


 · H̃i gi =




Ii−1 0 . . .
0 ci si
... −si ci


 · gi

if i = k and init = 0 then

y = Vk




α1
...

αk




init = 1

endif

enddo

wm = (Hm)−1gm

x0 = x0 + Vmwm

r = (b−Ax0)/(1 + yT x0)

v1 = r/‖r‖
endwhile

x0 = x0/(1 + yT x0)
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In comparison with the classical restarted GMRES method, additional storage costs
of this algorithm consist of only one more n-dimensional vector (y ∈ Rn) and during
the initial cycle the necessity to store k Givens sines and k Givens cosines in order to
compute the conditions αi, which also need to be stored until the kth iteration. These
conditions are obtained without computations of order n, but the vector y results
from a matrix-vector product of dimension n×k, thus asking for nk multiplications.
At the end of the first cycle we need the number 1+yT x0 to multiply it with b−Ax0,
which costs 2n more multiplications and these extra costs return at the end of every
restart. In addition, the matrix-vector product with A − byT is 2n multiplications
more expensive than the product with A. At the very end of the process, one has
to update x0 which costs also 2n multiplications. Thus if we need C restarts until
convergence, the total number of extra multiplications, except for negligible ones
whose number is independent from n, equals

nk + 2n + 4Cn + 2n = (k + 4 + 4C)n.



5.2. IMPLEMENTATIONS APPLYING RANK-ONE UPDATE 127

Algorithm 5.2.2 ALGORITHM PSHERMOR(m,k) - restarted GMRES with
minimization of Givens sines

Input: A . . . matrix; b . . . right-hand side; ε . . . tolerance for residual norm;
m. . . number of steps in every restart; x0 . . . nonzero initial guess;
k . . . number of Givens sine minimizations at the beginning of every cycle.

Initialization: y = 0 ; r0 = b−Ax0; β = ‖r0‖; r = r0.

while ‖r‖/‖r0‖ > ε do

do i = 1, m

A = A−Ax0y
T

ṽ = Avi

do j = 1, i

hj,i = vT
j ṽ

ṽ = ṽ − hj,ivj

enddo

if i ≤ k then

h∗i = vT
i Ax0

compute αi, minimizing root of s2
i (αi)

hj,i = hj,i − h∗jαi, j ≤ i

ṽ = ṽ − αi(Ax0)−
∑i

j=1 hj,ivj

endif

hi+1,i = ‖ṽ‖, vi+1 = ṽ/hi+1,i

if i = k then

compute y ∈ Rn satisfying




vT
1
...

vT
k

xT
0


 y =




α1
...

αk

0




endif

enddo

compute wm ∈ Rm minimizing ‖βe1 − H̃mw‖
compute xm := x0 + Vmwm

x0 = xm − (yT xm)x0

y = 0

r = b−Ax0

v1 = r/‖r‖
endwhile
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Computational costs of this algorithm are slightly higher than for GMRES(m):
One extra matrix-vector product is needed at every restart when the vector d is not
chosen to be equal to the actual approximation. During every restart we need to
compute k extra values vT

i Ad and to update the values hj,i and ṽ in dependency
of the choice of αi, costing n(k2 + 5k + 2)/2 multiplications. To compute y we
need 2kn+n operations to orthogonalize d against v1, . . . , vk and one matrix vector-
product of dimension n × k. The minimizer αi can be computed with additional
operations that are dependent from n of order 2kn + n(k + 1)k/2. Finally, iteration
numbers larger than k require matrix vector-products with the auxiliary matrix,
which costs 2n more multiplications than with the original matrix. As for the
storage costs, they will be the same as for GMRES(m) at every restart, except for
the storage of three more n-dimensional vectors, y, d and Ad, and k values vT

i Ad.
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Algorithm 5.2.3 DEFSHERMORN(m,1) - restarted GMRES with auxi-
liary system deflation at the initial cycle

Input: A . . . matrix; b . . . right-hand side; ε . . . tolerance for residual norm;
m. . . number of steps after which GMRES is restarted;

Initialization: y = 0; x0 = 0; r0 = b; β = ‖r0‖; r = r0; init = 0.

while ‖r‖/‖r0‖ > ε do

do i = 1, m

ṽ = (A− byT )vi

do j = 1, i

hj,i = vT
j ṽ

ṽ = ṽ − hj,ivj

enddo

hi+1,i = ‖ṽ‖, vi+1 = ṽ/hi+1,i

enddo

compute wm ∈ Rm minimizing ‖βe1 − H̃mw‖
x0 = x0 + Vmwm

r = (b−Ax0)/(1 + yT x0)

v1 = r/‖r‖
if init = 0 then

init = 1

compute (dm, cm), the smallest eigenvalue-vector pair of Hm

if dm is real then

read d̂m

if eT
1 cm 6= 0 then

ρ = dm−d̂m

βeT
1 cm

y = ρVmcm

else

y = 0

endif

else

read ρ

y = 2ρ/‖cm‖VmRe(cm)

endif

endif

endwhile

x0 = x0/(1 + yT x0)
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Additional storage costs of this algorithm compared with the classical restarted
GMRES method consist of only one more n-dimensional vector (y ∈ Rn) and during
the initial cycle it is necessary to store the entire Hessenberg matrix Hm in order
to compute its smallest eigenvalue-eigenvector pair. This pair can for example be
obtained by application of the inverse power method and does not ask for compu-
tations of order n. The vector y results from a matrix-vector product of dimension
n×m, thus asking for nm multiplications. At the end of every restart cycle we need
the number 1 + yT x0 to multiply it with b − Ax0, which costs 2n more multipli-
cations. In addition, the matrix-vector product with A− byT is 2n multiplications
more expensive than the product with A. At the very end of the process, one has
to update x0 which costs also 2n multiplications. Thus if we need C restarts until
convergence, the total number of extra multiplications, except for negligible ones
whose number is independent from n, equals

nm + 4Cn + 2n = (m + 2 + 4C)n.
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Algorithm 5.2.4 DEFSHERMOR(m) - restarted GMRES with prescribed
first cycle Ritz values

Input: A . . . matrix; b . . . right-hand side; ε . . . tolerance for residual norm;
m. . . number of steps after which GMRES is restarted;

Initialization: y = 0; x0 = 0; r0 = b; β = ‖r0‖; r = r0; g1 = βe1; init = 0.

10 while ‖r‖/‖r0‖ > ε do

do i = 1, m

ṽ = (A− byT )vi

do j = 1, i

hj,i = vT
j ṽ

ṽ = ṽ − hj,ivj

enddo

hi+1,i = ‖ṽ‖, vi+1 = ṽ/hi+1,i

if init = 0 then

compute (θj , cj), 1 ≤ j ≤ m, the eigenvector-eigenvalue pairs

of Hm ordered from largest to smallest norm

if Im(θm) = 0 then

read θ̂m

α1 = (
∑m

j=1 hj,j − θ̂m −∑m−1
j=1 θj)/β

compute z ∈ Rm satisfying




eT
1

cT
1
...

cT
m−1


 z =




α1

0
...
0




else

read Re(θ̂m), Im(θ̂m)

γ1 = 2(Re(θm)−Re(θ̂m))
β

γ2 =
αm−4−(ĥ1,1+1)

∑m
j=2 hj,j−

∑m−1
i,l=2, i<l hi,ihl,l+

∑m−1
i=1 hi,i+1hi+1,i

h2,1β

compute z ∈ Rm satisfying




eT
1

eT
2

cT
1
...

cT
m−2




z =




γ1

γ2

0
...
0




endif

y = Vmz

init = 1

goto 10

endif

enddo
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compute wm ∈ Rm minimizing ‖βe1 − H̃mw‖
x0 = x0 + Vmwm

r = (b−Ax0)/(1 + yT x0)

v1 = r/‖r‖
endwhile

x0 = x0/(1 + yT x0)

Computational costs depending from n of DEFSHERMOR are exactly the same
as for DEFSHERMORN. Costs that depend only from m are higher, because all
eigenvalues and eigenvectors of the Hessenberg matrix Hm are needed. The same
can be said about storage costs: During the initial cycle one needs to save all Ritz
values and the eigenvectors of Hm.
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Algorithm 5.2.5 LOCAL(m,k) - restarted GMRES with auxiliary system
locally minimizing k initial steps

Input: A . . . matrix; b . . . right-hand side; ε . . . tolerance for residual norm;
m. . . number of steps in every restart; x0 . . . nonzero first guess;
k . . . number of minimized residual norms at the first cycle.

Initialization: y = 0; r0 = b−Ax0; α0 = − rT
0 b
‖b‖2 ; r0 = r0 + α0b; β = ‖r0‖; r = r0;

g1 = βe1; init = 0.

while ‖r‖/‖r0‖ > ε do

do i = 1, m

ṽ = (A− byT )vi

do j = 1, i

hj,i = vT
j ṽ

ṽ = ṽ − hj,ivj

enddo

if i ≤ k and init = 0 then

αi = bTAvi
‖b‖2

ṽ = ṽ − αib

endif

hi+1,i = ‖ṽ‖, vi+1 = ṽ/hi+1,i

if i = k and init = 0 then

compute y ∈ Rn satisfying




xT
0

vT
1
...

vT
k


 y =




α0

α1
...

αk




init = 1

endif

enddo

compute wm ∈ Rm minimizing ‖βe1 − H̃mw‖
x0 = x0 + Vmwm

r = (b−Ax0)/(1 + yT x0)

v1 = r/‖r‖
endwhile

x0 = x0/(1 + yT x0)

In this algorithm we have assumed x0 6∈ Kk(Â, r̂0).
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In comparison with the classical restarted GMRES method, additional storage
costs of this algorithm consist of only one more n-dimensional vector (y ∈ Rn) and
during the initial k iterations the conditions αi. These conditions are obtained with
2n multiplications and the updated vector ṽ asks for n more products. The vector y
is best obtained by orthogonalizing x0 against v1, . . . , vk. We achieve this by putting

ṽk+1 = x0 −
k∑

j=1

(vT
j x0)vj

and we denote the wanted normalized vector ṽk+1 by vk+1. Then y must satisfy




0
Ik

...
0

vT
1 x0 . . . vT

k x0 ‖ṽk+1‖







vT
1
...

vT
k+1


 y =




α1
...

αk

α0


 .

The simplest choice is

y := (v1, . . . , vk+1)




0
Ik

...
0

−vT
1 x0/‖ṽk+1‖ . . . −vT

k x0/‖ṽk+1‖ 1/‖ṽk+1‖







α1
...

αk

α0


 .

The orthogonalization of x0 costs 2n(k+1) products and the computation of y costs
as much. At the end of the first cycle we need the number 1 + yT x0 to multiply it
with b −Ax0, which costs 2n more multiplications and these extra costs return at
the end of every restart. In addition, the matrix-vector product with A− byT is 2n
multiplications more expensive than the product with A. At the very end of the
process, one has to update x0 which costs also 2n multiplications. Thus if we need
C restarts until convergence, the total number of extra multiplications equals

3nk + 4n(k + 1) + 2n + 4Cn + 2n = (7k + 8 + 4C)n.
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Sherman5
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Figure 5.1: QMR, GMRES(50), SHERMOR and DEFSHERMORN applied to sam-
ple experiment

5.3 Sample numerical experiment

We conclude this chapter by comparing the effectiveness of all new algorithms from
the previous section to a numerical experiment from practice. The matrix is taken
from the Matrix Market collection. It has dimension 3312 and 20793 nonzero ele-
ments. It is non-normal and satisfies

‖AAT −ATA‖F

‖A‖F
= 2252.9.

The initial guess is zero and as right-hand side we used b = (0.01, . . . , 0.01) and
thus ‖r0‖ ≈ 0.5755. This system is hard to solve for restarted GMRES. Only restart
parameters larger than 50 begin to yield convergence. Neither does the QMR method
converge satisfactory, although the first 1000 iterations (that is 2000 matrix vector
products) seem promising. When we define an auxiliary system with 4 prescribed
residual norms, ‖r1‖ := 0.005, ‖r2‖ := 0.004, ‖r3‖ := 0.003 and ‖r4‖ := 0.002,
apply GMRES(50) to this second system and back-transform with the Sherman-
Morrison formula, the process converges quickly. The curve for the original system
after back-transformation is denoted by SHERMOR(50,4).
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Eigenvalue of A of A− byT

λ3306 0.908005 0.908007

λ3307 0.847002 0.846968

λ3308 0.618836 0.618634

λ3309 0.579574 0.579266

λ3310 0.402658 0.399875

λ3311 0.125445 0.371408

λ3312 0.046925 0.118764

Table 5.1: Smallest eigenvalues of Sherman5 before and after rank-one update with
DEFSHERMOR

The spectrum of this matrix (computed with the QZ method) consists of 1631
evenly distributed real eigenvalues in the interval [597.528315, 1.280845] and the
remaining eigenvalues are all equal to 1, except for the smallest 7 eigenvalues. Their
values can be taken from the second column of the table below. As the last eigenvalue
is especially small compared to the rest of the spectrum, one expects this value to
be the main factor that hampers convergence, as we have seen for GMRES(50).
After 50 iterations the smallest eigenvalue of the generated Hessenberg matrix H50,
the smallest Ritz value, equals about 0.67 and is not an approximation of λ3312 but
rather of λ3308. Still we can, with Algorithm 5.2.4, DEFSHERMOR, modify this
smallest Ritz value and hope that the resulting, larger Ritz value also forces the
corresponding eigenvalue of the n × n matrix to be larger. For example, we can
compute a vector y such that the smallest eigenvalue 0.67 of the Hessenberg matrix
for A moves to the other end of the spectrum of A to become the eigenvalue 600 of
the Hessenberg matrix for A−byT and all other Ritz values are left unchanged. The
influence that such Ritz values have on the spectrum of A− byT can be described as
follows: Large eigenvalues of A are very much the same for A− byT except for the
new largest eigenvalue 600, all eigenvalues 1 remain, but the seven small eigenvalues
A are modified. This is shown in the last column of Table (5.1). The smaller the
eigenvalue, the more it has been modified and above all, the very last one has been
considerably enlarged, it is about 10 times larger. Moreover, the resulting process
does not stagnate anymore as can be seen in Figure 5.2.

If we apply the other deflation technique (DEFSHERMORN) to this pro-
blem, we must realize this technique was meant for nearly normal matrices whereas
Sherman5 is far from normal. Nevertheless we can try to do something: With
the smallest Ritz value 0.67 we have a (poor) approximation of λ3308. Because
eT
3308S

Hb yields in this case a value of about 0.547, one expects to be able to shift
λ3308 to somewhere in the middle of the spectrum (about 50) when ρ := −100 in
(4.11). The smallest eigenvalues of A − byT with this choice are seen Table (5.2).
They are less changed than with DEFSHERMOR, which corresponds to the theory.
But the non-normality of the matrix prevented the theory from working concerning
modification of the eigenvalue λ3308, it is still present. The smallest eigenvalue has
become essentially larger, which accelerates the system. The smallest Ritz value 0.4
has become the value 2.934199.

This is an example where local minimization spoils the slow convergence of
GMRES(50). Even minimization of all 50 Givens sines during the first cycle does not
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Eigenvalue of A of A− byT

λ3306 0.908005 0.908005

λ3307 0.847002 0.847033

λ3308 0.618836 0.658457

λ3309 0.579574 0.615082

λ3310 0.402658 0.571775

λ3311 0.125445 0.401679

λ3312 0.046925 0.120158

Table 5.2: Smallest eigenvalues of Sherman5 before and after rank-one update with
DEFSHERMORN

Sherman5

-7

-6

-5

-4

-3

-2

-1

0

1

1 25 49 73 97 121 number of restarts

log(||r||/||r0||)

DEFSHERMOR(50)

PSHERMOR(50,50)

LOCAL(50,50)

Figure 5.2: DEFSHERMOR, PSHERMOR and local minimization applied to sample
experiment
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yield a system that converges faster than the original system. In contrary, iterates
after back-transformation converge even slower than the iterates of GMRES(50)
(compare with Figure 5.1).

On the other hand, Givens sine minimization by means of preconditioning, as
proposed in PSHERMOR, is able to accelerate convergence. As seen in previous
examples with this algorithm, the exact number of minimizations per cycle has an
important influence on the process. The results we obtained by minimizing the first
35 sines at every cycle, are seen in Figure 5.2. Typically, the minimization works
best at the beginning of the process, later on convergence is moderate.

Summarizing, we observe that for this random problem from practice, with
a sparse, non-symmetric and non-normal matrix of dimension 3312, all the tech-
niques proposed in this thesis accelerate the convergence of restarted GMRES with
the exception of local minimization. Our experience has shown that the SHER-
MOR procedure is the most powerful tool to overcome stagnation in general. On
the other hand, the preconditioning technique PSHERMOR gives smoother conver-
gence curves. When confronted with problems that are known to be hampered by
unfavorable spectral properties, the DEFSHERMOR algorithm is able to improve
these properties and the same can be achieved with DEFSHERMORN when the
system matrix is close to normal.

From these observations it seems worth to undertake further investigation of
our acceleration techniques. Apart from open questions pointed out in the preceding
chapters, we want to emphasize that we focussed in this thesis on a very specific
exploitation of the Sherman-Morrison formula, namely rank-one update with one of
the rectangular matrices being equal or close to the right-hand side. As already this
choice appeared to be able to overcome stagnation in several ways, we expect many
other applications of small rank update with the Sherman-Morrison formula to be
effective in the context of accelerating restarted projection methods. It would be
very interesting to work this out.
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