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Abstract: Standard data mining procedures are sensitivewhich is manifested through numerical unstability or com-
to the presence of outlying measurements in the data. Thiputational infeasibility[[19]. Two most common solutions
work has the aim to propose robust versions of some existare suitable regularization and dimensionality reduction
ing data mining procedures, i.e. methods resistant to out{variable selection). The concept of regularization encom
liers. In the area of classification analysis, we proposepasses a variety of approaches allowing to solve ill-posed
a new robust method based on a regularized version obr insoluble high-dimensional problems by means of ad-
the minimum weighted covariance determinant estimatorditional information, assumptions, or penalizatioh [7 S
The method is suitable for data with the number of vari- far, regularized and at the same time robust data mining
ables exceeding the number of observations. The methogrocedures fon < p have been rarely discussed|[14]. In
is based on implicit weights assigned to individual ob- this paper, we present a unique attempt to combine princi-
servations. Our approach is a unigue attempt to com-ples of regularization and robust statistics fiok p.
bine regularization and high robustness, allowing to down- This paper has the following structure. Section 2 dis-
weight outlying high-dimensional observations. Classifi- cusses various existing approaches to linear discriminant
cation performance of new methods and some ideas comanalysis forn < p. Following sections have the aim
cerning classification analysis of high-dimensional datato combine regularization principles with ideas of robust
are illustrated on real raw data as well as on data contamistatistics to propose new robust methods for classifica-
nated by severe outliers. tion analysis of high-dimensional data. In Section 3,
a new regularized robust classification method based on
) o M-estimation is proposed. In Section 4, a regularized
1 Robustness in Data Mining highly robust estimator of multivariate scatter based on
the minimum weighted covariance determinant estimator
Numerous data mining procedures are commonly based ois proposed, which exploits the idea of implicit weights as-
distance measures between observations or their groupsigned to individual observations. The core Section 5 ex-
clusters, etc. Most measures for continuous data are verploits previous sections to propose a regularized highly ro
sensitive to the presence of outlying measurements in théust classification method, based on down-weighting less
data. This is true for Euclidean, Mahalanobis, and Man-reliable high-dimensional observations. Following exam-
hattan distances, the cosine similarity, and many othersples in Sections 6 and 7 illustrate important ideas concern-
This paper has the aim to propose and study new robusing the high dimensionality in the classification task and
data mining methods for continous data by means of ro-the classification performance of individual methods. Fi-
bustifying the Mahalanobis distance. nally, Section 8 concludes the paper.

Sensitivity of standard data mining as well statistical
methods to the presence of outlying measurements in th
data has been repeatedly reported as a serious problem [SF.
This is true in various areas of applications, includingela

Linear Discriminant Analysis

sification analysis, clustering, dimensionality reductio Irlig,:)sassegtIgtr;,n\éjv:rcrjegzlslst;iiz:t?::;gzc2in;In?orlzte?jr:rl(ley:r? d
prediction models, etc. Robust methods in statistics ano( o ) . ysSIS proce
its modifications suitable for data in time< p situation.

data mining are those resistant to the influence of noise Classification analysis has the aim to construct (learn)
and to the presence of outliers. Xanthopoulos et al. [27] o Y o N
a decision rule based on a training data set, which is able

obtained various robust data mining procedures for con-t0 automatically assian new data to on roups. It as
tinuous data as a solution of optimization tasks taking into y 9 kofroups.

account uncertainty of the observed values. Robustnes umesn observations W|trp.var|ables, observed iK dif-
erent samples (groups) wigh> K > 2,

aspects of neural networks and support vector machine
were overviewed in[15]. _ . X11, s Xangs o XKy > Xk s (1)
Another important problem in data mining commonly

occurs if the number of variablgsexceeds the number of wheren = K | n,. LDA assumes the data in each group
observations (i.e. n < p or evenn < p). In this con-  to come from a Gaussian distribution, while the covariance
text, we speak of high-dimensional data and their anal-matrix X is the same across groups. Its pooled estimator
ysis is described as the larggsmall n problem. Some will be denoted byS. In its standard form, LDA assumes
standard methods suffer from the curse of dimensionalityn > p and is based on computing the Mahalanobis distance



between a new observati@ghand the mean of each of the whereave denotes the average of the given values over

K groups. i=1,...,n. We will use its regularized version proposed
For n < p, the matrixSis singular and computing its by Chen et al.[[2] fon <« p. This estimator is based on

inverse is not possible. The most important approaches ina ridge regularization of the estimatorin each iteration

clude regularization, i.e. replacing the computatiosof of the computation and will be denoted &.

by an appropriate alternative, performing a dimensiopalit _ We assume the datal (1) to observedirgroups. Let

reduction prior to LDA, computing a pseudoinverse ma- X, v denote the M-estimator of the mean in thth group.

trix, which is however unstable due to a smaligeneral-  Let

ized SVD decomposition, or elimination of the common — — —

null space of the between-group and within-group covari- Xm = 0Xem+(1-0)Xum, k=1,...,

ance matrices [4]. M .
Suitable regularized estimators of the covariance matrixfor 6 € (0,1) and letX denp te the ov_e_rall M-estimator
cross groups. Now we define a modified version of Ma-

X " ..o al
(e.g. [6]) are guaranteed to be regular and positive definit S N
even forn <« p. Habitually used regularized versions of enalanobls ".'St?r‘ce based on M—est|mat|9n, denqted as M-
Mahalanobis distance, and a corresponding version of reg-

LDA for n < p have the form ularized LDA, denoted as M-RLDA.

K, (5

S =AS+(1-M)T, 2€(01), @ Definition 1. The regularized M-Mahalanobis distance

using a given target matriX, which must be a regular between an observation Z and the k-th group is defined

symmetric positive definite matrix of sizex p. Its most 25 - T/

common choices include the identity matrik, or a di- Xem —2) S (Xem —2)- (6)
agonal (non-identity) matrix. A suitable valuedfcanbe  A|gorithm 1. M-RLDA.

found by cross-validation. Nevertheless, their fast compu

tation and numerical stability remains to be an importantStep 1 Fora givend € (0,1), compute the matrix

issue [14]. v v
) ] A:[Xl,M_Za“'aXK,M_Z] (7)

3 Regularized M-LDA (M-RLDA) of size px K whose k-th column By —Z.
] o _Step 2 Compute § as

M-estimators are the most common robust statistical esti-
mators applicable to a variety of tasks[[12]. They origi- SU=ASu+1-MNT (8)
nated in the seminal paper of Hubgr [9], who investigated ) ] ) _
robust estimation of a location parameter. In this section, ~ With afixedA € (0,1) and a given target matrix T.
we propose a new method denoted as M-RLDA, which ab'Step 3 Compute and store the eigenvalues f i8 the
breviates the regularized version of robust linear diserim diagonal matrix D, and compute and store the cor-
nant analysis based on M-estimation. However, the disad- responding eigenvectors of § the orthogonal ma-
vantage of M-estimators is their low robustness in terms of trix Q..
the breakdown point. Therefore, the approach of this sec-
tion is rather intended to yield an initial regularized rebu  Step 4 Compute the matrix
estimator for a highly robust approach in Section 5. 127

We consider the multivariate model wifadimensional B=D.""Q,A 9)
dataXi,...,X, in the formX; = u + g, where the noise
random vectorsy,...,e, are independent following the
normal distributionN(0, ). Unfortunately, M-estimation

does not allow to jointly estimate the mean and covariancestep 5 Repeat steps 1 to 4 with different valueda@hndA
matrix in a simple way[[13]. Lety denote the Huber's and find the classification rule with the best classifi-
function. The expectation (population meanyvill be es- cation performance.

timated byXy = (X{",...,XB")T, where the coordinatg

will be estimated by the Huber's estimator as the solution FOr the special casé = .7, which is commonly de-
of noted as Tikhonov or ridge regularization®fa more ef-

n ficient computation can be performed as follows.
S Wi XM =o. (3)
j=1

and assign Z to group k if the column of B with largest
Euclidean norm is the k-th column.

Algorithm 2. M-RLDA for the ridge regularization.

To estimateZ for a given estimatar < IRP of u, Tyler [25]
proposed an M-estimator which is computed iteratively as
the solution of

(%)X ~1)" Y= DX X X e
p-ave{ (X| —t)anl(Xi —t)T } =Vh (4) xKl_XM7~«~7XKnK _XM]T. (10)

Step 1 Compute the matriX{7) of sizexpK whose k-th
column isXy — Z and compute the matrix Y as




Step 2 Compute the singular value decomposition of Y asto be outliers. The weights are assigned to individual
- data during the computation of the estimator based on

Y=P2Q", (11) residuals. One possible choice of weights is based on
an implicit permutation of given (fixed) magnitudes of the
weightswy, ..., wy fulfilling 3 ;w; = 1 to the data. Data-
dependent adaptive weights bf [3] are another choice.

The LWS estimator ofB1,...,Bp)" in the model [TH)

Step 3 For a fixedA € (0,1), compute D = is defined as

with singular values{di,...,0,} and complement
these singular values with pn zero values, 1 =
tee = Up = O.

— di 2 _ 2 _ n
=diag{Aof +(1-2),...,Ac5+(1-A)}. (12) BEWS_ (BWS | pbwS)T :argminzlwiu(zi)(b). 17)
. belRP =
Step 4 Compute the matrix
12t The computation of the LWS estimator with adaptive
B=D.""QA (13)  weights begins with an initial highly robust estimator and
¢ proceeds to proposing values of the weights based on com-
paring the empirical distribution function of squared desi
uals with the theoretical counterpart assuming normality.

and assign Z to group k if the column of B with larges
Euclidean norm is the k-th column.

Step 5 Repeat steps 2 to 4 with different valuesiadind Statistical methods based on ranks of observations have
find the classification rule with the best classification appealing properties [11] in a variety of situations. The
performance. LWS estimator has a high breakdown point, which is a sta-

tistical measure of sensitivity against outliers in theadat
[12]. The estimator has asymptotically a 100 % efficiency
of the least squares estimator under Gaussian errors and its

. . . e relative efficiency has been numerically evaluated as high
Our aim is a regularized highly robust classification analy- (over 85 %) compared to maximum likelihood estimators

SIS procgdure. Before we develop'such method 'n.SeC.t'orbnder various distributional modeld [3]. Moreover, we ac-
5, we will devote the present section to robust estimation

. : . X : companied the LWS estimator by a robust coefficient of
of parameters of high-dimensional data. This SeCt'OnSBtartdetermination and asymptotic hypothesis tests in [17].
by recalling the least weighted squares regression estima-

tor [26] and the minimum weighted covariance determi-
nant (MWCD) estimator for multivariate data [16]. Both
methods are highly robust estimation procedures based o
assigning implicitly given weights to individual observa-
tions. However, they are computationally infeasible for
n < p. As a new result, a regularized version of the
MWCD estimator is proposed, which exploits the tools of
Section 3.

Linear regression remains to be the most commonly in-
vestigated statistical model in the context of robust Stati
tics [12]. Therefore, we will explain some important prin-
ciples on the standard linear regression model

4 Implicitly Weighted Robust Methods

Further, we consider the multivariate model with
dimensional datx,...,X, in the formX; = u + g with
noise modeled by independent random vectars. ., e,
Pollowing the normal distributiorN(0,%). The MWCD
estimator, which estimates the parameje@ndz jointly
under the assumptiom> p, will be now recalled. Other
available robust estimators of parameters of multivariate
data were studied e.g. by [10, 5].

The MWCD-estimator of the mean of the data has the
form of a weighted mean. At the same time, the MWCD-
estimator ofZ has the form of a weighted covariance
matrix. Both these estimators are computed with such
weights, which correspond to the optimal permutation of

Yi = BiXin+- -+ BpXip+a, i=1...n (14)  given valuesws,...,Wn with Siaw = 1. We _do not as-
sume the data to come from the normal distribution. How-
with independent identically distributed random errors ever, the data are assumed to be in general position, i.e. any
e1,..., e, without assuming their Gaussian distribution.  p observations among the total numbemadbservations

We will need the following notation. Let us consider are assumed to give a unique determinatiof.of
(any) estimateo = (by,...,bp)" € IRP of the parameter
B = (Bi....,Bp)". We denote the residual corresponding Definition 2. The MWCD estimator oft denoted as

to thei-th observation by Xmwcp is equal to the weighted mean of X ., X, in the
. form Xy = Y11 Wi X; with such permutation of w..., Wy,
u(b) =y —b1 X1 —---—bpXpp, i=1,...,n (15  for which the determinant of

and let us order the squared residuals n _ _
2 2 2 Sw= lei (X — Xa) (% — %) (18)

uty) (b) < ufp)(b) < -+ < ufp, (b). (16) =
The idea of the highly robust LWS estimator is to is minimal. The MWCD estimator & denoted as @wvcp
down-weight less reliable observations, which are likely is equal to § with this optimal permutation of w. .., w,.



The MWCD with adaptive weights attains the finite- 5 Regularized Robust Classification

sample breakdown point Analysis
{{n—er 1J }/n (19) In this section, we propose a regularized robust ver-
2 sion of the Mahalanobis distance together with a regular-

] ] ] _ized robust version of LDA, exploiting the tools of Sec-
for any p-dimensional dataXy,...,X, in general posi-  {ions 3 and 4. The new method MWCD-RLDA represents
tion, where|a| stands for the integer part @ Atthe a5 MwWCD-based regularized linear discriminant analysis,
same time [(T9) is the maximal breakdown point of affine- computed using a deformed Mahalanobis distance in the
equivariant estimators af [18]. multivariate space. We also present an efficient algorithm

The estimator cannot be computed fok p. There-  for jts computation. The MWCD estimator yields an esti-
fore, we define its regularized version, which exploits mator of the expectation and covariance matrix of mul-
the regularized robust Mahalanobis distance based on Mtjyariate data jointly. While implicitly weighted robust
estimation [(6) and is computationally feasible even for methods are known to be computationally infeasible for
n<p. high-dimensional data [1], our work overcomes the high
dimensionality by a sophisticated regularization. To the
best of our knowledge, this is a first attempt to consider
a highly robust estimator for high-dimensional data which
is based on implicit weights assigned to individual obser-
vations.

We assume-dimensional dat&s, ..., X,. The Maha-
lanobis distance will be formulated as a distance of an ob-
servationZ = (Zy,...,Z,)" from a group ofp-dimensional
Step 3 Compute the regularized M-Mahalanobis distance observationX, ..., X,. LetXuwcpandSuwcp denote the

estimators ofu andZ obtained by the regularized MWCD

di:T.C) = [(X —T)TC XX —T 1/2 20 estimator of Section 4.
(1T.C) [(X. ) (% )] (20) We denote the regularized MWCD-estimator of the co-

variance matrixz as

Algorithm 3. Regularized MWCD estimator.
Step 1 Initialize the value of the loss function aso.

Step 2 Randomly select an initial set of 2 observations.
ComputeXy; and §, based on these observations.
Denote T= Xy, and C=§;.

for each observation X Sort these distances in
ascending order. This determines a permutation _ _
n(1),..., T, of the indexeq, 2, ..., n, which fulfills Sawep =ASuweo+ (1T, A €(0.1).  (23)
The parametek € (0,1) denotes a shrinkage estimator of
d(m(1);T,C) <d(m(2);T,C) <--- <d(m(n); T,C).  the covariance matrix across groups. A suitable value of
(21)  is found by a cross-validation in the form of a grid search
Assign the weights to invididual observations accord- over all possible values df € (0,1).

ing to the ranks of the Mahalanobis distances. Thus, ) o
e.g. the observation ), obtains the weight w Definition 3. The regularized MWCD-Mahalanobis dis-

tance between an observation Z and the data X, X, is
Step 4 The loss function is evaluated as the determinantdefined as

f th i % X)
of the matrix (Xuwep—2)T Sywep(Xmwep —2). (24)
detASy+ (1—A)T), (22)

where § is evaluated ag{18) with the weights from  Further, we assume the data to be observe( differ-
Step 3. If the loss is smaller than the previously ob-ent groups as irl{1). In this context, we repldcel (24) by
tained value, continue with step 5. Otherwise go to such version, where the mean of each group if shrunken
step 6. towards the overall MWCD-mean across groups. This
can be interpreted as a regularized (biased) version of the
Step 5 Store the values of the weights. Compute theMWCD-mean or Stein’s shrinkage estimator, which im-
weighted mean and weighted covariance matrix us-proves the mean square error of the (unbiased) mean. It
ing these weights. Continue with steps 2, 3, and 4.can be alternatively derived in a Bayesian setting.
This is repeated as long as the value of the loss de- Tibshirani et al.[[24] applied such shrinkage on regular
creases. means of each group towards the overall mean, which im-
proved the classification performance, and claimed to im-
Step 6 Repeatedly (10 000 times) perform the steps 1t0 Sprove the robustness of their method PAM. We consider
The optimal weights are those which yield the mini- their argument as misleading, because the finite-sample

mal value of the loss function over all repetitions of preakdown point of PAM can be easily evaluated as only
steps 1to 5. 1/n.



The overall MWCD-mean across groups will be de-
noted asXMWCP and the MWCD-mean of individual
groups axMWeP . XMWCD e denote

XZMWCDZ X mwep+ (1 — 8)Xmwebp (25)

fork=1,...,Kandd € (0,1) to obtain the following form
of the Mahalanobis distance.

Definition 4. The regularized MWCD-Mahalanobis dis-

Step 4 Compute the matrix

B=D."’QIA (30)

and assign Z to group k if the column of B with largest
Euclidean norm is the k-th column.

Step 5 Repeat steps 1 to 5 with different value®@nd A
and find the classification rule with the best classifi-
cation performance.

tance between an observation Z and the k-th group of the 1h€ main computational costs are in step 3; the eigen-

data is defined as

(ileWCD_Z)T(S§AWCD)71(XZMWCD_Z)' (26)

The values ob andA can be found by cross-validation.

In an analogous way, the Mahalanobis distance can be for-

mulated as a distance between two groups etc.
Let us now consider datal(1) observedKngroups.

Let a new regularized robust version of LDA denoted as

MWCD-RLDA be defined to assign an observatiin=
(Z4,...,Zp)" to groupk, if

a"% an()zj*,MWCD_ 2)7 (STAWCD)A()?T,MWCD —Z) (27)
i=1...,

is attained forj = k.
From the computational point of view, (27) should be

decomposition costs about ° floating point operations.
Note that we need not (and should never) compute the in-
verse ofScp, thus avoiding additional computations of
the Mahalanobis distance, which is expensive of ogfer
and numerically rather unstable. The group assignment
(27) is done by using

()E;.MWCD -2)7 ($:/IWCD)_1(_)§ZMWCD_ Z)
Xemwen—Z) " QD QI (X mwep—2Z)
ID, Y2QT (%~ )12 (31)

An algorithm for MWCD-RLDA using the ridge regu-
larization withT = .#, can be obtained as a straightfor-
ward modification of Algorithni2.

6 Metabolomic Profiles Example

We present an example on real molecular genetic data sets

always replaced by a rule based on regularized linear disin order to illustrate the behavior of the newly proposed

criminant scores. Thug is classified to the grouf, if
> I}‘ for everyj #k, where

i = (Xemwen) (Swwep) “Z+logpc—

1(>zl:,MWCD)T (S\kAWCD)il)zl:MWCDv

> (28)

and pg is a prior probability of observing an observation
from the k-th group fork = 1,...,K. The situation with

v =1 for k' # k does not need a separate treatment, be-

cause it occurs with a zero probability for data coming
from a continuous distribution.

Algorithm 4. MWCD-RLDA.

Step 1 For a givend € (0,1), compute the matrix

A= PziMWCD_ Z ... aié,lvlwco— Z] (29)

of size px K.

Step 2 Compute f§cp according to [(ZB) with a fixed
A €(0,1).

Step 3 Compute and store the eigenvalues @f,Sp in
the diagonal matrix [, and compute and store the
corresponding eigenvectors of;cp in the orthog-
onal matrix Q..

classification methods.

Classification Classification

method accuracy

LDA Infeasible
PAM 0.98
SCRDA 1.00
MWCD-RLDA 1.00
SVM 1.00
Classification tree 0.97
Self-organizing map 0.93
PCA— LDA 0.90
PCA— SCRDA 0.92
PCA— PAM 0.81
PCA— MWCD-RLDA 0.92

Table 1: Metabolomic profiles example. Classification ac-
curacy of various classification methods. PCA uses 20
principal components.

A prostate cancer metabolomic data set [23] is analyzed,
which containsp = 518 metabolites measured over two
groups of patients, namely those with a benign prostate
cancer (16 patients) and with other cancer types (26 pa-
tients). The task in both examples is to learn a classifica-
tion rule allowing to discriminate between the two classes
of individuals.



Classification Data Further, we investigate the classification performance
method Raw Contam. of various methods on data atrtificially contaminated by
LDA Infeasible | Infeasible severe outliers. Proband-independent noise is generated
PAM [24] 0.96 0.91 from normal distributiorN (0, 02 = 225). Its absolute val-
SCRDA [€] 1.00 0.95 ues are added to all measurements for each proband and
MWCD-RLDA 1.00 1.00 classification rules are learned over this contaminateal dat
SVM 1.00 0.98 set. Only MWCD-RLDA turns out to be resistant to out-
Classification tree 0.55 0.51 liers, while regularized versions of LDA seem not to suffer
Self-organizing mag  0.93 0.90 so strongly from their presence, compared to methods con-

) - structed without any regularization tools. It is remarleabl
Table 2: Keystroke dynamics example. Classification ac-tnat pPrediction Analysis for Microarrays (PAM) turns out
curacy of various classification methods for raw data andyg pe heavily influenced by outliers, because it has been in-
for data contaminated by outliers. terpreted as a denoised version of diagonalized LIDA [24].
Finally, we investigate the structure of the covariance
matrix S. The structure o5 will be investigated by ana-

We use various classification methods with default set-YZing principal components of the data. o
tings in R software to distinguish between the 2 groups Table[3 evaluates the contribution of the 9 principal
of observations. The new method MWCD-RLDA is used COmponents to the separation between both groups as the
with linearly decreasing weights. The classification per- classification accuracy of LDA based on individual com-
formance is measured by the accuracy, i.e. number oponents and pairs of components. _The first principal com-
correctly classified cases divided by the total number ofPOnents turn out to be extremely influenced by outliers,
cases[22]. while their discrimination ability is larger than that ofeth

The results of various classification methods are over-@st components. The first two principal components are
viewed in TabléTL. The newly proposed method MWCD- shown in I_:lg_u_ré:ll. The last compont_ants co_ntnl?ute a little
RLDA turns out to perform reliably. We do not find ma- to the vfarlablllty of the dz_ata and the|_r _contrlbutmn to the
jor differences in the classification performance of vasiou Séparation of the groups is also negligible.
regularized versions of LDA. At the same time, MWCD- 't is tempting to perform LDA or regularized LDA
RLDA has a good classification ability if applied on prin- qnly on the major principal components. Actually, prin-
cipal components. cipal c_omponents corresponding to_ zero _enggnvalues have

Our consequent analysis of principal components of thebeen rigorously proven to have no discrimination effect for
data brings other arguments in favor of the regularization” < P only recently [4]. Nevertheless, our example shows
appraoches used in this paper. There seems no remarlﬁ—?e destructive effect ofc_:uthers @and therefore on prin-
able small group of genes responsible for a large por_mpal.component :?maIyS|s (PCA).'To explain the structu're
tion of variability of the data and the first few principal ©f Sin more details, let us mention that the data matrix
components seem rather arbitrary. In such situations, i< has 10 singular values, the between-group covariance
there seems no clear interpretation of the principal com-Matrix
ponents, the preferable type of regularization seems to be 1 K _ T
the Tikhonov regularization, i.e. the regularization ie th B= K-1 Z n; (Xj —X) (Xj — X) (32)

L, norm, which is used throughout this paper. k=1
has 1 positive eigenvalue and the within-group covariance

: o
7 Keystroke Dynamics Example matrix K
1 Mk

W = ;(xki ~X)Xi—X)T (33

We analyze a real data subset from a larger keystroke dy- n—K k;i
namics study aimed at proposing a fast online software

system for person authentication. Here, we work with data@s 10 positive eigenvalues, while the covariance matrix

measured oK — 2 probands, who were asked to write the > ©f Siz€ 15x 15 has 9 positive eigenvalues and 6 eigen-
word kladruby5-times each. The authentication is a clas- Values exactly equal to 0. At any case, approaches avoid-
sification task t& = 2 groups witm = 10, where there are N9 PCA are preferable, because PCA suffers heavily from
p =15 (p > n) variables including 8 keystroke durations

outliers and its regularized version using the Tikhonov reg
and 7 keystroke latencies measured in milliseconds. Ou

plarization can be easily shown to be exactly equal to stan-
detailed analysis goes beyond the result§ of [21], where 3slard PCA.

probands were considered.
Table[2 gives classification accuracy of various meth-8 Conclusions
ods obtained on raw data. The best results are obtained
with MWCD-RLDA, SCRDA, and support vector ma- Standard data mining procedures are very sensitive to the
chines (SVM). presence of outlying measurements in the data, which




Principal Classification accuracy properties of regularized methods have never been system-
component| Indiv. Pair Cumulative atically investigated.

1 0.5 49 0.6 We propose new robust versions of the Mahalanobis
2 0.9 ' 0.9 distance between high-dimensional observations with the
3 1.0 08 1.0 number of variables exceeding the number of variables.
4 0.9 ' 0.9 Particularly, we used M-estimation and the idea of implicit
5 0.9 0.7 1.0 weighting to obtain new robust measures of distance be-
6 1.0 ' 1.0 tween multivariate observations. This has allowed us to
7 1.0 05 1.0 formulate new methods of classification analysis together
8 1.0 ' 1.0 with algorithms for their computation suitable for p.
9 0.6 1.0 The new methods combine robustness with regularization

in the multivariate model in a unique way. Because robust
Table 3: Keystroke dynamics example: study of principal methods are computationally intensive themselves, which
components of the data. Classification accuracy of LDArequires a sophisticated approach to regularization. Sev-
as the percentage of correctly identified samples based ogrg| new algorithms for shrinkage LDA are proposed, ex-
individual principal components and pairs of two principal plojting a shrinkage covariance matrix estimator towards
components, together with the cumulative contribution of 3 regular target matrix (unit matrix).
components 1...r forr=1,....9. The analysis of two real data sets reveals that the
classification performance of the newly proposed method
MWCD-RLDA seems to be comparable to available clas-
sification procedures, while it turns out to be superior for
data contaminated by noise. Apart from a good classifica-
tion performance, it is important to overview other suigabl
properties of the newly proposed approach. Its formula
. is elegant due to using the same kind of regularization in
the L, norm for both means and covariance matrices. The
implicit weights assigned to individual observations ailo
a clear interpretation. At the same time, implicit weights
are known to ensure a high breakdown point with respect
to a larger percentage of outliers in a variety of other situ-
ations [26/ 177, 16]. MWCD-RLDA can be computed with
an efficient algorithm even for < p, while even faster al-
gorithms can be proposed tailor-made for specific choices

Figure 1: Keystroke dynamics example: study of principal ©f the target matrixT. Finally, our methods search for
optimal values of regularization parameters directly im th

components of the data. The 1st and 2nd principal com-

ponent of the data in group 1 (bullets) and group 2 (emptyclassification task, while existing approaches to regular-
circles) ized covariance matrix estimation exploit an analytical ex

pression for the parameters, which are however not opti-

mal for the classification task [20].
makes robustness to their presence to be an important re- Alternative regularization approaches based onlthze
quirement. This paper proposes several robust versions afegularization or variable selection were described by [7]
standard as well as regularized classification procedure3o give an example of a regularization approach combin-
and algorithms for their computation. ing various regularization types together, let us mention

Mining high-dimensional data with a large number of the ideas ofi[6] usind.,-regularization on covariance ma-

variablesp becomes an important task in a variety of ap- trices andL;-regularization on means. Such approaches
plications [19]. Numerous new methods have been pro-may be less suitable for data without several clearly strong
posed in the literature for the analysis of big data, par-principal components contributing to explaining a large
ticularly with a large number of observations On the  portion of the variability of the data.
other hand, smaller attention attention has been paid to Other possible extensions of our ideas, which exceed
methods for data mining and multivariate statistics fos thi the scope of this paper, include the possibility to propose
n < p situation. Some of standard methods of data min-other regularized robust data mining procedures, e.g- clas
ing or multivariate statistics are computationally infibtes  sification trees, entropy estimatioR;means clustering,
for high-dimensional data, others suffer from a numerical or dimensionality reduction by the minimum redundancy
instability and lack of robustness to noise or outlying mea-maximum relevance (MRMR) algorithm. Some of them
surements. Sometimes it is claimed that some of the regumay directly exploit the regularized robust Mahalanobis
larized methods have been empirically observed to possesdistance of Section 5. Our future work is intended to in-
reasonable robustness properties [14] although robisstnewestigate theoretical connections between regularized ve
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sions of LDA and PCA and to study alternative regulariza- [15] Kalina, J.: Machine learning and robustness aspects. Ser-
tion approaches in the context of LDA. bian Journal of Managemef(2014) 131-144
[16] Kalina, J.: Highly robust statistical methods in medical im-
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