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Abstract: Standard data mining procedures are sensitive
to the presence of outlying measurements in the data. This
work has the aim to propose robust versions of some exist-
ing data mining procedures, i.e. methods resistant to out-
liers. In the area of classification analysis, we propose
a new robust method based on a regularized version of
the minimum weighted covariance determinant estimator.
The method is suitable for data with the number of vari-
ables exceeding the number of observations. The method
is based on implicit weights assigned to individual ob-
servations. Our approach is a unique attempt to com-
bine regularization and high robustness, allowing to down-
weight outlying high-dimensional observations. Classifi-
cation performance of new methods and some ideas con-
cerning classification analysis of high-dimensional data
are illustrated on real raw data as well as on data contami-
nated by severe outliers.

1 Robustness in Data Mining

Numerous data mining procedures are commonly based on
distance measures between observations or their groups,
clusters, etc. Most measures for continuous data are very
sensitive to the presence of outlying measurements in the
data. This is true for Euclidean, Mahalanobis, and Man-
hattan distances, the cosine similarity, and many others.
This paper has the aim to propose and study new robust
data mining methods for continous data by means of ro-
bustifying the Mahalanobis distance.

Sensitivity of standard data mining as well statistical
methods to the presence of outlying measurements in the
data has been repeatedly reported as a serious problem [5].
This is true in various areas of applications, including clas-
sification analysis, clustering, dimensionality reduction,
prediction models, etc. Robust methods in statistics and
data mining are those resistant to the influence of noise
and to the presence of outliers. Xanthopoulos et al. [27]
obtained various robust data mining procedures for con-
tinuous data as a solution of optimization tasks taking into
account uncertainty of the observed values. Robustness
aspects of neural networks and support vector machines
were overviewed in [15].

Another important problem in data mining commonly
occurs if the number of variablesp exceeds the number of
observationsn (i.e. n < p or evenn ≪ p). In this con-
text, we speak of high-dimensional data and their anal-
ysis is described as the largep/small n problem. Some
standard methods suffer from the curse of dimensionality,

which is manifested through numerical unstability or com-
putational infeasibility [19]. Two most common solutions
are suitable regularization and dimensionality reduction
(variable selection). The concept of regularization encom-
passes a variety of approaches allowing to solve ill-posed
or insoluble high-dimensional problems by means of ad-
ditional information, assumptions, or penalization [7]. So
far, regularized and at the same time robust data mining
procedures forn < p have been rarely discussed [14]. In
this paper, we present a unique attempt to combine princi-
ples of regularization and robust statistics forn≪ p.

This paper has the following structure. Section 2 dis-
cusses various existing approaches to linear discriminant
analysis forn ≪ p. Following sections have the aim
to combine regularization principles with ideas of robust
statistics to propose new robust methods for classifica-
tion analysis of high-dimensional data. In Section 3,
a new regularized robust classification method based on
M-estimation is proposed. In Section 4, a regularized
highly robust estimator of multivariate scatter based on
the minimum weighted covariance determinant estimator
is proposed, which exploits the idea of implicit weights as-
signed to individual observations. The core Section 5 ex-
ploits previous sections to propose a regularized highly ro-
bust classification method, based on down-weighting less
reliable high-dimensional observations. Following exam-
ples in Sections 6 and 7 illustrate important ideas concern-
ing the high dimensionality in the classification task and
the classification performance of individual methods. Fi-
nally, Section 8 concludes the paper.

2 Linear Discriminant Analysis

In this section, we recall the linear discriminant analysis
(LDA) as a standard classification analysis procedure and
its modifications suitable for data in then≪ p situation.

Classification analysis has the aim to construct (learn)
a decision rule based on a training data set, which is able
to automatically assign new data to one ofK groups. It as-
sumesn observations withp variables, observed inK dif-
ferent samples (groups) withp> K ≥ 2,

X11, . . . ,X1n1, . . . ,XK1, . . . ,XKnK , (1)

wheren = ∑K
k=1nk. LDA assumes the data in each group

to come from a Gaussian distribution, while the covariance
matrix Σ is the same across groups. Its pooled estimator
will be denoted byS. In its standard form, LDA assumes
n> p and is based on computing the Mahalanobis distance



between a new observationZ and the mean of each of the
K groups.

For n < p, the matrixS is singular and computing its
inverse is not possible. The most important approaches in-
clude regularization, i.e. replacing the computation ofS−1

by an appropriate alternative, performing a dimensionality
reduction prior to LDA, computing a pseudoinverse ma-
trix, which is however unstable due to a smalln, general-
ized SVD decomposition, or elimination of the common
null space of the between-group and within-group covari-
ance matrices [4].

Suitable regularized estimators of the covariance matrix
(e.g. [6]) are guaranteed to be regular and positive definite
even forn ≪ p. Habitually used regularized versions of
LDA for n≪ p have the form

S∗ = λS+(1−λ )T, λ ∈ (0,1), (2)

using a given target matrixT, which must be a regular
symmetric positive definite matrix of sizep× p. Its most
common choices include the identity matrixI p or a di-
agonal (non-identity) matrix. A suitable value ofλ can be
found by cross-validation. Nevertheless, their fast compu-
tation and numerical stability remains to be an important
issue [14].

3 Regularized M-LDA (M-RLDA)

M-estimators are the most common robust statistical esti-
mators applicable to a variety of tasks [12]. They origi-
nated in the seminal paper of Huber [9], who investigated
robust estimation of a location parameter. In this section,
we propose a new method denoted as M-RLDA, which ab-
breviates the regularized version of robust linear discrimi-
nant analysis based on M-estimation. However, the disad-
vantage of M-estimators is their low robustness in terms of
the breakdown point. Therefore, the approach of this sec-
tion is rather intended to yield an initial regularized robust
estimator for a highly robust approach in Section 5.

We consider the multivariate model withp-dimensional
dataX1, . . . ,Xn in the formXi = µ + ei , where the noise
random vectorse1, . . . ,en are independent following the
normal distributionN(0,Σ). Unfortunately, M-estimation
does not allow to jointly estimate the mean and covariance
matrix in a simple way [13]. Letψ denote the Huber’s
function. The expectation (population mean)µ will be es-
timated byX̄M = (X̄M

1 , . . . , X̄M
p )T , where the coordinateµi

will be estimated by the Huber’s estimator as the solution
of

n

∑
j=1

ψ(Xi j − X̄M
i ) = 0. (3)

To estimateΣ for a given estimatort ∈ IRp of µ , Tyler [25]
proposed an M-estimator which is computed iteratively as
the solution of

p·ave

{

(Xi − t)(Xi − t)T

(Xi − t)V−1
n (Xi − t)T

}

=Vn (4)

whereave denotes the average of the given values over
i = 1, . . . ,n. We will use its regularized version proposed
by Chen et al. [2] forn ≪ p. This estimator is based on
a ridge regularization of the estimator ofΣ in each iteration
of the computation and will be denoted asS∗M.

We assume the data (1) to observed inK groups. Let
X̄k,M denote the M-estimator of the mean in thek-th group.
Let

X̄∗
k,M = δ X̄k,M +(1−δ )X̄M, k= 1, . . . ,K, (5)

for δ ∈ (0,1) and letX̄M denote the overall M-estimator
across groups. Now we define a modified version of Ma-
halanobis distance based on M-estimation, denoted as M-
Mahalanobis distance, and a corresponding version of reg-
ularized LDA, denoted as M-RLDA.

Definition 1. The regularized M-Mahalanobis distance
between an observation Z and the k-th group is defined
as

(X̄∗
k,M −Z)TS∗−1

M (X̄∗
k,M −Z). (6)

Algorithm 1. M-RLDA.

Step 1 For a givenδ ∈ (0,1), compute the matrix

A= [X̄∗
1,M −Z, . . . , X̄∗

K,M −Z] (7)

of size p×K whose k-th column is̄X∗
k,M −Z.

Step 2 Compute S∗M as

S∗M = λSM +(1−λ )T (8)

with a fixedλ ∈ (0,1) and a given target matrix T .

Step 3 Compute and store the eigenvalues of S∗
M in the

diagonal matrix D∗, and compute and store the cor-
responding eigenvectors of S∗ in the orthogonal ma-
trix Q∗.

Step 4 Compute the matrix

B= D−1/2
∗ QT

∗ A (9)

and assign Z to group k if the column of B with largest
Euclidean norm is the k-th column.

Step 5 Repeat steps 1 to 4 with different values ofδ andλ
and find the classification rule with the best classifi-
cation performance.

For the special caseT = I p, which is commonly de-
noted as Tikhonov or ridge regularization ofS, a more ef-
ficient computation can be performed as follows.

Algorithm 2. M-RLDA for the ridge regularization.

Step 1 Compute the matrix (7) of size p×K whose k-th
column isX̄k−Z and compute the matrix Y as

Y = [X11− X̄M, . . . ,X1n1 − X̄M, . . . ,

XK1− X̄M, . . . ,XKnK − X̄M]T . (10)



Step 2 Compute the singular value decomposition of Y as

Y = PΣQT , (11)

with singular values{σ1, . . . ,σn} and complement
these singular values with p−n zero valuesσn+1 =
· · ·= σp = 0.

Step 3 For a fixedλ ∈ (0,1), compute D∗ =

= diag{λσ2
1 +(1−λ ), . . . ,λσ2

p +(1−λ )}. (12)

Step 4 Compute the matrix

B= D−1/2
∗ QTA (13)

and assign Z to group k if the column of B with largest
Euclidean norm is the k-th column.

Step 5 Repeat steps 2 to 4 with different values ofλ and
find the classification rule with the best classification
performance.

4 Implicitly Weighted Robust Methods

Our aim is a regularized highly robust classification analy-
sis procedure. Before we develop such method in Section
5, we will devote the present section to robust estimation
of parameters of high-dimensional data. This section starts
by recalling the least weighted squares regression estima-
tor [26] and the minimum weighted covariance determi-
nant (MWCD) estimator for multivariate data [16]. Both
methods are highly robust estimation procedures based on
assigning implicitly given weights to individual observa-
tions. However, they are computationally infeasible for
n < p. As a new result, a regularized version of the
MWCD estimator is proposed, which exploits the tools of
Section 3.

Linear regression remains to be the most commonly in-
vestigated statistical model in the context of robust statis-
tics [12]. Therefore, we will explain some important prin-
ciples on the standard linear regression model

Yi = β1Xi1+ · · ·+βpXip +ei , i = 1, . . . ,n. (14)

with independent identically distributed random errors
e1, . . . ,en, without assuming their Gaussian distribution.

We will need the following notation. Let us consider
(any) estimateb = (b1, . . . ,bp)

T ∈ IRp of the parameter
β = (β1, . . . ,βp)

T . We denote the residual corresponding
to thei-th observation by

ui(b) = yi −b1Xi1−·· ·−bpXip, i = 1, . . . ,n (15)

and let us order the squared residuals

u2
(1)(b)≤ u2

(2)(b)≤ ·· · ≤ u2
(n)(b). (16)

The idea of the highly robust LWS estimator is to
down-weight less reliable observations, which are likely

to be outliers. The weights are assigned to individual
data during the computation of the estimator based on
residuals. One possible choice of weights is based on
an implicit permutation of given (fixed) magnitudes of the
weightsw1, . . . ,wn fulfilling ∑n

i=1wi = 1 to the data. Data-
dependent adaptive weights of [3] are another choice.

The LWS estimator of(β1, . . . ,βp)
T in the model (14)

is defined as

bLWS= (bLWS
1 , . . . ,bLWS

p )T = argmin
b∈IRp

n

∑
i=1

wiu
2
(i)(b). (17)

The computation of the LWS estimator with adaptive
weights begins with an initial highly robust estimator and
proceeds to proposing values of the weights based on com-
paring the empirical distribution function of squared resid-
uals with the theoretical counterpart assuming normality.

Statistical methods based on ranks of observations have
appealing properties [11] in a variety of situations. The
LWS estimator has a high breakdown point, which is a sta-
tistical measure of sensitivity against outliers in the data
[12]. The estimator has asymptotically a 100 % efficiency
of the least squares estimator under Gaussian errors and its
relative efficiency has been numerically evaluated as high
(over 85 %) compared to maximum likelihood estimators
under various distributional models [3]. Moreover, we ac-
companied the LWS estimator by a robust coefficient of
determination and asymptotic hypothesis tests in [17].

Further, we consider the multivariate model withp-
dimensional dataX1, . . . ,Xn in the formXi = µ + ei with
noise modeled by independent random vectorse1, . . . ,en

following the normal distributionN(0,Σ). The MWCD
estimator, which estimates the parametersµ andΣ jointly
under the assumptionn > p, will be now recalled. Other
available robust estimators of parameters of multivariate
data were studied e.g. by [10, 5].

The MWCD-estimator of the mean of the data has the
form of a weighted mean. At the same time, the MWCD-
estimator ofΣ has the form of a weighted covariance
matrix. Both these estimators are computed with such
weights, which correspond to the optimal permutation of
given valuesw1, . . . ,wn with ∑n

i=1wi = 1. We do not as-
sume the data to come from the normal distribution. How-
ever, the data are assumed to be in general position, i.e. any
p observations among the total number ofn observations
are assumed to give a unique determination ofΣ.

Definition 2. The MWCD estimator ofµ denoted as
X̄MWCD is equal to the weighted mean of X1, . . . ,Xn in the
form X̄w = ∑n

i=1wiXi with such permutation of w1, . . . ,wn,
for which the determinant of

Sw =
n

∑
i=1

wi(Xi − X̄w)(Xi − X̄w)
T (18)

is minimal. The MWCD estimator ofΣ denoted as SMWCD

is equal to Sw with this optimal permutation of w1, . . . ,wn.



The MWCD with adaptive weights attains the finite-
sample breakdown point

{⌊

n− p+1
2

⌋}

/n (19)

for any p-dimensional dataX1, . . . ,Xn in general posi-
tion, where⌊a⌋ stands for the integer part ofa. At the
same time, (19) is the maximal breakdown point of affine-
equivariant estimators ofΣ [18].

The estimator cannot be computed forn < p. There-
fore, we define its regularized version, which exploits
the regularized robust Mahalanobis distance based on M-
estimation (6) and is computationally feasible even for
n≪ p.

Algorithm 3. Regularized MWCD estimator.

Step 1 Initialize the value of the loss function as+∞.

Step 2 Randomly select an initial set of n/2 observations.
ComputeX̄∗

M and S∗M based on these observations.
Denote T= X̄∗

M and C= S∗M.

Step 3 Compute the regularized M-Mahalanobis distance

d(i;T,C) =
[

(Xi −T)TC−1(Xi −T)
]1/2

(20)

for each observation Xi . Sort these distances in
ascending order. This determines a permutation
π(1), . . . ,πn of the indexes1,2, ...,n, which fulfills

d(π(1);T,C)≤ d(π(2);T,C)≤ ·· · ≤ d(π(n);T,C).
(21)

Assign the weights to invididual observations accord-
ing to the ranks of the Mahalanobis distances. Thus,
e.g. the observation Xπ(1) obtains the weight w1.

Step 4 The loss function is evaluated as the determinant
of the matrix

det(λSw+(1−λ )T) , (22)

where Sw is evaluated as (18) with the weights from
Step 3. If the loss is smaller than the previously ob-
tained value, continue with step 5. Otherwise go to
step 6.

Step 5 Store the values of the weights. Compute the
weighted mean and weighted covariance matrix us-
ing these weights. Continue with steps 2, 3, and 4.
This is repeated as long as the value of the loss de-
creases.

Step 6 Repeatedly (10 000 times) perform the steps 1 to 5.
The optimal weights are those which yield the mini-
mal value of the loss function over all repetitions of
steps 1 to 5.

5 Regularized Robust Classification
Analysis

In this section, we propose a regularized robust ver-
sion of the Mahalanobis distance together with a regular-
ized robust version of LDA, exploiting the tools of Sec-
tions 3 and 4. The new method MWCD-RLDA represents
an MWCD-based regularized linear discriminant analysis,
computed using a deformed Mahalanobis distance in the
multivariate space. We also present an efficient algorithm
for its computation. The MWCD estimator yields an esti-
mator of the expectation and covariance matrix of mul-
tivariate data jointly. While implicitly weighted robust
methods are known to be computationally infeasible for
high-dimensional data [1], our work overcomes the high
dimensionality by a sophisticated regularization. To the
best of our knowledge, this is a first attempt to consider
a highly robust estimator for high-dimensional data which
is based on implicit weights assigned to individual obser-
vations.

We assumep-dimensional dataX1, . . . ,Xn. The Maha-
lanobis distance will be formulated as a distance of an ob-
servationZ=(Z1, . . . ,Zp)

T from a group ofp-dimensional
observationsX1, . . . ,Xn. Let X̄MWCD andSMWCD denote the
estimators ofµ andΣ obtained by the regularized MWCD
estimator of Section 4.

We denote the regularized MWCD-estimator of the co-
variance matrixΣ as

S∗MWCD= λSMWCD+(1−λ )T, λ ∈ (0,1). (23)

The parameterλ ∈ (0,1) denotes a shrinkage estimator of
the covariance matrix across groups. A suitable value ofλ
is found by a cross-validation in the form of a grid search
over all possible values ofλ ∈ (0,1).

Definition 3. The regularized MWCD-Mahalanobis dis-
tance between an observation Z and the data X1, . . . ,Xn is
defined as

(X̄MWCD−Z)TS∗−1
MWCD(X̄MWCD−Z). (24)

Further, we assume the data to be observed inK differ-
ent groups as in (1). In this context, we replace (24) by
such version, where the mean of each group if shrunken
towards the overall MWCD-mean across groups. This
can be interpreted as a regularized (biased) version of the
MWCD-mean or Stein’s shrinkage estimator, which im-
proves the mean square error of the (unbiased) mean. It
can be alternatively derived in a Bayesian setting.

Tibshirani et al. [24] applied such shrinkage on regular
means of each group towards the overall mean, which im-
proved the classification performance, and claimed to im-
prove the robustness of their method PAM. We consider
their argument as misleading, because the finite-sample
breakdown point of PAM can be easily evaluated as only
1/n.



The overall MWCD-mean across groups will be de-
noted asX̄MWCD and the MWCD-mean of individual
groups asX̄MWCD

1 , . . . , X̄MWCD
K . We denote

X̄∗
k,MWCD= δ X̄k,MWCD+(1−δ )X̄MWCD (25)

for k= 1, . . . ,K andδ ∈ (0,1) to obtain the following form
of the Mahalanobis distance.

Definition 4. The regularized MWCD-Mahalanobis dis-
tance between an observation Z and the k-th group of the
data is defined as

(X̄∗
k,MWCD−Z)T(S∗MWCD)

−1(X̄∗
k,MWCD−Z). (26)

The values ofδ andλ can be found by cross-validation.
In an analogous way, the Mahalanobis distance can be for-
mulated as a distance between two groups etc.

Let us now consider data (1) observed inK groups.
Let a new regularized robust version of LDA denoted as
MWCD-RLDA be defined to assign an observationZ =
(Z1, . . . ,Zp)

T to groupk, if

argmin
j=1,...,K

(X̄∗
j,MWCD−Z)T(S∗MWCD)

−1(X̄∗
j,MWCD−Z) (27)

is attained forj = k.
From the computational point of view, (27) should be

always replaced by a rule based on regularized linear dis-
criminant scores. Thus,Z is classified to the groupk, if
l∗k > l∗j for every j 6= k, where

l∗k = (X̄∗
k,MWCD)

T(S∗MWCD)
−1Z+ logpk−

−
1
2
(X̄∗

k,MWCD)
T(S∗MWCD)

−1X̄∗
k,MWCD, (28)

and pk is a prior probability of observing an observation
from the k-th group fork = 1, . . . ,K. The situation with
l∗k = l∗k′ for k′ 6= k does not need a separate treatment, be-
cause it occurs with a zero probability for data coming
from a continuous distribution.

Algorithm 4. MWCD-RLDA.

Step 1 For a givenδ ∈ (0,1), compute the matrix

A= [X̄∗
1,MWCD−Z, . . . , X̄∗

K,MWCD−Z] (29)

of size p×K.

Step 2 Compute S∗MWCD according to (23) with a fixed
λ ∈ (0,1).

Step 3 Compute and store the eigenvalues of S∗
MWCD in

the diagonal matrix D∗, and compute and store the
corresponding eigenvectors of S∗

MWCD in the orthog-
onal matrix Q∗.

Step 4 Compute the matrix

B= D−1/2
∗ QT

∗ A (30)

and assign Z to group k if the column of B with largest
Euclidean norm is the k-th column.

Step 5 Repeat steps 1 to 5 with different values ofδ andλ
and find the classification rule with the best classifi-
cation performance.

The main computational costs are in step 3; the eigen-
decomposition costs about 9· p3 floating point operations.
Note that we need not (and should never) compute the in-
verse ofS∗MWCD, thus avoiding additional computations of
the Mahalanobis distance, which is expensive of orderp3

and numerically rather unstable. The group assignment
(27) is done by using

(X̄∗
k,MWCD−Z)T(S∗MWCD)

−1(X̄∗
k,MWCD−Z)

= (X̄∗
k,MWCD−Z)TQ∗D

−1
∗ QT

∗ (X̄
∗
k,MWCD−Z)

= ‖D−1/2
∗ QT

∗ (X̄k−Z)‖2. (31)

An algorithm for MWCD-RLDA using the ridge regu-
larization withT = I p can be obtained as a straightfor-
ward modification of Algorithm 2.

6 Metabolomic Profiles Example

We present an example on real molecular genetic data sets
in order to illustrate the behavior of the newly proposed
classification methods.

Classification Classification
method accuracy

LDA Infeasible
PAM 0.98

SCRDA 1.00
MWCD-RLDA 1.00

SVM 1.00
Classification tree 0.97

Self-organizing map 0.93
PCA=⇒ LDA 0.90

PCA=⇒ SCRDA 0.92
PCA=⇒ PAM 0.81

PCA=⇒ MWCD-RLDA 0.92

Table 1: Metabolomic profiles example. Classification ac-
curacy of various classification methods. PCA uses 20
principal components.

A prostate cancer metabolomic data set [23] is analyzed,
which containsp = 518 metabolites measured over two
groups of patients, namely those with a benign prostate
cancer (16 patients) and with other cancer types (26 pa-
tients). The task in both examples is to learn a classifica-
tion rule allowing to discriminate between the two classes
of individuals.



Classification Data
method Raw Contam.
LDA Infeasible Infeasible

PAM [24] 0.96 0.91
SCRDA [6] 1.00 0.95

MWCD-RLDA 1.00 1.00
SVM 1.00 0.98

Classification tree 0.55 0.51
Self-organizing map 0.93 0.90

Table 2: Keystroke dynamics example. Classification ac-
curacy of various classification methods for raw data and
for data contaminated by outliers.

We use various classification methods with default set-
tings in R software to distinguish between the 2 groups
of observations. The new method MWCD-RLDA is used
with linearly decreasing weights. The classification per-
formance is measured by the accuracy, i.e. number of
correctly classified cases divided by the total number of
cases [22].

The results of various classification methods are over-
viewed in Table 1. The newly proposed method MWCD-
RLDA turns out to perform reliably. We do not find ma-
jor differences in the classification performance of various
regularized versions of LDA. At the same time, MWCD-
RLDA has a good classification ability if applied on prin-
cipal components.

Our consequent analysis of principal components of the
data brings other arguments in favor of the regularization
appraoches used in this paper. There seems no remark-
able small group of genes responsible for a large por-
tion of variability of the data and the first few principal
components seem rather arbitrary. In such situations, if
there seems no clear interpretation of the principal com-
ponents, the preferable type of regularization seems to be
the Tikhonov regularization, i.e. the regularization in the
L2 norm, which is used throughout this paper.

7 Keystroke Dynamics Example

We analyze a real data subset from a larger keystroke dy-
namics study aimed at proposing a fast online software
system for person authentication. Here, we work with data
measured onK = 2 probands, who were asked to write the
word kladruby5-times each. The authentication is a clas-
sification task toK = 2 groups withn= 10, where there are
p = 15 (p > n) variables including 8 keystroke durations
and 7 keystroke latencies measured in milliseconds. Our
detailed analysis goes beyond the results of [21], where 32
probands were considered.

Table 2 gives classification accuracy of various meth-
ods obtained on raw data. The best results are obtained
with MWCD-RLDA, SCRDA, and support vector ma-
chines (SVM).

Further, we investigate the classification performance
of various methods on data artificially contaminated by
severe outliers. Proband-independent noise is generated
from normal distributionN(0,σ2 = 225). Its absolute val-
ues are added to all measurements for each proband and
classification rules are learned over this contaminated data
set. Only MWCD-RLDA turns out to be resistant to out-
liers, while regularized versions of LDA seem not to suffer
so strongly from their presence, compared to methods con-
structed without any regularization tools. It is remarkable
that Prediction Analysis for Microarrays (PAM) turns out
to be heavily influenced by outliers, because it has been in-
terpreted as a denoised version of diagonalized LDA [24].

Finally, we investigate the structure of the covariance
matrix S. The structure ofS will be investigated by ana-
lyzing principal components of the data.

Table 3 evaluates the contribution of the 9 principal
components to the separation between both groups as the
classification accuracy of LDA based on individual com-
ponents and pairs of components. The first principal com-
ponents turn out to be extremely influenced by outliers,
while their discrimination ability is larger than that of the
last components. The first two principal components are
shown in Figure 1. The last components contribute a little
to the variability of the data and their contribution to the
separation of the groups is also negligible.

It is tempting to perform LDA or regularized LDA
only on the major principal components. Actually, prin-
cipal components corresponding to zero eigenvalues have
been rigorously proven to have no discrimination effect for
n< p only recently [4]. Nevertheless, our example shows
the destructive effect of outliers onSand therefore on prin-
cipal component analysis (PCA). To explain the structure
of S in more details, let us mention that the data matrix
X has 10 singular values, the between-group covariance
matrix

B=
1

K−1

K

∑
k=1

n j(Xj − X̄)(Xj − X̄)T (32)

has 1 positive eigenvalue and the within-group covariance
matrix

W =
1

n−K

K

∑
k=1

nk

∑
i=1

(Xki − X̄k)(Xki − X̄l )
T (33)

has 10 positive eigenvalues, while the covariance matrix
S of size 15×15 has 9 positive eigenvalues and 6 eigen-
values exactly equal to 0. At any case, approaches avoid-
ing PCA are preferable, because PCA suffers heavily from
outliers and its regularized version using the Tikhonov reg-
ularization can be easily shown to be exactly equal to stan-
dard PCA.

8 Conclusions

Standard data mining procedures are very sensitive to the
presence of outlying measurements in the data, which



Principal Classification accuracy
component Indiv. Pair Cumulative

1 0.5
0.9

0.6
2 0.9 0.9
3 1.0

0.8
1.0

4 0.9 0.9
5 0.9

0.7
1.0

6 1.0 1.0
7 1.0

0.5
1.0

8 1.0 1.0
9 0.6 1.0

Table 3: Keystroke dynamics example: study of principal
components of the data. Classification accuracy of LDA
as the percentage of correctly identified samples based on
individual principal components and pairs of two principal
components, together with the cumulative contribution of
components 1, . . . , r for r = 1, . . . ,9.

Figure 1: Keystroke dynamics example: study of principal
components of the data. The 1st and 2nd principal com-
ponent of the data in group 1 (bullets) and group 2 (empty
circles).

makes robustness to their presence to be an important re-
quirement. This paper proposes several robust versions of
standard as well as regularized classification procedures
and algorithms for their computation.

Mining high-dimensional data with a large number of
variablesp becomes an important task in a variety of ap-
plications [19]. Numerous new methods have been pro-
posed in the literature for the analysis of big data, par-
ticularly with a large number of observationsn. On the
other hand, smaller attention attention has been paid to
methods for data mining and multivariate statistics for this
n ≪ p situation. Some of standard methods of data min-
ing or multivariate statistics are computationally infeasible
for high-dimensional data, others suffer from a numerical
instability and lack of robustness to noise or outlying mea-
surements. Sometimes it is claimed that some of the regu-
larized methods have been empirically observed to possess
reasonable robustness properties [14] although robustness

properties of regularized methods have never been system-
atically investigated.

We propose new robust versions of the Mahalanobis
distance between high-dimensional observations with the
number of variables exceeding the number of variables.
Particularly, we used M-estimation and the idea of implicit
weighting to obtain new robust measures of distance be-
tween multivariate observations. This has allowed us to
formulate new methods of classification analysis together
with algorithms for their computation suitable forn≪ p.
The new methods combine robustness with regularization
in the multivariate model in a unique way. Because robust
methods are computationally intensive themselves, which
requires a sophisticated approach to regularization. Sev-
eral new algorithms for shrinkage LDA are proposed, ex-
ploiting a shrinkage covariance matrix estimator towards
a regular target matrix (unit matrix).

The analysis of two real data sets reveals that the
classification performance of the newly proposed method
MWCD-RLDA seems to be comparable to available clas-
sification procedures, while it turns out to be superior for
data contaminated by noise. Apart from a good classifica-
tion performance, it is important to overview other suitable
properties of the newly proposed approach. Its formula
is elegant due to using the same kind of regularization in
theL2 norm for both means and covariance matrices. The
implicit weights assigned to individual observations allow
a clear interpretation. At the same time, implicit weights
are known to ensure a high breakdown point with respect
to a larger percentage of outliers in a variety of other situ-
ations [26, 17, 16]. MWCD-RLDA can be computed with
an efficient algorithm even forn≪ p, while even faster al-
gorithms can be proposed tailor-made for specific choices
of the target matrixT. Finally, our methods search for
optimal values of regularization parameters directly in the
classification task, while existing approaches to regular-
ized covariance matrix estimation exploit an analytical ex-
pression for the parameters, which are however not opti-
mal for the classification task [20].

Alternative regularization approaches based on theL1-
regularization or variable selection were described by [7].
To give an example of a regularization approach combin-
ing various regularization types together, let us mention
the ideas of [6] usingL2-regularization on covariance ma-
trices andL1-regularization on means. Such approaches
may be less suitable for data without several clearly strong
principal components contributing to explaining a large
portion of the variability of the data.

Other possible extensions of our ideas, which exceed
the scope of this paper, include the possibility to propose
other regularized robust data mining procedures, e.g. clas-
sification trees, entropy estimation,k-means clustering,
or dimensionality reduction by the minimum redundancy
maximum relevance (MRMR) algorithm. Some of them
may directly exploit the regularized robust Mahalanobis
distance of Section 5. Our future work is intended to in-
vestigate theoretical connections between regularized ver-



sions of LDA and PCA and to study alternative regulariza-
tion approaches in the context of LDA.
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[12] Jurěcková, J., Picek, J.: Robust statistical methods with R.
Chapman & Hall/CRC, Boca Raton, 2006
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