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Abstract. This paper is focused on regularized versions of classification analysis and their
computation for high-dimensional data. A variety of regularized classification methods has
been proposed and we critically discuss their computational aspects. We formulate several
new algorithms for shrinkage linear discriminant analysis, which exploits a shrinkage covariance
matrix estimator towards a regular target matrix. Numerical linear algebra considerations are
used to propose tailor-made algorithms for specific choices of the target matrix. Further, we
arrive at proposing a new classification method based on L2-regularization of group means and
the pooled covariance matrix and accompany it by an efficient algorithm for its computation.
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1 Introduction

Classification analysis methods have the aim to construct (learn) a decision rule based on a train-
ing data set, which is able to automatically assign new data to one of K groups. Linear dis-
criminant analysis (LDA) is a standard statistical classification method. In the whole paper,
we consider n observations with p variables, observed in K different samples (groups) with
p > K ≥ 2,

X11, . . . , X1n1 , . . . , XK1, . . . , XKnK
, (1)

where n =
∑K

k=1 nk.

LDA assumes the data in each group to come from a Gaussian distribution, while the co-
variance matrix Σ is the same across groups. Its pooled estimator will be denoted by S. LDA
in its standard form assumes n > p and is unsuitable for high-dimensional data with a number
of variables exceeding the number of observations (large p/small n problem). In case where
n < p, the matrix S of size p is singular and computing its inverse must be replaced by an
appropriate alternative. Available approaches in this context are based e.g. on pseudoinverse
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matrices, which are however unstable due to a small n [4]. Other proposals are based on the gen-
eralized SVD decomposition or on elimination of the common null space of the between-group
and within-group covariance matrices [2].

Various authors suggested to use a regularized version of LDA for n� p [3, 2, 4, 5]. Suitable
regularized estimators of the covariance matrix are guaranteed to be regular and positive definite
even for n� p. They have become established e.g. in image analysis, chemometrics, molecular
genetics, or econometrics, while their fast computation and numerical stability remains to be an
important issue [4, 7]. We will describe the most important approaches and critically discuss
their possible computation.

The first approach to a regularized discriminant analysis by [3] is based on a shrinkage
covariance matrix with two parameters, which are searched for in a grid search minimizing the
classification error. Later, the computation was criticized as computationally intensive in [8],
where a linear shrinkage estimator of the covariance matrix was proposed and the asymptotically
optimal value of the regularization parameter was derived. The method is implemented in the
corpcor package of R software; however, its computation for a large p is very slow.

Habitually used regularized versions of LDA are based either on regularizing only Σ using one
of approaches of [8] or on a double shrinkage applied on the covariance matrix as well as means
of each group. The latter approach was proposed by Guo et al. [4], who performed shrinking of
the covariance matrix towards an identity matrix and at the same time shrinking of the mean of
each group to zero. The method is implemented in the rda package of R software. For specific
values of the parameters, the computation is based on the SVD algorithm, without applying
methods of numerical linear algebra to decrease computational costs. The optimal values of
shrinkage parameters are optimized in a cross-validation over a 2-dimensional grid, which has
been described as tedious [4]. Moreover, there are many possible tuning parameters giving the
same cross-validation error rate. The computational effectivity and stability of habitually used
algorithms is not investigated even in the recent monograph [7] on covariance matrix estimation
for high-dimensional data.

This paper studies efficient algorithms for computing various regularized versions of LDA.
Section 2 of this paper formulates several algorithms for shrinkage LDA, which exploits a shrink-
age covariance matrix estimator towards a regular target matrix. The computational effectivity
of the algorithms is inspected using arguments of numerical linear algebra. For a specific choice
of the target matrix, we are able to propose a tailor-made algorithm with a lower computational
cost compared to algorithms which are formulated for a general context. Besides, we arrive at
proposing new versions of classification methods and accompany them by efficient algorithms
for their computation in Section 3. The classification performance of the methods is illustrated
on real data in Section 4.

2 Algorithms for Regularized Linear Discriminant
Analysis

This section is devoted to proposing and comparing new algorithms for a habitually used version
of the regularized LDA [4]. We use suitable matrix decompositions to propose efficient algorithms
either for a general choice of T or for its specific choices. To the best of our knowledge, tailor-
made algorithms for a specific T have not been described. We compare the new algorithms in
terms of their computational costs as well as numerical stability.
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We will describe one of habitually used regularized versions of LDA. This will be denoted as
LDA∗ to avoid confusion, because the concept of regularized discriminant analysis encompasses
several different methods [4]. A given target matrix T will be used, which must be a regular
symmetric positive definite matrix of size p × p. Its most common choices include the identity
matrix Ip or a diagonal (non-identity) matrix; other target matrices have been considered by [8].

Let us denote the mean of the observed values in the k-th group (k = 1, . . . ,K) by X̄k.
LDA∗ assigns a new observation Z = (Z1, . . . , Zp)

T to group k, if l∗k > l∗j for every j 6= k, where
the regularized linear discriminant score for the k-th group has the form

l∗k = X̄T
k (S∗)−1Z − 1

2
X̄T

k (S∗)−1X̄k + log pk, k = 1, . . . ,K, (2)

where pk is a prior probability of observing an observation from the k-th group and

S∗ = λS + (1− λ)T (3)

for λ ∈ [0, 1] denotes a shrinkage estimator of the covariance matrix across groups. The situation
with l∗k = l∗k′ for k′ 6= k does not need a separate treatment, because it occurs with a zero
probability for data coming from a continuous distribution. Equivalently, LDA∗ assigns a new
observation Z to group k, if

(X̄k − Z)TS∗−1(X̄k − Z) = min
j=1,...,K

{
(X̄j − Z)TS∗−1(X̄j − Z)

}
. (4)

First, the standard approach for computing LDA∗ may be improved by employing the eigen-
decomposition of S∗ for a fixed λ. A suitable value of λ is found by a cross-validation in the
form of a grid search over all possible values of λ ∈ [0, 1].

Algorithm 2.1.
LDA∗ for the general regularization (3) based on eigendecomposition.

Step 1 Compute the matrix

A = [X̄1 − Z, . . . , X̄K − Z] (5)

of size p×K whose k-th column is X̄k − Z.

Step 2 Compute S∗ according to (3) with a fixed λ ∈ [0, 1].

Step 3 Compute and store the eigenvalues of S∗ in the diagonal matrix D∗, and compute and
store the corresponding eigenvectors of S∗ in the orthogonal matrix Q∗.

Step 4 Compute the matrix

B = D
−1/2
∗ QT

∗A (6)

and assign Z to group k if the column of B with largest Euclidean norm is the k-th column.

Step 5 Repeat steps 2 to 4 with different values of λ and find the classification rule with the
best classification performance.

The main computational costs are in step 3; the eigendecomposition costs about 9·p3 floating
point operations. Note that we need not (and should never) compute the inverse of S∗, thus
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avoiding additional computations of the Mahalanobis distance, which is expensive of order p3

and numerically rather unstable. The group assignment (4) is done by using

(X̄j − Z)TS∗−1(X̄j − Z) = (X̄j − Z)TQ∗D
−1
∗ QT

∗ (X̄j − Z) = ‖D−1/2∗ QT
∗ (X̄j − Z)‖2. (7)

The algorithm can be made cheaper by replacing the eigendecomposition of S∗ with its Cholesky
decomposition

S∗ = L∗L
T
∗ , (8)

where L∗ is a nonsingular lower triangular matrix. The costs of Cholesky decomposition are
about 1/3 · p3 floating point operations. On the other hand, Cholesky decomposition will suffer
from instability when S∗ is not positive definite.

Algorithm 2.2.
LDA∗ for the general regularization (3) based on Cholesky decomposition.

Step 1 Compute the matrix
A = [X̄1 − Z, . . . , X̄K − Z] (9)

of size p×K whose k-th column is X̄k − Z.

Step 2 Compute S∗ according to (3) with a fixed λ ∈ [0, 1].

Step 3 Compute the Cholesky factor L∗ of S∗.

Step 4 Compute the matrix
B = LT

∗A (10)

and assign Z to group k if the column of B with largest Euclidean norm is the k-th column.

Step 5 Repeat steps 2 to 4 with different values of λ and find the classification rule with the
best classification performance.

For specific target matrices, we can further reduce computational costs by using the following
algorithm for LDA∗. The pooled estimator S can be written in the form

S = Y TY, Y = [X11 − X̄, . . . , X1n1 − X̄, . . . , XK1 − X̄, . . . , XKnK
− X̄]T (11)

where Y is of size n× p. Then using the singular value decomposition (SVD) of Y in the form

Y = PΣQT , (12)

we can express the eigendecomposition of S as

S = Y TY = (PΣQT )TPΣQT = QΣ2QT . (13)

The costs will be about 4·np2 floating point operations, thus with p� n the gain is considerable.
Moreover, if

S∗ = λS + (1− λ)Ip, λ ∈ [0, 1], (14)

we immediately obtain the needed eigendecomposition of S∗ as

S∗ = λS + (1− λ)Ip = Q
(
λΣ2 + (1− λ)Ip

)
QT . (15)

The SVD can be computed in a backward stable way with all singular values accurate up to
machine precision level [1]. For the special case (14), which is commonly denoted as Tikhonov
or ridge regularization of S, a more efficient computation can be performed as follows.
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Jan Kalina, Zdeněk Valenta and Jurjen Duintjer Tebbens 5

Algorithm 2.3.
LDA∗ for the ridge regularization (14).

Step 1 Compute the matrix
A = [X̄1 − Z, . . . , X̄K − Z] (16)

of size p×K whose k-th column is X̄k − Z and compute the matrix Y in (11).

Step 2 Compute the singular value decomposition of Y as

Y = PΣQT , (17)

with singular values {σ1, . . . , σn} and complement these singular values with p − n zero
values σn+1 = · · · = σp = 0.

Step 3 For a fixed λ ∈ [0, 1], compute

D∗ = diag{λσ21 + (1− λ), . . . , λσ2p + (1− λ)}. (18)

Step 4 Compute the matrix

B = D
−1/2
∗ QTA (19)

and assign Z to group k if the column of B with largest Euclidean norm is the k-th column.

Step 5 Repeat steps 2 to 4 with different values of λ and find the classification rule with the
best classification performance.

Eigenvalues of the regularized covariance matrix forming the matrix D∗ in (18) can be
interpreted as shrinkage eigenvalues.

In an analogous manner, algorithms for a regularized quadratic discriminant analysis (QDA)
can be obtained, using a regularized estimator of the covariance matrix in each group separately.

3 L2-regularized linear discriminant analysis

Disadvantages of SCRDA [4] include a computational intensity as well as an inconsistent ap-
proach to shrinkage. The means are namely modified by an L1-norm regularization and the
covariance matrix in the sense of the L2-norm. As an alternative, this section proposes a new
regularized version of LDA denoted as L2-LDA together with an efficient algorithm for its com-
putation. It employs a shrinkage estimator of Σ and shrunken means towards the overall mean
across groups. As a unique feature, both shrinkage approaches have the form of an L2-norm
regularization.

The classification rule of L2-LDA assigns a new observation Z to the k-th group, if l†k > l†j
for every j 6= k, where

l†k = X̄
′T
k (S∗)−1Z − 1

2
X̄

′T
k (S∗)−1X̄

′
k + log pk (20)

and X̄
′
k denotes the shrunken mean of the k-th group towards the overall mean computed across

groups. The method can be interpreted as based on a L2 regularized Mahalanobis distance.
As another contrast with the habitually used algorithm of SCRDA [4], we will estimate the
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parameter λ in a straightforward way using an asymptotically optimal value minimizing the
mean square error [8]. To avoid confusion, the asymptotically optimal value of λ will be denoted
by λ† and the corresponding shrinkage covariance matrix by

S† = λ†S + (1− λ†)T. (21)

Algorithm 3.1.
L2-LDA.

Step 1 Compute λ† as

λ† =
2
∑p

i=2

∑i−1
j=1 v̂ar(Sij)

2
∑p

i=2

∑i−1
j=1 S

2
ij +

∑p
i=1(Sii − 1)2

, (22)

where v̂ar(Sij) is the maximum likelihood estimator of the variance of values Sij for a fixed
i and j.

Step 2 Compute and store the eigenvalues of S† in the diagonal matrix D∗, and compute and
store the corresponding eigenvectors of S† in the orthogonal matrix Q∗.

Step 3 For a fixed δ ∈ [0, 1], compute X̄
′
k = δX̄k + (1− δ)X̄, k = 1, . . . ,K.

Step 4 Assign Z to group k, if

‖D−1/2∗ QT
∗ (X̄

′
k − Z)‖ = min

j=1,...,K
‖D−1/2∗ QT

∗ (X̄
′
j − Z)‖. (23)

Step 5 Repeat steps 3 and 4 for various δ and find the optimal classification rule yielding the
best classification performance.

Algorithm 3.1 is formulated for a general target matrix T . For a specific choice of T , a com-
putationally cheaper method can be obtained in an analogous way as Algorithms 2.2 and 2.3
from the general algorithm 2.1.

Another possibility is to regularize the within-group covariance matrix instead of regulariz-
ing S, which is however computationally more intensive.

4 Examples

We present two examples on real molecular genetic data sets in order to illustrate the behavior
of the newly proposed L2-LDA method.

Example 1 contains data from a cardiovascular genetic study of the Center of Biomedical
Informatics in Prague performed in 2006–2011. The data contain expressions of p = 38 590 gene
transcripts measured on 24 patients having a cerebrovascular stroke and 24 control persons.

In Example 2, a prostate cancer metabolomic data set [9] is analyzed, which contains p = 518
metabolites measured over two groups of patients, namely those with a benign prostate cancer
(16 patients) and with other cancer types (26 patients). The task in both examples is to learn
a classification rule allowing to discriminate between the two classes of individuals.

In both examples, we computed the classification methods described in this paper using the
algorithms of Sections 2 and 3. For comparison, we computed also other available classification
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Youden’s index
Method S∗ R Package Function Example 1 Example 2

SVM - e1071 svm 1.00 1.00
Classification tree - tree tree 0.94 0.97

Self-organizing map - kohonen som 0.88 0.93
Multilayer percpetron - nnet nnet Infeasible Infeasible

LDA - MASS lda Infeasible Infeasible
SCRDA (14) rda rda 1.00 1.00
LDA∗ (14) - - 1.00 1.00
LDA∗ (24) - - 1.00 1.00
L2-LDA (14) - - 1.00 1.00
L2-LDA (24) - - 1.00 1.00

PCA =⇒ LDA - - - 0.54 0.90
PCA =⇒ SCRDA (14) - - 0.71 0.92
PCA =⇒ LDA∗ (14) - - 0.63 0.81
PCA =⇒ LDA∗ (24) - - 0.63 0.81

PCA =⇒ L2-LDA (14) - - 0.71 0.92
PCA =⇒ L2-LDA (24) - - 0.71 0.92

PCA =⇒ MWCD-LDA - - - 0.69 0.90

Table 1. Results of Example 1 and Example 2. LDA∗ was computed using Algorithm 2.3 for
the choice (14) and Algorithm 2.2 for (24). L2-LDA was computed using Algorithm 3.1. PCA
uses 20 principal components.

methods, including the support vector machines (SVM), a classification tree, Kohonen’s self-
organizing map, a multilayer perceptron with 2 hidden layers, or the highly robust classification
method MWCD-LDA of [6]. Various regularized versions of LDA include the most common
choice T = Ip or another choice

S∗ = λS + (1− λ)sIp, λ ∈ [0, 1], s =

p∑
i=1

Sii/p. (24)

We used the default settings to compute them in R software packages, which are listed also in
Table 1. The classification performance is measured by means of the Youden’s index, which
is defined as sensitivity + specificity −1. The dimensionality reduction was performed by the
principal component analysis (PCA) with 20 principal components.

The results performed on raw data as well as after a dimensionality reduction reveal that
the regularized versions of LDA perform quite similarly. The newly proposed method L2-LDA
with an efficient algorithm seems to perform comparably with the available regularized methods
with less efficient computation. Besides, the choice of the target matrix T does not seem to play
an important role.

Further, we investigated the reduction in classification performance after reducing the di-
mensionality to 20 principal components in both examples. The approach of Algorithm 3.1
(PCA =⇒ L2-LDA) yields improved results compared to its standard counterpart (PCA =⇒
LDA). The results of regularized methods do not greatly differ from the robust MWCD-LDA

@ COMPSTAT 2014



8 Computation of Regularized Linear Discriminant Analysis

procedure, which indicates that regularizaed versions of LDA do not greatly suffer by the pres-
ence of outlying measurements in the data. Nevertheless, the robustness of regularized methods
with respect to outliers has not been systematically investigated [5].

To conclude the paper, several new algorithms for shrinkage LDA are proposed, exploiting
a shrinkage covariance matrix estimator towards a regular target matrix. Some algorithms
are tailor-made for a specific choice of the target matrix and their computational costs are
discussed. A new regularized classification method L2-LDA is proposed and accompanied by
an efficient algorithm. An analysis of two real data sets reveals its classification performance to
be comparable to available regularized classification methods for high-dimensional data.
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[8] Schäfer, J. and Strimmer K. (2005) A shrinkage approach to large-scale covariance matrix
estimation and implications for functional genomics. Statistical Applications in Genetics
and Molecular Biology, 4, Article 32.

[9] Sreekumar, A. et al. (2009) Metabolomic profiles delineate potential role for sarcosine in
prostate cancer progression. Nature, 457, 910–914.

COMPSTAT 2014 Proceedings


