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The condition number

The matrix condition number: an important quantity in matrix theory and
computations. We consider square nonsingular matrices:

κ(A) = ‖A‖ · ‖A
−1‖
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The condition number

The matrix condition number: an important quantity in matrix theory and
computations. We consider square nonsingular matrices:

κ(A) = ‖A‖ · ‖A
−1‖

The condition number is used, among others, to

assess the quality of computed solutions

estimate the sensitivity to perturbations

monitor and control adaptive computational processes.
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Introduction: Estimators for ILU

Applications involving adaptive computational processes include:
adaptive filters, recursive least-squares, ACE for multilevel PDE
solvers.
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Introduction: Estimators for ILU

Applications involving adaptive computational processes include:
adaptive filters, recursive least-squares, ACE for multilevel PDE
solvers.

In this talk we are interested in the adaptive process of incomplete LU
factorization using dropping and pivoting.

It is important to monitor the condition number of the submatrices
that are computed progressively in the incomplete factorization
process:

If A is incompletely factorized as

A ≈ LU,

then the preconditioned matrix is, e.g.

L−1AU−1

(or AU−1L−1 or other variants) and the norms of L−1 and U−1

directly influence the stability of the preconditioned system.
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Introduction: Dropping rules

In fact, it has been shown that dropping rules based on the sizes of
L−1 and U−1 lead, with appropriate pivoting, to robust ILU methods
[Bollhöfer 2001, 2003, Bollhöfer & Saad 2006 ].
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[Bollhöfer 2001, 2003, Bollhöfer & Saad 2006 ].

More precisely, dropping of new entries for the kth leading submatrix
constructed in the ILU process is done according to the rule

|Ljk| · ‖eT
k L−1‖∞ ≤ τ,

and similarly for new entries of U.

The information the size of ‖eT
k L−1‖∞ is obtained by using a cheap

condition estimator for the ∞-norm.

In recently introduced mixed direct/inverse decomposition methods
called Balanced Incomplete Factorization (BIF) for Cholesky (or LDU)
decomposition [Bru & Marín & Mas & Tůma 2008, 2010] similar dropping
rules are used, but in this type of incomplete decomposition the
inverse triangular factors are available as a by-product of the
factorization process.
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Introduction: Dropping rules

In the mixed direct/inverse BIF method, the main idea is to balance
the growth of both the direct and the inverse factors by exploiting the
natural relation between the dropping rules
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In the mixed direct/inverse BIF method, the main idea is to balance
the growth of both the direct and the inverse factors by exploiting the
natural relation between the dropping rules

|Ljk| · ‖eT
k L−1‖∞ ≤ τ, |L−1

jk | · ‖eT
k L‖∞ ≤ τ,

and similarly for U and U−1.

But if the inverses of the triangular factors are available, perhaps even
more robust dropping rules can be obtained from information on the
size of the entire submatrix ‖L−1

k ‖ instead of its kth row ‖eT
k L−1‖.

In this talk we present a relatively accurate 2-norm condition
estimator which is very suited for use during incomplete factorization
and which assumes that inverses of triangular factors are available (or
can be computed cheaply).
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Introduction: Incremental estimation

Traditionally, 2-norm condition number estimators assume a triangular
decomposition and compute estimates for the factors.
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Traditionally, 2-norm condition number estimators assume a triangular
decomposition and compute estimates for the factors. E.g., if A is
symmetric positive definite with Cholesky decomposition

A = RT R,

then the condition number of A satisfies

κ(A) = κ(R)2 = κ(RT )2.

κ(R) can be cheaply estimated with a technique called incremental

condition number estimation, which is suited for incomplete factorization.
Main idea: Subsequent estimation for all principal leading submatrices:

❅
❅

❅
❅

❅
❅

❅

0

k

k+1

R = ⇒ every column is accessed only once.

6 / 50



Introduction: Motivation

The introduction of incremental techniques by Bischof in 1990 was a
milestone for 2-norm estimators.
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Introduction: Motivation

The introduction of incremental techniques by Bischof in 1990 was a
milestone for 2-norm estimators.

Other papers on incremental condition estimation include [Bischof 1991],
[Bischof & Pierce & Lewis 1990], [Bischof & Tang 1992], [Ferng & Golub & Plemmons

1991], [Pierce & Plemmons 1992], [Stewart 1998], [Duff & Vömel 2002].

The starting point for our method: the methods by Bischof (1990)
(incremental condition number estimation - ICE, denoted with a
superscript C) and Duff, Vömel (2002) (incremental norm estimation
- INE, denoted with a superscript N).
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ICE - Bischof (1990)

Consider two leading principal submatrices R and R̂ such that

R̂ =

[

R v
0 γ

]

.
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R̂ =

[

R v
0 γ

]

.

Let the SVD of R be
R = UΣV T ,

then with a left minimum singular vector u−, clearly

‖uT
−

R‖ = ‖uT
−

UΣV T ‖ = σ−(R).

Bischof (1990): If y− is an approximate left minimum singular vector, then

‖yT
−

R‖ ≡ σC
−

(R) ≈ σ−(R)

and we get an incremented approximate left minimum singular vector ŷ−

for R̂ from y− putting

‖ŷT
−

R̂‖ = mins2+c2=1

∥

∥

∥

∥

∥

[

s yT
−

, c
]

[

R v
0 γ

]∥

∥

∥

∥

∥

.
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ICE - Bischof (1990)

This minimization problem is easily solved by taking s and c as the entries
of the eigenvector corresponding to the minimum eigenvalue of







σC
−

(R)2 + (yT
−

v)2 γ(yT
−

v)

γ(yT
−

v) γ2






.
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−

v)2 γ(yT
−

v)

γ(yT
−

v) γ2






.

Then the incremented estimate for R̂ is defined as

‖ŷT
−

R̂‖ = ‖[ s yT
−

, c ]R̂‖ ≡ σC
−

(R̂) ≈ σ−(R̂).

To find an estimate for σ+(R̂) one applies the same technique but
starting with an approximate left maximum singular vector y+ and
incrementing it using the maximum eigenvector of







σC
+(R)2 + (yT

+v)2 γ(yT
+v)

γ(yT
+v) γ2






.
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INE - Duff, Vömel (2002)

Considering again

R̂ =

[

R v
0 γ

]

,

Duff and Vömel (2002) compute estimates to extremal (minimum or
maximum) singular values and right singular vectors: Starting from

σN
ext(R) = ‖Rzext‖ ≈ σext(R),
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‖R̂ẑext‖ = opts2+c2=1

∥

∥

∥

∥

∥

[

R v
0 γ

] [

s zext

c

]∥

∥

∥

∥

∥

.

10 / 50



INE - Duff, Vömel (2002)

Considering again

R̂ =

[

R v
0 γ

]

,

Duff and Vömel (2002) compute estimates to extremal (minimum or
maximum) singular values and right singular vectors: Starting from

σN
ext(R) = ‖Rzext‖ ≈ σext(R),

‖R̂ẑext‖ = opts2+c2=1

∥

∥

∥

∥

∥

[

R v
0 γ

] [

s zext

c

]∥

∥

∥

∥

∥

.

Again, s and c are the components of the eigenvector corresponding to
the extremal (minimum or maximum) eigenvalue of







σN
ext(R)2 zT

extR
T v

zT
extR

T v vT v + γ2






.

10 / 50



ICE versus INE

In both ICE and INE the main computational costs come from
forming inner products needed to define the size two matrices whose
eigenvectors are needed.
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ICE versus INE

In both ICE and INE the main computational costs come from
forming inner products needed to define the size two matrices whose
eigenvectors are needed.

This gives for both ICE and INE computational costs of the order n2

to estimate the condition number of a dense uppper triangular matrix
of size n.

Based on their definitions, it is very hard to guess which technique
will perform better.

For dense matrices ICE seems to be superior in general, but INE has
been advocated for sparse matrices.

But if we need only estimates of the maximum singular value σ+(R),
INE usually does better. This is why INE is called incremental norm

estimation.
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Experiment

We generate 50 random matrices B of dimension 100 with the
Matlab command B = randn(100, 100)
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Experiment

We generate 50 random matrices B of dimension 100 with the
Matlab command B = randn(100, 100)

We compute the Cholesky decompositions RT R of the 50 symmetric
positive definite matrices A = BBT + I100

We compute the estimations σC
+(R) and σC

−
(R)

In the following graph we display the quality of the estimations
through the number

(

σC
+

(R)

σC
−

(R)

)2

κ(A)
,

where κ(A) is the true condition number. Note that we always have

(

σC
+(R)

σC
−

(R)

)2

≤ κ(A).
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Experiment with ICE
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Quality of the estimator ICE for 50 random upper triangular matrices of
dimension 100.
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Experiment with ICE and INE
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Experiment with ICE and INE: Only norm estimates
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Quality of the ICE technique used to estimate the largest singular value
(black) and of the INE technique used to estimate the largest singular
value (blue) for 50 random upper triangular matrices of dimension 100.
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ICE and INE when both direct and inverse factors

available: ICE

We now assume we have both R and R−1
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Then we can for instance run ICE on R−1 and use the additional
estimations

1

σC
+(R−1)

≈ σ−(R),
1

σC
−

(R−1)
≈ σ+(R).

In the following graph we use the same data as before and take the best
of both estimations, we display

(

max(σC

+
(R), σC

−

(R−1)−1)

min(σC
−

(R), σC
+

(R−1)−1)

)2

κ(A)
.
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Experiment with ICE when both direct and inverse factors

available
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Quality of the estimator ICE without (black) and with exploiting the
inverse (green).
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ICE and INE when both direct and inverse factors

available: ICE

Theorem

Computing the inverse factor R−1 in addition to R does not give any

improvement for ICE:
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improvement for ICE: Let R be a nonsingular upper triangular matrix.

Then the ICE estimates of the singular values of R and R−1 satisfy

σC
−

(R) = 1/σC
+(R−1).

The approximate left singular vectors y− and x+ corresponding to the ICE

estimates for R and R−1, respectively, satisfy

σC
−

(R)xT
+ = yT

−
R.

Similarly, one can prove σC
+(R) = 1/σC

−
(R−1).
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ICE and INE when both direct and inverse factors

available: INE

Theorem

INE maximization applied to R−1 may provide a better estimate than

INE minimization applied to R: Let R be a nonsingular upper triangular

matrix. Assume that the INE estimates of the singular values of R and

R−1 are exact:

1/σN
+ (R−1) = σN

−
(R) = σ−(R).

Then the INE estimates of the singular values related to the incremented

matrix satisfy

1/σN
+ (R̂−1) ≤ σN

−
(R̂)

with equality if and only if v is collinear with the left singular vector

corresponding to the smallest singular value of R.
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ICE and INE when both direct and inverse factors

available: INE

An analogue of the previous theorem for estimates of the maximum
singular value shows that

1/σN
−

(R̂−1) ≤ σN
+ (R̂).

In this sense, for INE maximization performs better than minimization.

21 / 50



ICE and INE when both direct and inverse factors

available: INE

An analogue of the previous theorem for estimates of the maximum
singular value shows that

1/σN
−

(R̂−1) ≤ σN
+ (R̂).

In this sense, for INE maximization performs better than minimization.

In case the assumption is relaxed to 1/σN
+ (R−1) ≤ σN

−
(R) we obtain a

rather technical theorem, saying essentially that maximization with R−1 is
in most cases superior to minimization with R.
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Small example: ICE and INE with and without inverse

R =







2 0 1
1 0

1






, σ−(R) = 0.874
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+(R̂−1),
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−

(R̂) = 0.618, and 1/σN
+ ( ˆR−1) = 0.7071.

Nevertheless, in all performed numerical experiments we found that σN
−

(R̂)

gives an estimate which is worse than 1/σN
+ (R̂−1).

We now give a striking example.
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An example showing the possible gap between INE with

and without using the inverse

0 20 40 60 80 100
10

−2

10
−1

10
0

10
1

Figure : INE estimation of the smallest singular value of the 1D Laplacians of size
one until hundred: INE with minimization (solid line), INE with maximization
(circles) and exact minimum singular values (crosses).
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An example showing the possible gap between INE with

and without using the inverse
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Figure : INE estimation of the smallest singular value of the 1D Laplacians of size
fifty until hundred (zoom of previous figure for INE with maximization and exact
minimum singular values).
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Experiment with INE
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Quality of the estimator INE for 50 random upper triangular matrices of
dimension 100.
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Experiment with INE when both direct and inverse factors

available
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Quality of the standard INE estimator (blue) and of INE using
maximization and R−1 to estimate the smallest singular value (red).
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Why such an improvement?

This significant improvement is partly explained by the fact that a
moderate improvement of the estimate for σmin(R) (from using the
inverse) has an important impact because σmin(R) is typically small
and appears in the denominator in

κ(R) =
σmax(R)

σmin(R)
≈

σN
+ (R)

σN
−

(R)
.
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and appears in the denominator in

κ(R) =
σmax(R)

σmin(R)
≈

σN
+ (R)

σN
−

(R)
.

Similarly, if σmin(R) is slightly better estimated with INE than with
ICE (expoiting the inverse factor), the improvement for the condition
number estimate will be more important.

This can be expected because we have observed that INE gives better
estimates of maximum singular values than ICE, in particular

1/σN
+ (R̂−1) < 1/σC

+(R̂−1).
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Experiment with INE when both direct and inverse factors

available
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Experiment with INE and ICE when both direct and

inverse factors available
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Quality of INE (blue), of INE using maximization and R−1 to estimate the
smallest singular value (red) and of standard ICE (black).
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Short summary

Summarizing, we showed that

ICE cannot profit from the presence of the inverse factor.
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Short summary

Summarizing, we showed that

ICE cannot profit from the presence of the inverse factor.

INE can profit from the presence of the inverse factor when it used in
a maximization process.

This does not yet explain why INE using maximization (for the inverse
factor) is more powerful than ICE using maximization (for either the
direct or the inverse factor). This was observed in the experiments.

We now give theoretical results which make it plausible that INE
maximization will tend to perform better than ICE maximization.
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A superiority condition for INE

Theorem

Consider norm estimation of the incremented matrix

R̂ =

[

R v
0 γ

]

,

let ICE and INE start with σ+ ≡ σC
+(R) = σN

+ (R); let y be the ICE

approximate LSV, z be the INE approximate RSV and w = Rz/σ+. Then

σN
+ (R̂) ≥ σC

+(R̂) if (vT w)2 ≥ ρ,

where the critical value ρ is the smaller root of the quadratic equation

(vT w)4 +

(

γ2 + (vT y)2

σ2
+

(

vT v − (vT y)2
)

− vT v − (vT y)2

)

(vT w)2

+ (vT y)2

(

γ2 + vT v

σ2
+

(

(vT y)2 − vT v
)

+ vT v

)

= 0.
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Graphical demonstration of potential INE superiority

In the next figures,

The superiority criterion for INE expressed by the value max(ρ, 0) is
given by the z-axes.
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The superiority criterion for INE expressed by the value max(ρ, 0) is
given by the z-axes.

Without loss of generality we can assume σC
+(R) = σN

+ (R) = 1.

Then the coefficients of the quadratic equation depend on the sizes of
v, γ and (vT y)2 only. We fix vT v.

The x-axes of the following figures represent the possible values of
(vT y)2.

The y-axes represent values of γ2, i.e. the square of the new diagonal
entry.
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Graphical demonstration of potential INE superiority
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Figure : Critical value ρ in dependence of (vT y)2 (x-axis) and γ2 (y-axis) with
σ+ = 1, ‖v‖2 = 0.1.
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Figure : Critical value ρ in dependence of (vT y)2 (x-axis) and γ2 (y-axis) with
σ+ = 1, ‖v‖2 = 1.

35 / 50



Graphical demonstration of potential INE superiority
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Figure : Critical value ρ in dependence of (vT y)2 (x-axis) and γ2 (y-axis) with
σ+ = 1, ‖v‖2 = 10.
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Graphical demonstration of potential INE superiority

The previous theorem can also be formulated when

σC
+(R) 6= σN

+ (R).
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Graphical demonstration of potential INE superiority

The previous theorem can also be formulated when

σC
+(R) 6= σN

+ (R).

Let
∆ ≡

√

(σN
+ )2 − (σC

+)2, σN
+ ≥ σC

+.

Intuitively we expect ∆ > 0 to even increase the potential superiority
of INE over ICE.
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Graphical demonstration of potential INE superiority
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Figure : Critical value ρ in dependence of (vT y)2 (x-axis) and γ2 (y-axis) with
σ+ = 1, ∆ = 0.6, ‖v‖2 = 0.1.
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Graphical demonstration of potential INE superiority
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Figure : Critical value ρ in dependence of (vT y)2 (x-axis) and γ2 (y-axis) with
σ+ = 1, ∆ = 0.6, ‖v‖2 = 1.
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Graphical demonstration of potential INE superiority
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Figure : Critical value ρ in dependence of (vT y)2 (x-axis) and γ2 (y-axis) with
∆ = 0.6, ‖v‖2 = 10.
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The compared estimators

We will compare the following estimators:

The original ICE technique with the estimates defined as

σC
+(R)/σC

−
(R).
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The original INE technique with the estimates defined by
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−
(R).

The INE technique based on maximization only, i.e. estimates defined
as

σN
+ (R)/

(

σN
+ (R−1)

)

−1
.

The INE technique based on minimization only which uses the matrix
inverse as well, that is

(

σN
−

(R−1)
)

−1
/σN

−
(R).

41 / 50



Comparison 1

Example 1: 50 matrices A=rand(100,100) - rand(100,100), dimension 100,
colamd, R from the QR decomposition of A. [Bischof 1990, Section 4].
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Figure : Ratio of estimate to real condition number for the 50 matrices in
example 1. Solid line: ICE (original), pluses: INE with inverse and using only
maximization, circles: INE (original), squares: INE with inverse and using only
minimization.
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Comparison 2

Example 2: 50 matrices A = UΣV T of size 100 with prescribed condition
number κ choosing

Σ = diag(σ1, . . . , σ100),

with
σk = αk, 1 ≤ k ≤ 100, α = κ−

1

99 .

U and V are random unitary factors, R from the QR decomposition of A
with colamd ([Bischof 1990, Section 4, Test 2], [Duff & Vömel 2002, Section 5, Table 5.4]).

With κ(A) = 10 we obtain:
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Comparison 3
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Figure : Ratio of estimate to real condition number for the 50 matrices in
example 2 with κ(A) = 10. Solid line: ICE (original), pluses: INE with inverse
and using only maximization, circles: INE (original), squares: INE with inverse
and using only minimization.
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Comparison 4
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Figure : Ratio of estimate to real condition number for the 50 matrices in
example 2 with κ(A) = 100. Solid line: ICE (original), pluses: INE with inverse
and using only maximization, circles: INE (original), squares: INE with inverse
and using only minimization.
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Comparison 5
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Figure : Ratio of estimate to real condition number for the 50 matrices in
example 2 with κ(A) = 1000. Solid line: ICE (original), pluses: INE with inverse
and using only maximization, circles: INE (original), squares: INE with inverse
and using only minimization.
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Matrices from MatrixMarket
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Figure : Ratio of estimate to actual condition number for the 20 matrices from
the Matrix Market collection with column pivoting. Solid line: ICE (original),
pluses: INE with inverse and using only maximization, circles: INE (original),
squares: INE with inverse and using only minimization.

47 / 50



Conclusions

The two main 2-norm incremental condition estimators are inherently
different - confirmed both theoretically and experimentally.
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Conclusions

The two main 2-norm incremental condition estimators are inherently
different - confirmed both theoretically and experimentally.

INE strategy using both the direct and inverse factor and
maximization only is a method of choice yielding a highly accurate
2-norm estimator.

Future work: block algorithm, using the estimator inside a incomplete
decomposition.
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Last but not least

Thank you for your attention!
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