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The matrix condition number for square nonsingular matrices

κ(A) = ‖A‖ · ‖A−1‖

is an important quantity in matrix theory and computations. It is used, among others, to

assess the quality of computed solutions

estimate the sensitivity to perturbations

monitor and control adaptive computational processes like adaptive filters, recursive least-squares or ACE for

multilevel PDE solvers.

Robust dropping rules

We are particularly interested in the adaptive process of incomplete LU factorization using dropping and pivoting

where it is important to monitor the condition number of the submatrices that are progressively computed: If A

is incompletely factorized as

A ≈ LU,

then the preconditioned matrix is, e.g.,

L−1AU−1

(or AU−1L−1 or other variants). Therefore the norms of L−1 and U−1 directly influence the stability of the

preconditioned system.

Dropping rules based on the sizes of L−1 and U−1 lead, with appropriate pivoting, to robust ILU

methods [2, 3, 5, 6]. For example, dropping of new entries for the kth leading submatrix of L constructed in the

ILU process is done in ILUPACK [4] according to the rule

|Ljk| · ‖e
T
k L

−1‖∞ ≤ τ,

and similarly for new entries of U . Information about the size of ‖eTk L
−1‖∞ is obtained by using a cheap

condition estimator for the ∞-norm.

Mixed direct/inverse factorization
In recently introduced mixed direct/inverse decomposition methods called Balanced Incomplete Factorization

(BIF) for incomplete Cholesky or LDU decomposition [7, 8] similar dropping rules are used, but in this type of

incomplete decomposition the inverse triangular factors are available as a by-product of the factorization

process. The main idea is to balance the growth of both the direct and the inverse factors by exploiting the

dropping rules

|Ljk| · ‖e
T
k L

−1‖∞ ≤ τ, |L−1
jk
| · ‖eTk L‖∞ ≤ τ,

and similarly for entries of U and U−1.
If the inverses of the triangular factors are available, perhaps even more robust dropping rules can be obtained

from information on the size of the entire submatrix ‖L−1
k
‖ instead of its kth row ‖eT

k
L−1‖. We present a

relatively accurate 2-norm condition number estimator which is very suited for use during incomplete

factorization and which assumes that inverses of triangular factors are available (or can be computed cheaply).

Incremental condition number estimation
Traditionally, 2-norm condition number estimators assume a triangular decomposition and compute estimates for

the factors. E.g., if A is symmetric positive definite with Cholesky decomposition

A = RTR,

then the condition number of A satisfies

κ(A) = κ(R)2.

κ(R) can be cheaply estimated with a technique called incremental condition number estimation, introduced in

the nineties by Bischof [1]. It computes a sequence of approximate condition numbers of the leading upper left

submatrices of growing dimension. The approximation for the current submatrix is obtained from an

approximate singular vector constructed without accessing the previous submatrices. This makes the procedure

relatively inexpensive and particularly suited when a triangular matrix is computed one row or column at a time.

ICE: Incremental condition estimation as proposed by Bischof [1]

Consider two leading principal submatrices R and R̂ such that

R̂ =

[

R v

0 γ

]

.

If y− is an approximate left minimum singular vector, then this gives an estimate of the minimum singular value

σC−(R) ≡ ‖yT−R‖ ≈ σ−(R).

We get an incremented approximate left minimum singular vector ŷ− for R̂ from y− by putting

‖ŷT−R̂‖ = mins2+c2=1

∥

∥

∥

∥

[

s yT−, c
]

[

R v

0 γ

]
∥

∥

∥

∥

.

This minimization problem is easily solved by taking s and c as the entries of the eigenvector corresponding to

the minimum eigenvalue of




σC−(R)
2 + (yT−v)

2 γ(yT−v)

γ(yT−v) γ2



 .

Then the incremented estimate for R̂ is defined as

‖ŷT−R̂‖ = ‖[ s yT−, c ]R̂‖ ≡ σC−(R̂) ≈ σ−(R̂).

To find an estimate for σ+(R̂) one applies the same technique but starting with an approximate left maximum

singular vector y+ and incrementing it with the entries c and s from the maximum eigenvector of




σC+(R)
2 + (yT+v)

2 γ(yT+v)

γ(yT+v) γ2



 .

INE: An alternative technique proposed by Du� and Vömel [9]
A similar strategy based on approximate right singular vectors was proposed later by Du� and Vömel [9] and

recommended for norm estimation and for sparse matrices. It estimates extremal (minimum or maximum)

singular values and right singular vectors for R̂ starting from

σNext(R) = ‖Rzext‖ ≈ σext(R).

Then zext is incremented to ẑext as

‖R̂ẑext‖ = opts2+c2=1

∥

∥

∥

∥

[

R v

0 γ

] [

s zext
c

]∥

∥

∥

∥

where s and c are the entries of the eigenvector corresponding to the extremal eigenvalue of




σNext(R)
2 zTextR

Tv

zTextR
Tv vTv + γ2



 .

Which incremental technique is superior ?
In both ICE and INE the main computational costs come from forming inner products in the entries of the size

two matrices whose eigenvectors are needed.

This gives for both ICE and INE computational costs of the order n2 to estimate the condition number of a

dense uppper triangular matrix of size n.

Based on their definitions, it is very hard to guess which technique will perform better.

For dense matrices ICE seems to be superior in general, but INE has been advocated for sparse matrices.

But if we need only estimates of the maximum singular value σ+(R), INE usually does better. This is probably

why INE is called incremental norm estimation.

ICE and INE if inverse factors are available
We now assume we have both R and R−1. Then we can for instance run ICE on R−1 and use the additional

estimations
1

σC+(R
−1)

≈ σ−(R),
1

σC−(R
−1)

≈ σ+(R).

Surprisingly, this gives no better incremental estimator (see [10, Theorem 3.2]):

Theorem 1

Let R be a nonsingular upper triangular matrix. Then the ICE estimates of the singular values of R and R−1 satisfy

σC−(R) = 1/σC+(R
−1).

The approximate left singular vectors y− and x+ corresponding to the ICE estimates for R and R−1, respectively,

satisfy

σC−(R)x
T
+ = yT−R.

One can prove σC+(R) = 1/σC−(R
−1) as well. Using the inverse does improve INE estimation [10, Theorem 3.2]:

Theorem 2

Let R be a nonsingular upper triangular matrix. Assume that the INE estimates of the singular values of R and

R−1 are exact:

1/σN+(R
−1) = σN−(R) = σ−(R).

Then the INE estimates of the singular values related to the incremented matrix satisfy

1/σN+(R̂
−1) ≤ σN−(R̂)

with equality if and only if v is collinear with the left singular vector for the smallest singular value of R.

In case the assumption is relaxed to 1/σN+(R
−1) ≤ σN−(R) we obtain a rather technical theorem, saying essentially

that maximization with R−1 is in most cases superior to minimization with R. Nevertheless, in all performed

numerical experiments we found that σN−(R̂) gives an estimate which is worse than 1/σN+(R̂
−1). For example:
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Figure 1 : INE estimation of the smallest singular

value for the 1D Laplacians of size one until hundred:

INE with minimization (solid line), INE with

maximization exploiting the inverse (circles) and exact

minimum singular values (crosses).
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Figure 2 : Zoom of Figure 1. INE estimation of the

smallest singular value for the 1D Laplacians of size

fifty until hundred for INE with maximization

exploiting the inverse (circles) and exact minimum

singular values (crosses) .

Hence if the inverse of R is available, it is recommendable to use 1/σN+(R̂
−1) instead of σN−(R̂) to approximate the

minimum singular value. An analogue of Theorem 2 for estimates of the maximum singular value shows that

1/σN−(R̂
−1) ≤ σN+(R̂).

Thus for the maximum singular value, it is recommendable to use the original σN+(R̂) instead of 1/σN−(R̂
−1). In

this sense, INE performs better when doing maximization than when doing minimization.

Numerical experiments
We will compare the following estimators:

The original ICE technique with the estimates defined as σC+(R)/σ
C
−(R) : Solid lines.

The original INE technique with the estimates defined by σN+(R)/σ
N
−(R) : Circles.

The INE technique based on maximization only, i.e. estimates defined as σN+(R)/
(

σN+(R
−1)

)−1
: Plusses.

The INE technique based on minimization only, i.e. estimates defined as
(

σN−(R
−1)

)−1
/σN−(R) : Squares.

Example 1: The same experiments as in [1, Section 4, Test 2], [9, Section 5, Table 5.4]: 50 matrices A = UΣVT of

size 100 with prescribed condition number κ where

Σ = diag(σ1, . . . , σ100), σk = αk, 1 ≤ k ≤ 100, α = κ−
1
99.

U and V are random unitary factors, R is the triangular factor from the QR decomposition of A with colamd.
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Figure 3 : Ratios of estimate versus exact condition

number for Example 1 with κ(A) = 100.
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Figure 4 : Ratios of estimate versus exact condition

number for Example 1 with κ(A) = 1000.

Example 2: 20 moderate size matrices from the Matrix Market collection, most of them tested also in [9,

Section 5, Table 5.1]. We computed their QR decomposition (with and without column pivoting) and tested the

estimators with the factor R.
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Figure 5 : Ratios of estimate versus exact condition

number for Example 2 using column pivoting
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Figure 6 : Ratios of estimate versus exact condition

number for Example 2 without column pivoting.
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Future work
We wish to investigate in particular more in detail the following issues:

Large sparse matrices: It may be possible to obtain the same accurate estimates without storing the (in general

dense) inverse triangular factors. But computation of the inverse factors seems to be unavoidable.

Block versions based on block factorizations for dense matrices to enable exploitation of fast BLAS techniques.
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