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1. Motivation

Given a nonsingular matrix and nonzero vector

A ∈ Cn×n, b ∈ Cn,

the kth iteration of the Arnoldi orthogonalization process [Arnoldi - 1951] (without
breakdown) computes the decomposition

AVk = Vk+1H̃k,

where the columns of Vk = [v1, . . . , vk] (the Arnoldi vectors) contain an orthogonal

basis for the kth Krylov subspace

Kk(A, b) ≡ span{b,Ab, . . . , Ak−1b}

and H̃k ∈ C(k+1)×k is rectangular upper Hessenberg; by deleting its last row we

get the square matrix

Hk = V ∗

k AVk ∈ Ck×k.
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1. Motivation

Essentially,

- for eigenpair approximations of A, the Arnoldi method [Arnoldi - 1951], [Saad - 1980]

uses the eigenvalues (so-called Ritz values) and eigenvectors of Hk and the
first k Arnoldi vectors,

- for approximate solutions to linear systems Ax = b, the GMRES method [Saad,

Schultz - 1986] solves least squares problems with H̃k and ‖b‖e1 and the first k
Arnoldi vectors.

● Both the GMRES and the Arnoldi method are very popular methods that are
successful for a large variety of problem classes.

● Nevertheless, convergence behavior of the two methods is not fully understood,
analysis is particularly challenging with highly non-normal input matrices.
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1. Motivation

● Often one tries to use the tools that are successful for analysis of hermitian

counterparts of GMRES and Arnoldi like the Conjugate Gradient and the
Lanczos method.

● For example, the basic tool for explaining Krylov subspace methods for
hermitian linear systems is the eigenvalue distribution.

● However, for GMRES it is known for some time that if GMRES generates a
certain residual norm history, the same history can be generated with any

nonzero spectrum [Greenbaum, Strakoš - 1994].

● Complemented with the fact that GMRES can generate arbitrary non-increasing

residual norms, this gives the result that any non-increasing convergence curve
is possible with any nonzero spectrum [Greenbaum , Pták, Strakoš - 1996].

● A complete description of the class of matrices and right hand sides with
prescribed convergence and eigenvalues was given in [Arioli , Pták, Strakoš - 1998].
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1. Motivation

An important tool for hermitian eigenproblems solved with Krylov subspace

methods is the following interlacing property:

Consider a tridiagonal Jacobi matrix Tm and its leading principal submatrix Tk for

some k < m. If the ordered eigenvalues of T k are

ρ
(k)
1 < ρ

(k)
2 < . . . < ρ

(k)
k ,

then in every open interval between two subsequent eigenvalues

(ρ
(k)
i−1, ρ

(k)
i ), i = 2, . . . , k,

there lies at least one eigenvalue of Tm.

This interlacing property enables, among others, to prove the persistence theorem

(see [Paige - 1971, 1976, 1980] or [Meurant, Strakoš - 2006]) which is crucial for controlling the
convergence of Ritz values in the Lanczos method.
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1. Motivation

● There are generalizations of the interlacing property to the non-hermitian but

normal case [Fan, Pall - 1957], [Thompson- 1966], [Ericsson - 1990], [Malamud - 2005], though
a geometric interpretation is difficult.

● There is no interlacing property for the eigenvalues of principal submatrices of
general non-normal matrices [de Oliveira - 1969], [Shomron, Parlett - 2009].

● This makes convergence analysis of the Arnoldi method for non-normal input
matrices rather delicate, just as it is for the GMRES method.

● The GMRES and Arnoldi methods being closely related through the Arnoldi
process, can we show that arbitrary convergence behavior of Arnoldi is

possible?

● By arbitrary behavior we mean arbitrary Ritz values for all iterations (we do not

consider eigenvectors). Note that this involves many more conditions than
prescribing one residual norm per GMRES iteration.
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2. Prescribed convergence for Arnoldi’s method

Notation: Let the kth Hessenberg matrix Hk generated in Arnoldi’s method have
the eigenvalue ρ and normalized eigenvector y,

Hk y = ρ y.

With the Arnoldi decomposition AVk = Vk+1H̃k, the Ritz pair

{ρ, Vky},

i.e. the Ritz value - Ritz vector pair has residual norm

‖A(Vky)− ρ(Vky)‖ = ‖A(Vky)− VkHky‖ = ‖Vk+1H̃ky − VkHky‖ = hk+1,k|eTk y|.

Often for small hk+1,k|eTk y|, the Arnoldi method takes {ρ, Vky} as an approximate
eigenvalue-eigenvector pair of A. Note that a small value hk+1,k|eTk y| needs not
imply that ρ is close to a true eigenvalue of A, see e.g. [Chatelin - 1993], [Godet-Thobie -

1993]; convergence analysis cannot be based on this value but focusses instead on
the quality of approximate invariant subspaces [Beattie, Embree, Sorensen - 2005].
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2. Prescribed convergence for Arnoldi’s method

Theorem 1 [DT, Meurant - 2012]. Let the set

R = { ρ
(1)
1 ,

(ρ
(2)
1 , ρ

(2)
2 ) ,

...

(ρ
(n−1)
1 , . . . , ρ

(n−1)
n−1 ) ,

(λ1 , . . . . . . . . . , λn) },

represent any choice of n(n+ 1)/2 complex Ritz values and denote by C(k) the
companion matrix of the polynomial with roots ρ

(k)
1 , . . . , ρ

(k)
k , i.e.

C(k) =

















0 . . . 0 −α0

1 0 . . . 0 −α1

. . .
...

...

1 −αk−1

















,
k
∏

j=1

(z − ρ
(k)
j ) = zk +

k−1
∑

j=0

αjz
j .
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2. Prescribed convergence for Arnoldi’s method

If we define the unit upper triangular matrix U(S) through

U(S) = In −























0 C(1)e1

0

...

C(2)e2

0

...

...

C(n−1)en−1

0























,

then the upper Hessenberg matrix

H(R) = U(S)−1C(n)U(S)

has the spectrum λ1, . . . , λn and its kth leading principal submatrix has spectrum

ρ
(k)
1 , . . . , ρ

(k)
k , k = 1, . . . , n− 1.

It has unit subdiagonal.
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2. Prescribed convergence for Arnoldi’s method

Proof: The k × k leading principal submatrix of H(R) is

[Ik, 0]H(R)





Ik

0



 = [Ik, 0]U(S)−1C(n)U(S)





Ik

0





= [U−1
k , ũk+1, . . . , ũn]









0

Uk

0









= [U−1
k , ũk+1]





0

Uk



 ,

where Uk denotes the k × k leading principal submatrix of U(S) and ũj denotes
the vector of the first k entries of the jth column of U(S)−1 for j > k. Its spectrum

is also the spectrum of the matrix

Uk[U
−1
k , ũk+1]





0

Uk



U−1
k = [Ik, Ukũk+1]





0

Ik



 ,

which is a companion matrix with last column Ukũk+1.
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2. Prescribed convergence for Arnoldi’s method

From

ek+1 = Uk+1U
−1
k+1ek+1 =





Uk −C(k)ek

0 1









ũk+1

1



 =





Ukũk+1 − C(k)ek

1





we obtain Ukũk+1 = C(k)ek. 2

Remark: The matrix

H(R) = U(S)−1C(n)U(S).

is the unique upper Hessenberg matrix H(R) with the prescribed spectrum and

Ritz values and the entry one along the subdiagonal (see also [Parlett, Strang -
2008] where H(R) is constructed in a different way).

Note that U(S) transforms the matrix C(n) with all Ritz values zero to the matrix
H(R) with prescribed Ritz values. It is composed of (columns of) companion

matrices and we will call U(S) the Ritz value companion transform.
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2. Prescribed convergence for Arnoldi’s method

Thus the Ritz values generated in the Arnoldi method can exhibit any convergence
behavior: Apply the Arnoldi method to the pair

{H(R), e1}

where H(R) has the desired Ritz values. Then the method generates the
Hessenberg matrix H(R) itself.

Question: Can the same prescribed Ritz values be generated with positive entries
other than one on the subdiagonal?

For σ1, σ2, . . . , σn−1 > 0 consider the diagonal similarity transformation

H ≡ diag (1, σ1, σ1σ2, . . . ,Π
n−1
j=1 σj)H(R)

(

diag (1, σ1, σ1σ2, . . . ,Π
n−1
j=1 σj)

)−1
.

Then the subdiagonal of H is σ1, . . . , σn−1 and all leading principal submatrices of
H are similar to corresponding leading principal submatrices of H(R).
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2. Prescribed convergence for Arnoldi’s method

This immediately leads to a parametrization of the matrices and initial Arnoldi

vectors that generate a given set of Ritz values R:
Theorem 2 [DT, Meurant - 2012]. Assume we are given a set of tuples

R = { ρ
(1)
1 ,

(ρ
(2)
1 , ρ

(2)
2 ) ,

...

(ρ
(n−1)
1 , . . . , ρ

(n−1)
n−1 ) ,

(λ1 , . . . . . . . . . , λn)} ,

of complex numbers and n− 1 positive real numbers

σ1, . . . , σn−1.

If A is a matrix of order n and b a nonzero n-dimensional vector, then the following
assertions are equivalent:
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2. Prescribed convergence for Arnoldi’s method

1. The Hessenberg matrix generated by the Arnoldi method applied to A and initial
Arnoldi vector b has eigenvalues λ1, . . . , λn, subdiagonal entries σ1, . . . , σn−1

and ρ
(k)
1 , . . . , ρ

(k)
k are the eigenvalues of its kth leading principal submatrix for

all k = 1, . . . , n− 1.

2. The matrix A and initial vector b are of the form

A = V DσU(S)−1C(n)U(S)D−1
σ V ∗, b = ‖b‖V e1,

where V is unitary, U(S) is the Ritz value companion transform,

Dσ = diag (1, σ1, σ1σ2, . . . ,Π
n−1
j=1 σj),

and C(n) is the companion matrix of the polynomial with roots λ1, . . . , λn.

This also shows how little on the quality of the Ritz value ρ needs be said by

‖A(Vky)− ρ(Vky)‖ = hk+1,k|eTk y|.

Any distance from ρ to the spectrum of A is possible with any value of hk+1,k!
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2. Prescribed convergence for Arnoldi’s method

Counterintuitive example 1: Convergence of interior Ritz values only:

R = { 3,

(3, 3) ,

(2, 3, 4) ,

(3, 3, 3, 3) ,

(1, 2, 3, 4, 5)} .

This gives the unit upper Hessenberg matrix

H(R) = U(S)−1C(5)U(S) =





















3 0 0 0 0

1 3 1 0 1

1 3 −1 0

1 3 5

1 3





















.
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2. Prescribed convergence for Arnoldi’s method

Thus these Ritz values are generated by the Arnoldi method applied to

A = V diag (1, σ1, σ1σ2, . . . ,Π
n−1
j=1 σj)





















3 0 0 0 0

1 3 1 0 1

1 3 −1 0

1 3 5

1 3





















diag (1, σ1, σ1σ2, . . . ,Π
n−1
j=1 σj)

−1V ∗,

with initial vector b = V e1 and for any unitary V and positive values σ1, . . . , σn−1.

This is not a highly non-normal example, for instance with σi ≡ 1:

‖A‖‖A−1‖ = 9.7137,

and the eigenvector basis W of A has condition number

‖W‖‖W−1‖ = 4.8003.
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2. Prescribed convergence for Arnoldi’s method

Counterintuitive example 2: We can prescribe the “diverging” Ritz values

R = { 1,

(0, 2) ,

(−1, 1, 3) ,

(−2, 0, 2, 4) ,

(1, 1, 1, 1, 1)},

with H(R) = U(S)−1C(5)U(S) =





















1 1 0 −3 0

1 1 3 0 −31

1 1 6 0

1 1 −10

1 1





















.

They are generated by Arnoldi applied to A = V H(R)V ∗, b = V e1 for unitary V.



J. Duintjer Tebbens, G. Meurant 19

2. Prescribed convergence for Arnoldi’s method

The same “diverging” Ritz values are generated with the exponentially decreasing

values 2−1, 2−2, 2−3 and 2−4 on the subdiagonal of the Hessenberg matrix:

A = V





















1 2 0 −192 0

0.5 1 12 0 −15872

0.25 1 48 0

0.125 1 −160

0.0625 1





















V ∗, b = ‖b‖V e1.

Then the rounded residual norms ‖A(Vky)− ρ(Vky)‖ = hk+1,k|eTk y| seem to

indicate convergence:

{ 1
2
,

(0.1118, 0.1118) ,

(0.011, 0.0052, 0.011) ,

(0.0006, 0.0001, 0.0001, 0.0006) } .
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3. Prescribed convergence for Arnoldi and GMRES

Starting with initial guess x0 = 0, GMRES iterates xk minimize the residual norm,

‖b− Axk‖ = min ‖b−As‖ over all s ∈ Kk(A, b).

Writing xk in the Arnoldi basis,

xk = Vkyk ∈ Kk(A, r0),

and using the Arnoldi decomposition AVk = Vk+1H̃k, we see that the residual

norm is

‖b−Axk‖ = ‖b−AVkyk‖ = ‖Vk+1‖b‖e1 −AVkyk‖
= ‖Vk+1(‖b‖e1 − H̃kyk)‖ = min

y∈Ck

‖‖b‖e1 − H̃ky‖.

Thus the residual norms generated by the GMRES method are fully determined by

the Hessenberg matrix H̃k and ‖b‖.
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3. Prescribed convergence for Arnoldi and GMRES

● We have seen that the subdiagonal entries of H̃k can be chosen arbitrarily, for

any prescribed Ritz values in the kth iteration.

● Hence there is a chance we can modify the behavior of GMRES while
maintaining the prescribed Ritz values.

Example from earlier: Consider the prescribed ’diverging’ Ritz values

R = { 1,

(0, 2) ,

(−1, 1, 3) ,

(−2, 0, 2, 4) ,

(1, 1, 1, 1, 1)} ,

and the prescribed subdiagonal entries of the generated Hessenberg matrix

σ1 = 2−1, σ2 = 2−2, σ3 = 2−3, σ4 = 2−4.
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3. Prescribed convergence for Arnoldi and GMRES

The corresponding GMRES convergence curve is

‖r(0)‖ = 1, ‖r(1)‖ =

√

1

5
, ‖r(2)‖ =

√

1

5
, ‖r(3)‖ = 0.0052, ‖r(4)‖ = 0.0052.

Question: Can we force any GMRES convergence speed with arbitrary Ritz values
by modifying the subdiagonal entries?

Not any, because there is a relation between GMRES stagnation and zero Ritz
values: A singular Hessenberg matrix corresponds to stagnation in the parallel

GMRES process, see [Brown - 1991]. In our example we have

ρ
(1)
1 = 1, ‖r(1)‖ =

1√
5

(ρ
(2)
1 , ρ

(2)
2 ) = (0, 2), ‖r(2)‖ =

1√
5

(ρ
(3)
1 , ρ

(3)
2 , ρ

(3)
3 ) = (−1, 1, 3), ‖r(3)‖ = 0.0052

(ρ
(4)
1 , ρ

(4)
2 , ρ

(4)
3 , ρ

(4)
4 ) = (−2, 0, 2, 4), ‖r(4)‖ = 0.0052.
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3. Prescribed convergence for Arnoldi and GMRES

However, this is the only restriction Ritz values put on GMRES residual norms:

Theorem 3 [DT, Meurant - 2012]. Consider a set of tuples of complex numbers

R = { ρ
(1)
1 ,

(ρ
(2)
1 , ρ

(2)
2 ) ,

...

(ρ
(n−1)
1 , . . . , ρ

(n−1)
n−1 ) ,

(λ1 , . . . . . . . . . , λn)} ,

such that (λ1, . . . , λn) contains no zero number and n positive numbers

f(0) ≥ f(1) ≥ · · · ≥ f(n− 1) > 0,

such that the k-tuple (ρ
(k)
1 , . . . , ρ

(k)
k ) contains a zero number if and only if

f(k − 1) = f(k).
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3. Prescribed convergence for Arnoldi and GMRES

Let A be a square matrix of size n and let b be a nonzero n-dimensional vector.

The following assertions are equivalent:

1. The GMRES method applied to A and right-hand side b with zero initial guess

yields residuals r(k), k = 0, . . . , n− 1 such that

‖r(k)‖ = f(k), k = 0, . . . , n− 1,

A has eigenvalues

λ1, . . . , λn,

and

ρ
(k)
1 , . . . , ρ

(k)
k

are the Ritz values generated at the kth iteration for k = 1, . . . , n− 1.
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3. Prescribed convergence for Arnoldi and GMRES

2. The matrix A and right hand side b are of the form

A = V diag(f(0),D−∗

c )U(S)−1C(n)U(S) diag(f(0)−1, D∗

c )V
∗, b = ‖b‖V e1,

where V is a unitary matrix, U(S) is the Ritz value companion transform for R
and C(n) is the companion matrix of the polynomial with roots λ1, . . . , λn. Dc is

a nonsingular diagonal matrix such that

R−T
h ĥ = −f(0)2Dcc,

ĥ = [η1, . . . , ηn−1]
T , ηk = (f(k − 1)2 − f(k)2)1/2,

Rh being the upper triangular factor of the Cholesky decomposition

RT
hRh = I − ĥĥT

f(0)2
,

and c is the first row of U(S) without its diagonal entry.

Note we exhausted all freedom modulo unitary transformation.
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3. Prescribed convergence for Arnoldi and GMRES

Example: Standardly converging Ritz values and ’nearly stagnating’ GMRES:

R = { 5,

(1, 5) ,

(1, 4, 5) ,

(1, 3, 4, 5) ,

(1, 2, 3, 4, 5)} ,

‖r(0)‖ = 1, ‖r(1)‖ = 0.9, ‖r(2)‖ = 0.8, ‖r(3)‖ = 0.7, ‖r(4)‖ = 0.6, ‖r(5)‖ = 0 gives

A = V





















5 0 0 0 0

10.3237 1 0 0 0

0.8458 4 0 0

3.312 3 0

2.4169 2





















V ∗, b = ‖b‖V e1.
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3. Prescribed convergence for Arnoldi and GMRES

Again, this is not a highly non-normal example:

‖A‖‖A−1‖ = 28.9498,

and the eigenvector basis W of A has condition number

‖W‖‖W−1‖ = 57.735.

The residual norms ‖A(Vky)− ρ(Vky)‖ = hk+1,k|eTk y| for the Ritz pairs are

10.3237,

(0.8458, 0.7886) ,

(0.8987, 3.312, 2.0509) ,

(0.9906, 2.4169, 2.3137, 1.7303) .

respectively, i.e. they give misleading information.
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Conclusions and future work:

● There is no interlacing property for the Hessenberg matrices in the Arnoldi

method.

● The Ritz values generated in the Arnoldi method can behave arbitrarily badly.

● Convergence of Ritz values need not say anything about the behavior of
GMRES residual norms (zero Ritz values excepted). For close to normal

matrices, the opposite has been suggested [van der Vorst, Vuik - 1993].

● Extension to harmonic Ritz values which determine the GMRES polynomials?

● It is desirable to have similar results for popular restarted versions of GMRES
and the Arnoldi method (see e.g. the failure of restarted Arnoldi with exact shifts

explained in [Embree - 2009]).
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For more details see:DUINTJER TEBBENS J, MEURANT G: Any Ritz value behavior is possible for Arnoldi

and for GMRES, SIMAX vol. 33 no. 3, pp 958–978, 2012, available at
www.cs.cas.cz/duintjertebbens/duintjertebbens pub.html

Thank you for your attention!

Supported by projects numbers M100301201 and IAA100300802 of the grant agency of the Academy of

Sciences of the Czech Republic.
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Counterintuitive normal example
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