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1. Introduction

● The solution of sequences of linear systems arises in numerous
applications

● Rather few work has been done in our community on efficient solution
of general sequences of linear systems

● The central question of such work will be:

How can we share part of the computational effort throughout the
sequence ?

● Below we list some known strategies.
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1. Introduction

● Very simple trick: Hot starts, i.e. use the solution of the previous system
as initial guess.

● Sometimes exact updating of the factorizations for large problems is
feasible: Rank-one updates of LU factorizations have been used since
decades in the simplex method where the change of one system matrix
to another is restricted to one column [Bartels, Golub, Saunders - 1970;
Suhl, Suhl - 1993].

● General rank-one updates of an LU decomposition are discussed in
[Stange, Griewank, Bollhoefer - 2005].

● If the linear solver is a Krylov subspace method, strategies to recycle
information gained from previously generated Krylov subspaces have
shown to be beneficial in many applications [Parks, de Sturler, Mackey,
Johnson, Maiti - 2006], [Giraud, Gratton, Martin - 2007], [Frank, Vuik -
2001].
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1. Introduction

● When shifted linear systems with identical right hand sides have to be
solved, Krylov subspace methods allow advantageous implementations
based on the fact that all systems generate the same subspace
[Frommer, Glässner - 1998]

● In nonlinear systems solved with a Newton-type method one can skip
evaluations of the (approximate) Jacobian during some iterations,
leading to Shamanskii’s combination of the chord and Newton method
[Brent - 1973] ⇒ linear solving techniques with multiple right hand sides
can be exploited.

● Another option: Allow changing the system matrices but freeze the
preconditioner [Knoll, Keyes - 2004].
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1. Introduction

To enhance the power of a frozen preconditioner one may also use
approximate updates:

● In [Meurant - 2001] we find approximate updates of incomplete
Cholesky factorizations and

● in [Benzi, Bertaccini - 2003, 2004] banded updates were proposed for
both symmetric positive definite approximate inverse and incomplete
Cholesky preconditioners.

● In Quasi-Newton methods the difference between system matrices is of
small rank and preconditioners may be efficiently adapted with
approximate small-rank updates; this has been done in the symmetric
positive definite case, see e.g. [Bergamaschi, Bru, Martínez, Putti -
2006, Nocedal, Morales - 2000].
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2. The proposed preconditioner updates

● We focus on a black-box approximate preconditioner update for general
nonsymmetric systems solved by arbitrary iterative methods.

● Updating frozen preconditioners for preconditioned iterative methods
instead of their recomputation.

● Simple algebraic updates which might be applied also in matrix-free
environment

Notation: Consider two systems

Ax = b, A+x+
= b+

; preconditioned by M, M+,

let B ≡ A − A+.

We would like the update M+ to become as powerful as M .
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2. The proposed preconditioner updates

If ||A − M || is the accuracy of the preconditioner M for A, we will try to
find an updated M+ for A+ with comparable accuracy,

||A − M || ≈ ||A+ − M+||.

Let M be factorized as M = LDU, then the choice

M+ = LDU − B

would give ||A − M || = ||A+ − M+||. We will approximate this ideal
update LDU − B in two steps, similarly to the techniques in [Benzi,
Bertaccini - 2003, Bertaccini - 2004]. First we use

LDU − B = L(DU − L−1B) ≈ L(DU − B) or

LDU − B = (LD − BU−1)U ≈ (LD − B)U

depending on whether L is closer to identity or U .
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2. The proposed preconditioner updates

Define the standard splitting

B = LB + DB + UB.

Then the second approximation step is

L(DU − B) ≈ L(DU − DB − UB) ≡ M+

(upper triangular update) or

(LD − B)U ≈ (LD − LB − DB)U ≡ M+

(lower triangular update). Then M+ is for free and its application asks for
one forward and one backward solve.

● Ideal for upwind/downwind modifications
● Our experiments cover broader spectrum of problems
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2. The proposed preconditioner updates

As an example consider a two-dimensional nonlinear convection-diffusion
model problem: It has the form

−∆u + Ru

(

∂u

∂x
+

∂u

∂y

)

= 2000x(1 − x)y(1 − y), (1)

on the unit square, discretized by 5-point finite differences on a uniform
grid.

● The initial approximation is the discretization of u0(x, y) = 0.
● We use here R = 100 and different grid sizes.
● We solve the resulting linear systems with BiCGSTAB with right

preconditioning.
● Iterations were stopped when the Euclidean norm of the residual was

decreased by seven orders.
● Matlab implementation.
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2. The proposed preconditioner updates

BiCGSTAB iteration counts; reference factorization ILU(0)
Matrix Recomp Freeze Triangular update

A(0) 40 40 40

A(1) 25 37 37

A(2) 24 41 27

A(3) 20 48 26

A(4) 17 56 30

A(5) 16 85 32

A(6) 15 97 35

A(7) 14 106 43

A(8) 13 97 44

A(9) 13 108 45

A(10) 13 94 50

A(11) 15 104 45

A(12) 13 156 49

overall time 13 s 13 s 7.5 s
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3. Updates in matrix-free environment

In many applications the linear solver is chosen such that it is not
necessary to store system matrices; a matrix-vector product subroutine
suffices.

Standard example: Newton iteration of the form

J(xk)(xk+1 − xk) = −F (xk), k = 1, 2, . . .

where J(xk) is the (approximate) Jacobian of F evaluated at xk. Then a
matvec with J(xk) is replaced by the finite difference approximation,

J(xk) · v ≈
F (xk + h‖xk‖v) − F (xk)

h‖xk‖
,

for some small h.

Can the preconditioner updates be used in matrix-free environment ?
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3. Updates in matrix-free environment

First note that to compute an incomplete factorization like ILU in
matrix-free environment at all, the system matrix has to be estimated by
matvecs.
The entries of a simple tridiagonal matrix
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can be easily obtained with matvecs with (1, 0, 0, 1, 0, 0, . . . )T ,
(0, 1, 0, 0, 1, 0, . . . )T and (0, 0, 1, 0, 0, 1, . . . )T .
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3. Updates in matrix-free environment

In general, one uses a graph coloring algorithm that tries to minimize the
number of matvecs for a good estimate [Cullum, Tůma - 2006].

Hence recomputing the preconditioner requires for every linear system:

● A number of additional matvecs to estimate the current matrix
● When the nonzero pattern changes during the sequence: Rerunning

the graph coloring algorithm.

Preconditioner recomputation is even more expensive in matrix-free
environment !

How about the preconditioner updates ?
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3. Updates in matrix-free environment

Recall the upper triangular update is of the form

M+ = L(DU − DB − UB)

based on the splitting

LB + DB + UB = B = A − A+.

Thus the update somehow needs A and A+.

However:

● A has been estimated before to obtain the reference ILU-factorization
● Of A+ we need estimate only the upper triangular part
● Estimating triu(A+) with graph colouring techniques may be much less

expensive than estimating A+
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3. Updates in matrix-free environment

The problem of estimating only the upper triangular part leads to a partial
graph coloring problem [Pothen et al. - 2007].

Example:
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Estimation of the whole matrix asks for n matvecs with all unit vectors ei,
but estimating the upper triangular part requires only 2 matvecs,
(1, . . . , 1, 0)T and en.
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3. Updates in matrix-free environment

Theoretical explanation:

The graph coloring algorithm for A works on the intersection graph

G(AT A).

For triu(A) we can prove:

The graph coloring algorithm for triu(A) works on

G(triu(A)T triu(A)) ∪ GK ,

where
GK = ∪n

i=1GLi,Ui
,

with Li = {vj |aij 6= 0 ∧ j ≤ i} and Ui = {vj |aij 6= 0 ∧ j > i}.
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3. Updates in matrix-free environment

An alternative strategy circumvents any estimation of A+:

Let the matvec be replaced with a function evaluation

A+ · v → F+(v), F+ : Rn → R
n,

e.g. in Newton’s method

J(x+) · v ≈
F (x+ + h‖x+‖v) − F (x+)

h‖x+‖
≡ F+(v).

We assume it is possible to compute the components F+

i : Rn → R of F+

individually,

eT
i · A+ · v → F+

i (v), F+

i : Rn → R.

Then:

● The forward solves with L in M+ = L(DU − DB − UB) are trivial.
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3. Updates in matrix-free environment

● For the backward solves, use a mixed explicit-implicit strategy: Split

DU − DB − UB = DU − triu(A) + triu(A+)

in the explicitly given part

X ≡ DU − triu(A)

and the implicit part triu(A+).

We then have to solve the triangular systems
(

X + triu(A+)
)

z = y,

yielding the standard backward substitution cycle

zi =
yi −

∑

j>i xijzj −
∑

j>i a+

ijzj

xii + a+

ii

, i = n, n − 1, . . . , 1.
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4. Updates in matrix-free environment: I

In

zi =
yi −

∑

j>i xijzj −
∑

j>i a+

ijzj

xii + a+

ii

, i = n, n − 1, . . . , 1.

the sum
∑

j>i a+

ijzj can be computed by the function evaluation

∑

j>i

a+

ijzj = F+

i

(

(0, . . . , 0, zi+1, . . . , zn)T
)

. (2)

The diagonal {a+

11, . . . , a
+
nn} can be found by computing

a+

ii = F+

i (ei), 1 ≤ i ≤ n.

If it is necessary to avoid the storage of A, one can also replace the part
triu(A) in

DU − triu(A) + triu(A+)

by analogue implicit solves.
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4. Updates in matrix-free environment: I

Cost comparison with explicitly given matrices

computational costs storage costs

recomputation factorization A+, current L, U

updating 0 A+ + triu(A), reference L, U

Cost comparison in matrix-free environment with update estimating

computational costs storage costs

recomputation est(A+) + factorization current L, U

updating est(triu(A+)) triu(A+), triu(A), reference L, U

Cost comparison in matrix-free environment without update estimation

computational costs storage costs

recomputation est(A+) + factorization current L, U

updating 0 reference L, U
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4. Updates in matrix-free environment: I

The technique without update estimation seems superior but note: The
mixed explicit-implicit backward solve

zi =
yi −

∑

j>i xijzj −
∑

j>i a+

ijzj

xii + a+

ii

, i = n, n − 1, . . . , 1.

admits no merging of entries on the same position in X and triu(A+) by
explicitly computing X + triu(A+), making the solves more expensive.

In general the choice between estimating triu(A+) or not is a trade-off
between

● estimation costs (graph coloring algorithm and matvecs)
● amount of overlap
● function evaluation cost
● available storage space.

If minimal storage cost is the goal, then it should be avoided to estimate
triu(A+).
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5. Conclusions, future work

● Our black-box preconditioner update for general nonsymmetric
sequences can be applied in matrix-free environment

● The costs difference between recomputing and updating is even larger
in matrix-free environment than when matrices are explicitly given

● Experiments are for the moment missing but we have a good
impression on overall costs for individual techniques

● Future work includes implementation of the techniques, permutations to
enhance triangular dominance
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For more details see:
● BIRKEN PH, DUINTJER TEBBENS J, MEISTER A, TŮMA M: Preconditioner Updates Applied to CFD Model

Problems, published online in Applied Numerical Mathematics in October 2007.

● DUINTJER TEBBENS J, TŮMA M: Improving Triangular Preconditioner Updates for Nonsymmetric Linear

Systems, LNCS vol. 4818, pp. 737–744, 2007.

● DUINTJER TEBBENS J, TŮMA M: Efficient Preconditioning of Sequences of Nonsymmetric Linear Systems,
SIAM J. Sci. Comput., vol. 29, no. 5, pp. 1918–1941, 2007.

Thank you for your attention.
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