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J. Duintjer Tebbens, M. Tůma 2

1. Introduction: Efficient solution of sequences

The solution of sequences of linear systems arises in numerous
applications, e.g. CFD-problems with implicit Euler leads to a number of
linear systems in every time-step.

The central question for efficient solution will always be: How can we
share part of the computational effort throughout the sequence ?

Some known strategies are using hot starts, Krylov subspace recycling,
exact updates of LU-factorizations, etc ...

We concentrate on sequences arising from Newton-type iterations to
solve nonlinear equations,

J(xk)(xk+1 − xk) = −F (xk), k = 1, 2, . . .

where J(xk) is the Jacobian of F evaluated at xk.
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1. Introduction: Efficient solution of sequences

● One option to save costs in a Newton-type method is to skip evaluations
of the (approximate) Jacobian during some iterations, leading to
Shamanskii’s combination of the chord and Newton method [Brent -
1973].

● Another option: Allow changing the system matrices but freeze the
preconditioner [Knoll, Keyes - 2004]. Naturally, a frozen preconditioner
will deteriorate when the system matrix changes too much.

● To enhance the power of a frozen preconditioner one may also use
approximate preconditioner updates.
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1. Introduction: Efficient solution of sequences

● In [Meurant - 2001] we find approximate preconditioner updates of
incomplete Cholesky factorizations and

● in [Benzi, Bertaccini - 2003, 2004] banded preconditioner updates were
proposed for both symmetric positive definite approximate inverse and
incomplete Cholesky preconditioners.

● In Quasi-Newton methods the difference between system matrices is of
small rank and preconditioners may be efficiently adapted with
approximate small-rank preconditioner updates; this has been done in
the symmetric positive definite case, see e.g. [Bergamaschi, Bru,
Martínez, Putti - 2006, Nocedal, Morales - 2000].

● Approximate preconditioner updates based on approximate inverses
are considered in [Calgaro, Chehab, Saad - 2009].
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2. The considered preconditioner updates

In this presentation we focus on a preconditioner update proposed
recently [DT, Tůma - 2007]:

● A black-box approximate preconditioner update designed for
nonsymmetric linear systems solved by arbitrary iterative methods.

● Its computation is much cheaper than the computation of a new
preconditioner.

● Simple algebraic updates which can be easily combined with other
(problem specific) strategies and can be applied in matrix-free
environment.
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2. The considered preconditioner updates

Notation:

Consider two systems

Ax = b, and A+x+
= b+

preconditioned by M and M+ respectively and let the difference matrix

be defined as

B ≡ A − A+.

Define the standard splitting

B = LB + DB + UB

and let M be factorized as

M = LDU ≈ A.
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2. The considered preconditioner updates

Then the proposed preconditioner updates have the form

M+ ≡ (LD − LB − DB)U or M+ ≡ L(DU − DB − UB).

Note that M+ is for free and its application asks for one forward and one
backward solve. Schematically,

type initialization solve step memory

Recomp A+ ≈ L+U+ solves with L+, U+ A+, L+, U+

Update — solves with L, U, triu(B) A+, triu(A), L, U

● This is the basic idea; more sophisticated improvements are possible
● Ideal for upwind/downwind modification but our experiments cover

broader spectrum of problems
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3. Updates in matrix-free environment

An important advantage of Krylov subspace methods is that they do not
require the system to be stored explicitly; a matrix-vector product (matvec)
subroutine, based on a function evaluation, suffices.

⇒ important reducing of storage and computation costs.

Standard example: Newton iteration of the form

J(xk)(xk+1 − xk) = −F (xk), k = 1, 2, . . .

where J(xk) is the Jacobian of F evaluated at xk. Then a matvec with
J(xk) is replaced by the standard difference approximation,

J(xk) · v ≈
F (xk + h‖xk‖v) − F (xk)

h‖xk‖
,

for some small h.
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3. Updates in matrix-free environment

First note that to compute an incomplete factorization in matrix-free
environment at all, the system matrix has to be estimated by matvecs ; for
example a tridiagonal matrix
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can be easily obtained with matvecs with

(1, 0, 0, 1, 0, 0, . . . )T ,

(0, 1, 0, 0, 1, 0, . . . )T ,

(0, 0, 1, 0, 0, 1, . . . )T .
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3. Updates in matrix-free environment

In general, given the sparsity pattern, one runs a graph coloring algorithm
that tries to minimize the number of matvecs for a good estimate [Cullum,
Tůma - 2006].

Hence recomputing the preconditioner requires for every linear system:

● A number of additional matvecs to estimate the current matrix
● When the nonzero pattern changes during the sequence: Rerunning

the graph coloring algorithm.

Preconditioner recomputation is even more expensive in matrix-free
environment !

How about the preconditioner updates ?
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3. Updates in matrix-free environment

Recall the upper triangular update is of the form

M+ = L(DU − DB − UB)

based on the splitting

LB + DB + UB = B = A − A+.

Thus the update needs some entries of A and A+ and repeated
estimation is necessary.

However:

● A has been estimated before to obtain the reference ILU-factorization

● Of A+ we need estimate only the upper triangular part

● Can there be taken any advantage of the fact we estimate only the
upper triangular part?
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3. Updates in matrix-free environment

Example:
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● estimating the whole matrix asks for n matvecs with all unit vectors;
● estimating the upper triangular part requires only 2 matvecs,

(1, . . . , 1, 0)T and (0, . . . , 0, 1)T .

The problem of estimating only the upper triangular part is an example of
a partial graph coloring problem [Pothen et al. - 2007].
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3. Updates in matrix-free environment

The graph coloring algorithm for a matrix C works on the intersection
graph

G(CT C).

We can prove: The graph coloring algorithm for triu(C) works on

G(triu(C)T triu(C)) ∪ GK , where

GK = ∪n
i=1Gi, Gi = (Vi, Ei) = (V, {{k, j}| cik 6= 0 ∧ cij 6= 0 ∧ k < i ≤ j}).

Combined with a priori sparsification, there may be needed significantly
less matvecs to estimate triu(C) than to estimate C. Summarizing,

type initialization solve step memory

Recomp est(A+), A+
≈ L+U+ solves with L+, U+ L+, U+

Update est(triu(A+)) solves with L, U, triu(B) triu(A+), triu(A), L, U
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3. Updates in matrix-free environment

Example: Structural mechanics problem.

● A small strain metal viscoplasticity model for a rectangular plate of
length 100, width 21.2 and height 9.62 cm with a hole in the middle;

● The discretization used 1 350 quadratic elements in most of the domain;
● We apply the Multilevel-Newton algorithm where every time-step

contains an inner loop that requires the solution of nonlinear systems;
● We consider here a sequence of linear systems from a randomly

chosen time-step in the middle of the simulation process;
● This sequence consists of 8 linear systems of dimension 4 936 with

matrices containing about 315 000 nonzeros;
● We use restarted GMRES(40) preconditioned by ILUT.

Kindly provided by Karsten Quint (Universität Kassel).
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3. Updates in matrix-free environment

Number of function evaluations for different precondition strategies.

ILUT(10−5, 50), Psize ≈ 812 000

Matrix Recompute Freeze Update
GMRES estimation GMRES estimation GMRES estimation

A(0) 65 89 65 89 65 89

A(1) 31 89 128 0 52 25

A(2) 35 89 163 0 45 25

A(3) 35 89 237 0 45 25

A(4) 37 89 167 0 52 25

A(5) 38 89 169 0 51 25

A(6) 37 89 168 0 51 25

A(7) 50 89 168 0 51 25

Total fevals 1 040 1 354 701
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3. Updates in matrix-free environment

An alternative strategy circumvents estimation of A+:

Let the matvec be replaced with a function evaluation

A+ · v → F+(v), F+ : Rn → R
n,

e.g. in Newton’s method

J(x+) · v ≈
F (x+ + h‖x+‖v) − F (x+)

h‖x+‖
≡ F+(v).

We assume function components are well separable, i.e. we assume it is
possible to compute the components F+

i : Rn → R,

F+
i (v) = eT

i F+(v)

at the cost of about one nth of the full function evaluation F+(v).

Then the following strategy can be beneficial:
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3. Updates in matrix-free environment

● The forward solves with L in M+ = L(DU − DB − UB) are trivial.

● For the backward solves, use a mixed explicit-implicit strategy: Split

DU − DB − UB = DU − triu(A) + triu(A+)

in the explicitly given part

X ≡ DU − triu(A)

and the implicit part triu(A+).

We then have to solve the upper triangular systems
(

X + triu(A+)
)

z = y,

yielding the standard backward substitution cycle:
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3. Updates in matrix-free environment

zi =
yi −

∑

j>i xijzj −
∑

j>i a+
ijzj

xii + a+
ii

, i = n, n − 1, . . . , 1.

The sum
∑

j>i a+
ijzj can be computed by the function evaluation

∑

j>i

a+
ijzj = eT

i A+(0, . . . , 0, zi+1, . . . , zn)T ≈ F+
i

(

(0, . . . , 0, zi+1, . . . , zn)T
)

.

The diagonal {a+
11, . . . , a

+
nn} can be found by computing

a+
ii = F+

i (ei), 1 ≤ i ≤ n.

Summarizing, with this technique we can obtain the cost comparison:

type initialization solve step memory

Recomp est(A+), A+
≈ L+U+ solves with L+, U+ L+, U+

Update est(diag(A+)) solves with L, U , eval(F), eval(F+) L, U
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3. Updates in matrix-free environment

As an example consider a two-dimensional nonlinear convection-diffusion
model problem: It has the form

−∆u + Ru

(

∂u

∂x
+

∂u

∂y

)

= 2000x(1 − x)y(1 − y), (1)

on the unit square, discretized by 5-point finite differences on a uniform
grid.

● The initial approximation is the discretization of u0(x, y) = 0.
● We use here R = 500 and a 250 × 250 grid.
● We use a Newton-type method and solve the resulting 10 to 12 linear

systems with BiCGSTAB with right preconditioning.
● We use a flexible stopping criterion.
● Fortran implementation (embedded in the UFO - software for testing

nonlinear solvers).
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3. Updates in matrix-free environment
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3. Updates in matrix-free environment
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For more details see:
● DUINTJER TEBBENS J, TŮMA M: Preconditioner Updates for Solving Sequences of Linear Systems in

Matrix-Free Environment, submitted to NLAA in 2008.

● BIRKEN PH, DUINTJER TEBBENS J, MEISTER A, TŮMA M: Preconditioner Updates Applied to CFD Model

Problems, Applied Numerical Mathematics vol. 58, no. 11, pp.1628–1641, 2008.

● DUINTJER TEBBENS J, TŮMA M: Improving Triangular Preconditioner Updates for Nonsymmetric Linear

Systems, LNCS vol. 4818, pp. 737–744, 2007.

● DUINTJER TEBBENS J, TŮMA M: Efficient Preconditioning of Sequences of Nonsymmetric Linear Systems,
SIAM J. Sci. Comput., vol. 29, no. 5, pp. 1918–1941, 2007.

Thank you for your attention!
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