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1. Introduction: Efficient solution of sequences

The solution of sequences of linear systems arises in numerous
applications, e.g. CFD-problems with implicit Euler leads to a number of
linear systems in every time-step.

The central question for efficient solution will always be: How can we
share part of the computational effort throughout the sequence ?

Below we list some known strategies.

● Very simple trick: Hot starts, i.e. use the solution of the previous system
as initial guess. A little more sophisticated is extrapolation of the current
solution.

● If the linear solver is a Krylov subspace method, strategies to recycle
information gained from previously generated Krylov subspaces can be
beneficial in many applications [Parks, de Sturler, Mackey, Johnson,
Maiti - 2006], [Giraud, Gratton, Martin - 2007], [Frank, Vuik - 2001].
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1. Introduction: Efficient solution of sequences

● Sometimes exact updating of the LU decompositions for large problems
is feasible: Rank-one updates of LU factorizations have been used
since decades in the simplex method where the change of one system
matrix to another is restricted to one column [Bartels, Golub, Saunders -
1970; Forrest, Tomlin - 1972 ; Suhl, Suhl - 1993].

● In nonlinear systems solved with a Newton-type method one can skip
evaluations of the (approximate) Jacobian during some iterations,
leading to Shamanskii’s combination of the chord and Newton method
[Brent - 1973].

● Another option: Allow changing the system matrices but freeze the
preconditioner [Knoll, Keyes - 2004]. Naturally, a frozen preconditioner
will deteriorate when the system matrix changes too much.
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1. Introduction: Efficient solution of sequences

To enhance the power of a frozen preconditioner one may also use
approximate preconditioner updates:

● In [Meurant - 2001] we find approximate preconditioner updates of
incomplete Cholesky factorizations and

● in [Benzi, Bertaccini - 2003, 2004] banded preconditioner updates were
proposed for both symmetric positive definite approximate inverse and
incomplete Cholesky preconditioners.

● In Quasi-Newton methods the difference between system matrices is of
small rank and preconditioners may be efficiently adapted with
approximate small-rank preconditioner updates; this has been done in
the symmetric positive definite case, see e.g. [Bergamaschi, Bru,
Martínez, Putti - 2006, Nocedal, Morales - 2000].
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2. The considered preconditioner updates

In this presentation we focus on a preconditioner update proposed
recently [DT, Tůma - 2007]:

● A black-box approximate preconditioner update designed for
nonsymmetric linear systems solved by arbitrary iterative methods.

● Its computation is much cheaper than the computation of a new
preconditioner.

● Simple algebraic updates which can be easily combined with other
(problem specific) strategies and can be applied in matrix-free
environment.
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2. The considered preconditioner updates

Notation:

Consider two systems

Ax = b, and A+x+
= b+

preconditioned by M and M+ respectively and let

B ≡ A − A+.

We would like M+ to be an update of M that is as powerful as M itself.

If ||A − M || is the accuracy of the preconditioner M for A, we will try to
find an updated M+ for A+ with comparable accuracy,

||A − M || ≈ ||A+ − M+||.
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2. The considered preconditioner updates

Let M be factorized as
M = LDU ≈ A,

then the choice
M+ = LDU − B

would give ||A − M || = ||A+ − M+||.

We will approximate this ideal update LDU − B in two steps, similarly to
the techniques in [Benzi, Bertaccini - 2003, Bertaccini - 2004]. First we
use

LDU − B = L(DU − L−1B) ≈ L(DU − B) or

LDU − B = (LD − BU−1)U ≈ (LD − B)U

depending on whether L is closer to identity or U . Define the standard
splitting

B = LB + DB + UB.
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2. The considered preconditioner updates

Then the second approximation step is

L(DU − B) ≈ L(DU − DB − UB) ≡ M+

(upper triangular update) or

(LD − B)U ≈ (LD − LB − DB)U ≡ M+

(lower triangular update). Then M+ is for free and its application asks for
one forward and one backward solve. Schematically,

type initialization solve step memory

Recomp A+ ≈ L+U+ solves with L+, U+ A+, L+, U+

Update — solves with L, U, triu(B) A+, triu(A), L, U

● This is the basic idea; more sophisticated improvements are possible
● Ideal for upwind/downwind modification but our experiments cover

broader spectrum of problems
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2. The considered preconditioner updates

Consider the following CFD problem (compressible supersonic flow):

● Frontal flow with Mach-number 10 around a cylinder, which leads to a
steady state.

● 500 steps of the implicit Euler method are performed.
● The grid consists of 20994 points, we use Finite Volume discretization

and system matrices are of dimension 83976. The number of
nonzeroes is about 1.33·106 for all matrices of the sequence.

● In the beginning, a strong shock detaches from the cylinder, which then
slowly moves backward through the domain until reaching the steady
state position.

● The iterative solver is BiCGSTAB with stopping criterion 10−7, the
implementation is in C++.
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2. The considered preconditioner updates
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3. Updates in matrix-free environment

An important advantage of Krylov subspace methods is that they do not
require the system to be stored explicitly; a matrix-vector product (matvec)
subroutine, based on a function evaluation, suffices.

⇒ important reducing of storage and computation costs.

Standard example: Newton iteration of the form

J(xk)(xk+1 − xk) = −F (xk), k = 1, 2, . . .

where J(xk) is the Jacobian of F evaluated at xk. Then a matvec with
J(xk) is replaced by the standard difference approximation,

J(xk) · v ≈
F (xk + h‖xk‖v) − F (xk)

h‖xk‖
,

for some small h.
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3. Updates in matrix-free environment

First note that to compute an incomplete factorization in matrix-free
environment at all, the system matrix has to be estimated by matvecs ; for
example a tridiagonal matrix
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

can be easily obtained with matvecs with

(1, 0, 0, 1, 0, 0, . . . )T ,

(0, 1, 0, 0, 1, 0, . . . )T ,

(0, 0, 1, 0, 0, 1, . . . )T .
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3. Updates in matrix-free environment

In general, one uses a graph coloring algorithm that tries to minimize the
number of matvecs for a good estimate [Cullum, Tůma - 2006].

Hence recomputing the preconditioner requires for every linear system:

● A number of additional matvecs to estimate the current matrix
● When the nonzero pattern changes during the sequence: Rerunning

the graph coloring algorithm.

Preconditioner recomputation is even more expensive in matrix-free
environment !

How about the preconditioner updates ?
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3. Updates in matrix-free environment

Recall the upper triangular update is of the form

M+ = L(DU − DB − UB)

based on the splitting

LB + DB + UB = B = A − A+.

Thus the update needs some entries of A and A+ and repeated
estimation is necessary.

However:

● A has been estimated before to obtain the reference ILU-factorization

● Of A+ we need estimate only the upper triangular part

● Can there be taken any advantage of the fact we estimate only the
upper triangular part?
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3. Updates in matrix-free environment

Example:
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● estimating the whole matrix asks for n matvecs with all unit vectors;
● estimating the upper triangular part requires only 2 matvecs,

(1, . . . , 1, 0)T and (0, . . . , 0, 1)T .

The problem of estimating only the upper triangular part leads to a partial
graph coloring problem [Pothen et al. - 2007].
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3. Updates in matrix-free environment

The graph coloring algorithm for a matrix C works on the intersection
graph

G(CT C).

We can prove: The graph coloring algorithm for triu(C) works on

G(triu(C)T triu(C)) ∪ GK , where

GK = ∪n
i=1Gi, Gi = (Vi, Ei) = (V, {{k, j}| cik 6= 0 ∧ cij 6= 0 ∧ k ≤ i < j}).

Combined with a priori sparsification, there may be needed significantly
less matvecs to estimate triu(C) than to estimate C. Summarizing,

type initialization solve step memory

Recomp est(A+), A+
≈ L+U+ solves with L+, U+ L+, U+

Update est(triu(A+)) solves with L, U, triu(B) triu(A+), triu(A), L, U
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3. Updates in matrix-free environment

Table 1: Sequence from structural mechanics problem of dimension 4.936
solved by preconditioned GMRES(40).

ILUT(0.001,20), Psize ≈ 404 000

Matrix Recomp Freeze Updated

its fevals its fevals its fevals

A(0) 187 89 187 89 187 89

A(1) 89 89 393 0 146 25

A(2) 126 89 448 0 182 25

A(3) 221 89 480 0 184 25

A(4) 234 89 513 0 190 25

A(5) 193 89 487 0 196 25

A(6) 178 89 521 0 196 25

A(7) 246 89 521 0 196 25

overall fevals 2 186 3 639 1 966
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3. Updates in matrix-free environment

An alternative strategy circumvents estimation of A+:

Let the matvec be replaced with a function evaluation

A+ · v → F+(v), F+ : Rn → R
n,

e.g. in Newton’s method

J(x+) · v ≈
F (x+ + h‖x+‖v) − F (x+)

h‖x+‖
≡ F+(v).

We assume separable function components, i.e. we assume it is possible
to compute the components F+

i : Rn → R,

F+

i (v) = eT
i F+(v)

at the cost of about one nth of the full function evaluation F+(v).

Then the following strategy can be beneficial:
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3. Updates in matrix-free environment

● The forward solves with L in M+ = L(DU − DB − UB) are trivial.
● For the backward solves, use a mixed explicit-implicit strategy: Split

DU − DB − UB = DU − triu(A) + triu(A+)

in the explicitly given part

X ≡ DU − triu(A)

and the implicit part triu(A+).

We then have to solve the upper triangular systems
(

X + triu(A+)
)

z = y,

yielding the standard backward substitution cycle

zi =
yi −

∑

j>i xijzj −
∑

j>i a+

ijzj

xii + a+

ii

, i = n, n − 1, . . . , 1.
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3. Updates in matrix-free environment

In

zi =
yi −

∑

j>i xijzj −
∑

j>i a+

ijzj

xii + a+

ii

, i = n, n − 1, . . . , 1.

the sum
∑

j>i a+

ijzj can be computed by the function evaluation

∑

j>i

a+

ijzj = eT
i A+(0, . . . , 0, zi+1, . . . , zn)T ≈ F+

i

(

(0, . . . , 0, zi+1, . . . , zn)T
)

.

The diagonal {a+
11, . . . , a

+
nn} can be found by computing

a+

ii = F+

i (ei), 1 ≤ i ≤ n.

Summarizing, we have the cost comparison:

type initialization solve step memory

Recomp est(A+), A+
≈ L+U+ solves with L+, U+ L+, U+

Update est(diag(A+)) solves with L, U , triu(B), eval(F+) L, U
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3. Updates in matrix-free environment

As an example consider a two-dimensional nonlinear convection-diffusion
model problem: It has the form

−∆u + Ru

(

∂u

∂x
+

∂u

∂y

)

= 2000x(1 − x)y(1 − y), (1)

on the unit square, discretized by 5-point finite differences on a uniform
grid.

● The initial approximation is the discretization of u0(x, y) = 0.
● We use here R = 50 and a 91 × 91 grid.
● We use a Newton-type method and solve the resulting linear systems

with BiCGSTAB with right preconditioning.
● We use a flexible stopping criterion.
● Fortran implementation (embedded in the UFO - software for testing

nonlinear solvers).
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3. Updates in matrix-free environment

Table 2: Sequence from nonlinear convection-diffusion problem of dimen-
sion 8 281 with Reynolds number 50 solved with preconditioned BiCGStab
with flexible stopping criterion. The reference preconditioner is ILU(0).

Freeze Recomp. Lower tr. update Upper tr. update

linear solver iterations 410 122 153 186

Newton iterations 9 9 9 9

overall time in seconds 4.39 4.29 2.25 2.73
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For more details see:
● DUINTJER TEBBENS J, TŮMA M: Preconditioner Updates for Solving Sequences of Linear Systems in

Matrix-Free Environment, submitted to NLAA in 2008.

● BIRKEN PH, DUINTJER TEBBENS J, MEISTER A, TŮMA M: Preconditioner Updates Applied to CFD Model

Problems, Applied Numerical Mathematics vol. 58, no. 11, pp.1628–1641, 2008.

● DUINTJER TEBBENS J, TŮMA M: Improving Triangular Preconditioner Updates for Nonsymmetric Linear

Systems, LNCS vol. 4818, pp. 737–744, 2007.

● DUINTJER TEBBENS J, TŮMA M: Efficient Preconditioning of Sequences of Nonsymmetric Linear Systems,
SIAM J. Sci. Comput., vol. 29, no. 5, pp. 1918–1941, 2007.
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