
On the influence of eigenvalues on Bi-CG residual norms

Jurjen Duintjer Tebbens

Institute of Computer Science

Academy of Sciences of the Czech Republic

duintjertebbens@cs.cas.cz

Gérard Meurant

30, rue du sergent Bauchat

75012 Paris, France.

gerard.meurant@gmail.com

4th IMA Conference on Numerical Linear Algebra and Optimisation
University of Birmingham, 4.9.2014

1 / 30



Outline

1 The problem and previous work

2 Prescribed behavior of GMRES and FOM

3 Prescribed behavior in Bi-CG

4 Bi-CG breakdowns

5 Conclusions

2 / 30



Introduction: The Problem

We consider the solution of linear systems

Ax = b

where A ∈ Cn×n is non-normal and nonsingular, by a Krylov subspace
method.
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We consider the solution of linear systems

Ax = b

where A ∈ Cn×n is non-normal and nonsingular, by a Krylov subspace
method.

On the one hand there are methods with relatively nice theoretical
properties (orthogonal bases) using long recurrences like the GMRES
method [Saad & Schultz 1986] or the FOM method [Arnoldi 1951]. In
practice they need to be restarted.

On the other hand, there are methods like Bi-CG [Lanczos 1952, Fletcher

1974], QMR [Freund & Nachtigal 1991] and Bi-CGStab [van der Vorst 1992] with
constant costs per iteration based on less natural projection processes.
They can break down without having found the solution.
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Introduction: Eigenvalues govern convergence?

The convergence behavior of both types of methods is in practice often
governed by the eigenvalue distribution. For instance, eigenvalues
clustered around the origin seem to guarantee fast convergence; this is
what is generally used to analyse the quality of preconditioners.
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Introduction: Eigenvalues govern convergence?

The convergence behavior of both types of methods is in practice often
governed by the eigenvalue distribution. For instance, eigenvalues
clustered around the origin seem to guarantee fast convergence; this is
what is generally used to analyse the quality of preconditioners.

There is, however, no sound theoretical explanation for the relation
between eigenvalue distribution and convergence speed. On the contrary,
there are theoretical results which imply there is, in general, no relation at
all.

The most convincing results showing that the GMRES method need not
be governed by eigenvalues alone appeared in a series of papers by Arioli,
Greenbaum, Pták and Strakoš [Greenbaum & Strakoš 1994, Greenbaum & Pták &

Strakoš 1996, Arioli & Pták & Strakoš 1998]:
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Introduction: Eigenvalues govern convergence?

Theorem 1 [Greenbaum & Pták & Strakoš 1996] Let

‖b‖ = f0 ≥ f1 ≥ f2 · · · ≥ fn−1 > 0

be any non-increasing sequence of real positive values and let

λ1, . . . , λn

be any set of nonzero complex numbers. Then there exists a class of

matrices A ∈ Cn×n and right-hand sides b ∈ Cn such that the residual

vectors rk generated by the GMRES method applied to A and b satisfy

‖rk‖ = fk, 0 ≤ k ≤ n, and spectrum(A) = {λ1, . . . , λn}.
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Introduction: Eigenvalues govern convergence?

For assessing the quality of a preconditioner P when GMRES is applied to

PAx = Pb, PA non-symmetric,

this means that analysis of the spectrum of PA alone is not enough.
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For instance in constraint preconditioning, the fact that spec(PA) is, say,

spec (PA) = {1,
1
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±

√
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}

does not suffice to guarantee fast convergence of GMRES when PA is
non-symmetric. What is needed additionally, is the fact that the
eigenvalues have maximal geometric multiplicity (i.e. that PA is
non-derogatory).
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PAx = Pb, PA non-symmetric,

this means that analysis of the spectrum of PA alone is not enough.

For instance in constraint preconditioning, the fact that spec(PA) is, say,

spec (PA) = {1,
1

2
±

√

(5)

2
}

does not suffice to guarantee fast convergence of GMRES when PA is
non-symmetric. What is needed additionally, is the fact that the
eigenvalues have maximal geometric multiplicity (i.e. that PA is
non-derogatory).

The main problem with possibly non-normal input matrices is that besides
eigenvalues, the eigenspaces can strongly influence residual norms because
they are not orthogonal to eachother.
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Introduction: Objects governing convergence?

Tools other than eigenvalues used to explain GMRES convergence include:

the pseudo-spectrum (e.g. [Trefethen & Embree 2005])

the field of values (e.g. [Eiermann 1993])

the polynomial numerical hull (e.g. [Greenbaum 2002])

decomposition in normal plus small rank (e.g. [Huhtanen & Nevanlinna

2000])
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Introduction: Objects governing convergence?

Tools other than eigenvalues used to explain GMRES convergence include:

the pseudo-spectrum (e.g. [Trefethen & Embree 2005])

the field of values (e.g. [Eiermann 1993])

the polynomial numerical hull (e.g. [Greenbaum 2002])

decomposition in normal plus small rank (e.g. [Huhtanen & Nevanlinna

2000])

One may wonder whether the strong potential independence between
convergence behavior and eigenvalues is just an artefact of the GMRES
method ?

For restarted GMRES and FOM, the same independence has been proved
[Vecharinsky & Langou 2011, Schweitzer 2014?].
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The aim of the talk

As all Krylov subspace methods for non-symmetric matrices (e.g. GMRES,
FOM, Bi-CG, QMR, TFQMR, CGS, Bi-CGStab, IDR) project in different
ways onto essentially the same Krylov subspaces, one may expect that
similar results are possible for short recurrence Krylov subspace methods.
In this talk,

we concentrate on the theoretically simplest method with short
recurrences, the Bi-CG method.

we will try to show whether arbitrary convergence curves can be
combined with arbitrary eigenvalues in the Bi-CG method. We know
the answer in nearly all cases.

if possible, we will try to show how linear systems can be constructed
generating prescribed Bi-CG residual norms with input matrices
having prescribed spectrum.
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The GMRES and FOM methods

In GMRES and FOM an orthogonal basis for Kk(A, b) is constructed with
the Arnoldi process. In the kth iteration it computes (when there is no
breakdown) the decomposition

AVk = VkHk + hk+1,kvk+1eT
1 = Vk+1H̃k,

where the columns of Vk = [v1, . . . , vk] (the Arnoldi vectors) contain an
orthogonal basis for the kth Krylov subspace,

Kk(A, b) ≡ span{b, Ab, . . . , A
k−1b} .
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In GMRES and FOM an orthogonal basis for Kk(A, b) is constructed with
the Arnoldi process. In the kth iteration it computes (when there is no
breakdown) the decomposition

AVk = VkHk + hk+1,kvk+1eT
1 = Vk+1H̃k,

where the columns of Vk = [v1, . . . , vk] (the Arnoldi vectors) contain an
orthogonal basis for the kth Krylov subspace,

Kk(A, b) ≡ span{b, Ab, . . . , A
k−1b} .

Hk (square), resp. H̃k (rectangular) are upper Hessenberg matrices
containing the coefficients of the long recurrences;

H̃k =

[

Hk

0 hk+1,k

]

∈ C
(k+1)×k.

10 / 30



The GMRES method

With initial guess x0 = 0,

GMRES iterates are given by

xG
k = Vkyk, yk = min

y∈Ck

∥

∥

∥‖b‖e1 − H̃ky
∥

∥

∥

FOM iterates are given by

xF
k = Vkyk, yk = H−1

k ‖b‖e1

if Hk is nonsingular; otherwise they are not defined.
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GMRES iterates are given by

xG
k = Vkyk, yk = min

y∈Ck

∥

∥

∥‖b‖e1 − H̃ky
∥

∥

∥

FOM iterates are given by

xF
k = Vkyk, yk = H−1

k ‖b‖e1

if Hk is nonsingular; otherwise they are not defined.

Thus iterates and residual norms generated by GMRES and FOM are fully
determined by the Hessenberg matrices H̃k, Hk and ‖b‖. Prescribing
GMRES and FOM residual norms amounts to prescribing the entries of
these Hessenberg matrices in the right way.
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The GMRES method

The kth GMRES residual vector can be characterized through

rk = min
x∈Kk(A,b)

‖b − Ax‖, equivalently, rG
k ⊥ AKk(A, b),

whereas the kth FOM residual vector is characterized through

rF
k ⊥ Kk(A, b).
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The GMRES method

The kth GMRES residual vector can be characterized through

rk = min
x∈Kk(A,b)

‖b − Ax‖, equivalently, rG
k ⊥ AKk(A, b),

whereas the kth FOM residual vector is characterized through

rF
k ⊥ Kk(A, b).

The corresponding residual norms are related through to formula

1

‖rF
k ‖

=

√

1

‖rG
k ‖2

−
1

‖rG
k−1‖2

.

Note that FOM residual norms need not be non-increasing and are not
defined if the corresponding GMRES iterate stagnates.
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The parametrization for FOM and GMRES

Here is how one can prescribe residual norms, eigenvalues and Ritz values
in FOM and GMRES [DT & Meurant 2013]:
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Choose a unitary matrix V and put b = V e1 and

A = V HV ∗, H upper Hessenberg.

To force the desired eigenvalues, H is of the form

H = U−1CU, U nonsingular upper triangular,

where C is the companion matrix for the prescribed spectrum.

To force FOM residual norms f(0), . . . , f(n − 1), f(i) > 0, the first
row gT of U can be chosen as

gk =
1

f(k − 1)
, k = 1, . . . , n.
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The parametrization for FOM and GMRES

Let
A = V (U−1CU)V ∗, b = V e1.

To force GMRES residual norms f(0) ≥ · · · ≥ f(n − 1) > 0, the first
row gT of U can be chosen as

g1 =
1

f(0)
, gk =

√

1

f(k − 1)2
−

1

f(k − 2)2
, k = 2, . . . , n.

To force Ritz values, i.e. eigenvalues of Hk, the remaining submatrix
T of

U =

[

gT

0 T

]

can be chosen to have entries satisfying

k
∏

i=1

(λ − ρ
(k)
i ) =

1

tk,k

(

gk+1 +
k
∑

i=1

ti,kλi

)

.
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Bi-Lanczos

The FOM/GMRES pair of methods with long recurrences has an analogue
among methods with short recurrences: The Bi-CG/QMR pair.
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Bi-Lanczos

The FOM/GMRES pair of methods with long recurrences has an analogue
among methods with short recurrences: The Bi-CG/QMR pair.

Bi-CG and QMR use bi-orthogonal bases of Krylov subspaces constructed
with the Bi-Lanczos algorithm. In the kth iteration it computes (when
there is no breakdown) the decomposition

AVk = VkTk + hk+1,kvk+1eT
1 = Vk+1T̃k,

where the columns of Vk = [v1, . . . , vk] span Kk(A, b) and satisfy

W ∗
k Vk = diag(ω1, . . . , ωk), ωi 6= 0

for a matrix Wk whose columns span Kk(A∗, b). The matrix T̃k

(rectangular), resp. Tk (square) is tridiagonal, thus allowing for short
recurrences to generate the bi-orthogonal bases.
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Bi-Lanczos

In analogy with the FOM/GMRES pair, the kth QMR residual norm is

‖r
QMR
k ‖ = ‖Vk+1(‖b‖e1 − T̃kyk)‖, yk = min

y∈Ck

∥

∥

∥‖b‖e1 − T̃ky
∥

∥

∥ .
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∥
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‖r
QMR
k ‖ = ‖Vk+1(‖b‖e1 − T̃kyk)‖, yk = min

y∈Ck

∥

∥

∥‖b‖e1 − T̃ky
∥

∥

∥ .

The kth Bi-CG residual norm satisfies

‖rBiCG
k ‖ = ‖b‖ · |tk+1,keT

k T −1
k e1| · ‖vk+1‖.

and does not exist for singular Tk.

With a correct scaling of the columns of Vk+1, Bi-CG residual norms are
fully determined by the entries of T̃k. (QMR residual norms also depend
upon ‖Vk+1‖). We can therefore try to extend the construction to
prescribe FOM convergence behavior.
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The Bi-CG parametrization

To force desired eigenvalues and Bi-CG residual norms we can

Choose a nonsingular matrix V with normalized columns and put
b = V e1 and

A = V T V −1, T tridiagonal.

18 / 30



The Bi-CG parametrization

To force desired eigenvalues and Bi-CG residual norms we can

Choose a nonsingular matrix V with normalized columns and put
b = V e1 and

A = V T V −1, T tridiagonal.

Try to find a tridiagonal T allowing the decomposition

T = U−1CU, U nonsingular upper triangular,

where C is the companion matrix for the prescribed spectrum and

18 / 30



The Bi-CG parametrization

To force desired eigenvalues and Bi-CG residual norms we can

Choose a nonsingular matrix V with normalized columns and put
b = V e1 and

A = V T V −1, T tridiagonal.

Try to find a tridiagonal T allowing the decomposition

T = U−1CU, U nonsingular upper triangular,

where C is the companion matrix for the prescribed spectrum and
where the first row gT of U has entries

gk =
1

f(k − 1)
, k = 1, . . . , n,

if f(0), . . . , f(n − 1), f(i) > 0 are the prescribed Bi-CG residual
norms.
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The Bi-CG parametrization

Let us assume for the moment, that we wish to prescribe only convergence
curves where all iterates are defined. That means, we assume that the
entries

gk =
1

‖rBiCG
k−1 ‖

, k = 1, . . . , n.

of the first row of U are all nonzero. Equivalently, all leading principal
submatrices Tk of T are nonsingular.
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The Bi-CG parametrization

Let us assume for the moment, that we wish to prescribe only convergence
curves where all iterates are defined. That means, we assume that the
entries

gk =
1

‖rBiCG
k−1 ‖

, k = 1, . . . , n.

of the first row of U are all nonzero. Equivalently, all leading principal
submatrices Tk of T are nonsingular.

Clearly
T = U−1CU, U nonsingular upper triangular,

where C is a given companion matrix and the first row gT of U is a given
vector is always upper Hessenberg. Note that there holds [Parlett 1967]

U−1 = [e1, T e1, . . . , T n−1e1].

To obtain a tridiagonal T one can apply the Bi-Lanczos algorithm to C

with some starting vector z. But the Bi-Lanczos process can break down ...
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The Bi-CG parametrization

Theorem [Joubert 1992]: The Bi-Lanczos algorithm applied to a
nonderogatory matrix runs till completion and no leading principal
submatrix of the generated tridiagonal matrix will be singular for almost
every starting vector, i.e. except for a measure zero set of vectors.
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The Bi-CG parametrization

Theorem [Joubert 1992]: The Bi-Lanczos algorithm applied to a
nonderogatory matrix runs till completion and no leading principal
submatrix of the generated tridiagonal matrix will be singular for almost
every starting vector, i.e. except for a measure zero set of vectors.

Thus let for an appropriate z,

CZ = ZT, Ze1 = z.

Then T = Z−1CZ will have the desired spectrum. If we define
U = [e1, T e1, . . . , T n−1e1]−1, T can be decomposed as

T = U−1CU, U nonsingular upper triangular

To have the first row of U equal to our given gT , it suffices to scale T

with a diagonal matrix D as

T̂ = D−1T D = (UD)−1C(UD).
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Bi-CG breakdown types

So far, we assumed that we prescribe only convergence curves where all
iterates are defined. Let us list all situations where the Bi-CG method can
break down:

Bi-CG can break down if the underlying Bi-Lanczos process breaks down:
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In case of a lucky breakdown, a subdiagonal entry of T is zero and we
have found an A- or A∗-invariant subspace. This gives, in exact
arithmetics, the solution of the linear system or of the system with A∗.
In case of a serious breakdown, two basis vectors vk and wk are
orthogonal to eachother and the bi-orthogonality condition

W ∗
k Vk = diag(ω1, . . . , ωk), ωi 6= 0

cannot be satisfied. One way to continue the Bi-Lanczos process is to
use a look-ahead technique, i.e. to perform further iterations until for
some i, w∗

k+ivk+i 6= 0.
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Bi-CG can break down if the underlying Bi-Lanczos process breaks down:

In case of a lucky breakdown, a subdiagonal entry of T is zero and we
have found an A- or A∗-invariant subspace. This gives, in exact
arithmetics, the solution of the linear system or of the system with A∗.
In case of a serious breakdown, two basis vectors vk and wk are
orthogonal to eachother and the bi-orthogonality condition

W ∗
k Vk = diag(ω1, . . . , ωk), ωi 6= 0

cannot be satisfied. One way to continue the Bi-Lanczos process is to
use a look-ahead technique, i.e. to perform further iterations until for
some i, w∗

k+ivk+i 6= 0.
In case of an incurable breakdown, no look-ahead strategy will help to
generate a pair of bi-orthognal bases (w∗

k+ivk+i = 0 for all i).
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Bi-CG breakdown types

Bi-CG can also break down if the underlying Bi-Lanczos process runs to
completion.
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Bi-CG breakdown types

Bi-CG can also break down if the underlying Bi-Lanczos process runs to
completion.

In this case, the breakdown is due to the fact that the current tridiagonal
matrix Tk is singular.

This corresponds precisely to a zero entry on position k of the first row of
U in the decomposition

T = U−1CU, U nonsingular upper triangular, C a companion matrix.

If we wish to prescribe any Bi-CG convergence curve, we must also be able
to prescribe curves with this type of breakdown, i.e. with possibly
non-defined iterates.
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Prescribing Bi-CG breakdowns

Thus the question is:

Can we find tridiagonal matrices T of the form

T = U−1CU, U nonsingular upper triangular,

where C is a given companion matrix and the first row gT of U is a given
vector with zeros on prescribed positions.
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Thus the question is:

Can we find tridiagonal matrices T of the form

T = U−1CU, U nonsingular upper triangular,

where C is a given companion matrix and the first row gT of U is a given
vector with zeros on prescribed positions.

The answer is no, or not yet ? But first, we have this proposition:

Theorem [DT & Meurant 2014?]: Assume Bi-Lanczos with nonsingular input
matrix A with initial vector b runs to completion. Let xi ≡ ∞ if and only
of the ith leading principal submatrix of T is singular. Then whenever
xk−1 = ∞, we have xk 6= ∞.
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Prescribing Bi-CG breakdowns

Thus it is impossible in Bi-CG to have two subsequent iterations where
iterates are not defined.
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subsequent) sizes. This seems to be an open or unconsidered problem in
the literature.
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Prescribing Bi-CG breakdowns

Thus it is impossible in Bi-CG to have two subsequent iterations where
iterates are not defined.

We were unable to find a way to generate a tridiagonal matrix with given
spectrum and singular leading principal submatrices of particular (not
subsequent) sizes. This seems to be an open or unconsidered problem in
the literature.

Tn

❅
❅

❅

❅
❅

❅

❅
❅

❅j
k

0

0

.
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Prescribing Bi-CG breakdowns

The problem amounts to finding a starting vector for Bi-Lanczos applied
to a companion matrix C such that the generated tridiagonal matrix has
some singular leading principal submatrices.
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Prescribing Bi-CG breakdowns

The problem amounts to finding a starting vector for Bi-Lanczos applied
to a companion matrix C such that the generated tridiagonal matrix has
some singular leading principal submatrices.
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to a companion matrix C such that the generated tridiagonal matrix has
some singular leading principal submatrices.

To force a leading principal submatrices to be singular, one can modify two
entries of a starting vector. In this way we are able to influence the
singularity of only the first half of the leading principal submatrices of T .

Similarly, one can use a backward eigenvalue-forcing strategy described in
Parlett and Strang [Parlett & Strang 2008] to influence the singularity of only
the second half of the leading principal submatrices of T .
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Any history of positive, finite Bi-CG residual norm is possible with any
eigenvalues.

Additionally, infinite Bi-CG residual norms can be prescribed either in
the first or in the second half of the iterations.

Future work: Consequences for the QMR method, prescribing Ritz
values of tridiagonal matrices.

For more details see:

J. Duintjer Tebbens, G. Meurant: On the Convergence of QOR and QMR Krylov
Methods for Solving Linear Systems, to be submitted.
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Last but not least

Thank you for your attention!

29 / 30



Related papers

A. Greenbaum and Z. Strakoš, Matrices that generate the same Krylov residual spaces,
IMA Vol. Math. Appl., 60 (1994), pp. 95–118.

A. Greenbaum, V. Pták and Z. Strakoš, Any nonincreasing convergence curve is possible
for GMRES, SIMAX, 17 (1996), pp. 465–469.

M. Arioli, V. Pták and Z. Strakoš, Krylov sequences of maximal length and convergence
of GMRES, BIT, 38 (1998), pp. 636–643.

E. Vecharinsky and J. Langou, Any admissible cycle-convergence behavior is possible for
restarted GMRES at its initial cycles, 18 (2011), Num. Lin. Alg. Appl., pp. 499–511.

J. Duintjer Tebbens and G. Meurant, Any Ritz value behavior is possible for Arnoldi and
for GMRES, SIMAX, 33 (2012), pp. 958–978.

J. Duintjer Tebbens and G. Meurant, Prescribing the behavior of early terminating
GMRES and Arnoldi iterations, Numer. Algorithms, 65 (2014), pp. 69–90.

M. Schweitzer, Any cycle-convergence curve is possible for restarted FOM, technical
report Univ. Wuppertal, Preprint BUW-IMACM 14/19, 2014.

30 / 30


	The problem and previous work
	Prescribed behavior of GMRES and FOM
	Prescribed behavior in Bi-CG
	Bi-CG breakdowns
	Conclusions

