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1. Jacobian-free preconditioning

Consider a sequence of large scale systems of nonlinear equations

F (j)(x) = 0, j = 0, 1, 2, . . .

with continuously differentiable functions

F (j) : Rn → R
n.

They arise in numerous scientific and industrial applications, e.g. every
time step tj in a numerical simulation may require the solution of
F (j)(x) = 0. They arise in Navier-Stokes equations, heat conduction
problems, differential-algebraic problems, many kinds of initial and
boundary value problems and many others.
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1. Jacobian-free preconditioning

We restrict ourselves to inexact Newton-Krylov methods (see e.g. [Kelley -
1995]) where each Newton iteration has the form

J(xk)(xk+1 − xk) = −F (j)(xk), k = 1, 2, . . . ,

where J(xk) represents the Jacobian of F (j) evaluated at xk.

If the linear systems with the Jacobians are solved by a transpose-free
Krylov subspace method, one can use a Jacobian-free implementation:

The multiplication of a vector v with J(xk) is replaced by a finite-difference
approximation, for example the first-order approximation

J(xk) · v ≈
F (j)(xk + h‖xk‖v)− F (j)(xk)

h‖xk‖
,

for some small h.
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1. Jacobian-free preconditioning

● Exploiting finite-difference approximation, the system matrix needs not
be stored and not even be computed. Convergence is Newton is in
general not significantly influenced.

● Such an implementation is sometimes called „matrix-free", which is a
little misleading: It is often necessary to store preconditioners and
smaller matrices in some Krylov subspace methods.

● A possible definition of matrix-free is „free of matrices with storage
comparable to that of the Jacobian" [Knoll, Keyes - 2004].

● We will use the term „Jacobian-free".
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1. Jacobian-free preconditioning

Preconditioning is often crucial for satisfactory performance of both the
Krylov and the Newton iteration.

Some preconditioners that do not need the entries of the Jacobians
explicitly in order to be applied are:

● Multigrid and additive Schwarz preconditioners based on domain
decomposition and grid coarsening,

● Fast Poisson solvers and and other simplifications of operators as
preconditioners in e.g. convection-diffusion-reaction problems,

● Krylov subspace methods as preconditioners for the inner iteration of an
outer Krylov subspace, e.g. flexible GMRES [Saad - 1993].
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1. Jacobian-free preconditioning

● For particular problems these preconditioners can be superior to
incomplete factorizations, for some references see [Knoll, Keyes - 2004].

● In other cases one needs the universality and robustness of incomplete
LU or Cholesky decomposition.

● These factorizations need the entries of the Jacobian explicitly!

● The only way to estimate these entries is through simulating
matrix-vector products (matvecs) with selected test vectors vt, e.g.

J(xk) · vt ≈
F (j)(xk + h‖xk‖vt)− F (j)(xk)

h‖xk‖
.

In [Curtis, Powell, Reid - 1978] it was first shown this may be done with a
small number of matvecs if the sparsity pattern of the Jacobian is known.
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1. Jacobian-free preconditioning

For example a tridiagonal Jacobian of arbitrary size
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can be estimated through only three matvecs, namely with

(1, 0, 0, 1, 0, 0, . . . )T ,

(0, 1, 0, 0, 1, 0, . . . )T ,

(0, 0, 1, 0, 0, 1, . . . )T .
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1. Jacobian-free preconditioning

In general, one uses a graph coloring algorithm to estimate the entries of
the Jacobian [Coleman, More - 1984].

● The algorithms work on the intersection graph, that is on G(JTJ)

● The computational costs of graph coloring algorithms are linear in the
number of nonzeros

● Every color defines a test vector whose matvec simulated with a finite
difference approximation gives some entries of the Jacobian

● Heuristics are used to minimize the number of colors

Note that to construct good preconditioners it need not be necessary to
have all nonzeros of the Jacobian. Partial estimation with modified graph
coloring may be cheaper [Cullum, Tůma - 2006].
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1. Jacobian-free preconditioning

When solving the sequence of large scale systems of nonlinear equations

F (j)(x) = 0, j = 0, 1, 2, . . .

one will always try to share part of the computational effort throughout the
sequence. An option is reusing the same preconditioner over several
Newton iterations, i.e. freeze the preconditioner. Note that recomputing
the preconditioner requires for every linear system:

● A number of additional matvec simulations (i.e. function evaluations) to
estimate the current matrix,

● When the sparsity pattern changes during the sequence: Rerunning the
graph coloring algorithm,

● Rerunning the incomplete factorization.

Unfortunately, a frozen preconditioner can deteriorate when the system
matrix changes too much. A good compromise may be approximate
preconditioner updates.
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2. Approximate preconditioner updates

Some proposed preconditioner updates include:

● In [Meurant - 2001] and [Bellavia, de Simone, di Serafino, Morini - 2011] we
find approximate preconditioner updates of incomplete Cholesky
factorizations for shifted SPD matrices.

● In Quasi-Newton methods the difference between system matrices is of
small rank and preconditioners may be efficiently adapted with
approximate small-rank preconditioner updates; this has been done in
the symmetric positive definite case, see e.g. [Bergamaschi, Bru,
Martínez, Putti - 2006, Nocedal, Morales - 2000].

● The preconditioner update can consist of adding recycled (spectral)
information from previously generated Krylov subspaces. This can be
beneficial in many applications, see e.g. [Parks, de Sturler, Mackey,
Johnson, Maiti - 2006], [Giraud, Gratton, Martin - 2007], [Frank, Vuik - 2001].
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2. Approximate preconditioner updates

The previous factorization updates are more or less problem specific. We
now describe a class of more black-box approximate preconditioner
updates based on an idea in [Benzi, Bertaccini - 2003].

Notation: Consider two linear systems in the sequence,

Jx = b, and J+x+ = b+

and let

∆ ≡ J − J+.

Further, let

J ≈ LDU

be a reference (seed) ILU factorization for the reference Jacobian J.
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2. Approximate preconditioner updates

Then

J − LDU = J+ − LDU +∆ = J+ − L(D + L−1∆U−1)U,

i.e. the preconditioner update

L(D + L−1∆U−1)U

is of the same accuracy as LDU .

This update is not useful as preconditioner because of the middle factor.

Assuming fast decay when moving away from the main diagonal in L−1

and U−1, two ideas to modify the middle factor were proposed. Note that
fast decay is often given in diagonally dominant problems, or it can be
stimulated by reorderings that move large entries close to the main
diagonal.
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2. The considered preconditioner updates

● Consider

L(D + band(L−1∆U−1))U

for a small bandwidth ⇒ additional inexpensive forming of
band(L−1∆U−1) to compute the preconditioner and additional
inexpensive solving of a banded system to apply the preconditioner.
This update was used in [Bertaccini - 2004].

● Consider

L(D +∆U−1)U = L(DU +∆) ≈ L(DU + triu∆)

or

L(D + L−1∆)U = (LD +∆)U ≈ (LD + tril∆)U

⇒ no additional costs to compute or apply the preconditioner, but
based on rather greedy simplification, see [DT, Tůma - 2007].
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2. Approximate preconditioner updates

Analogously, if

J−1 ≈ WD̃−1ZT , W, Z upper triangular,

is a reference approximate inverse factorization for J , we can use the

banded factorization update

W (D̃ + band(ZT∆W ))−1ZT ,

see [Benzi, Bertaccini - 2003] (symmetric case) and [Bellavia, Bertaccini,

Morini - 2011], or we can use the triangular updates

W (D̃ZT + tril(∆))−1, (W̃D + triu(∆))−1ZT .

Note that in general approximate inverse factorizations need more
nonzeros than ILU or Cholesky to be efficient and thus are less suited for
Jacobian-free environment.
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2. Approximate preconditioner updates

Consider the following CFD problem (compressible supersonic flow):

● Frontal flow with Mach-number 10 around a cylinder, which leads to a
steady state.

● 500 time steps of the implicit Euler method are performed.
● The grid consists of 20994 points, we use Finite Volume discretization

and system matrices are of dimension 83976. The number of
nonzeroes is about 1.33·106 for all matrices of the sequence.

● In the beginning, a strong shock detaches from the cylinder, which then
slowly moves backward through the domain until reaching the steady
state position.

● The iterative solver is BiCGSTAB with stopping criterion 10−7, the
implementation is in C++.

● The ILU preconditioner is recomputed for every 30th linear system.
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2. Approximate preconditioner updates
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2. Approximate preconditioner updates

Back to Jacobian-free implementation:

The described class of updates works with the difference matrix, that is
with

band(ZT∆W ), tril(∆), triu(∆), where ∆ = J − J+.

The reference Jacobian J has usually been estimated in order to obtain
the reference factorization, but J+ has not.

Instead of direct estimation of the current Jacobian J+, two directions for
improvement were proposed:

● Adapted graph coloring algorithms to estimate only the necessary
entries of J+,

● Cheap estimation of selected entries with function component
evaluations.

First consider e.g. estimating triu(∆) with adapted graph coloring.
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2. Approximate preconditioner updates

Academic example:

J+ =
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● estimating the whole matrix asks for n matvecs with all unit vectors (i.e.
there are n colors in the intersection graph);

● estimating the upper triangular part requires only 2 matvecs (i.e. there
are 2 colors in the intersection graph),

(1, . . . , 1, 0)T and (0, . . . , 0, 1)T .
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2. Approximate preconditioner updates

Recall the graph coloring algorithm for a matrix C works on the
intersection graph

G(CTC).

We can prove [DT, Tůma - 2010]: The graph coloring algorithm for triu(C)
works on

G(triu(C)T triu(C)) ∪GK , where

GK = ∪n
i=1Gi, Gi = (Vi, Ei) = (V, {{k, j}| cik 6= 0 ∧ cij 6= 0 ∧ k ≤ i < j}).

● This graph may have less edges than G(CTC) and there may be
needed significantly less matvecs to estimate triu(C) than to estimate
C

● Similar modified coloring may be used to estimate the diagonals of J+

needed to form band(ZT∆W )

● These are instances of partial graph coloring problems [Pothen et al. -
2007].
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2. Approximate preconditioner updates

As for the second strategy, assume the components F+
i : Rn → R of the

current function
F+ = [F+

1 , . . . , F+
n ]T : Rn → R

n

can be easily separated. By this we mean that a function component
evaluation F+

i (x) has the cost of about one nth of the full function
evaluation F+(x). (Note that in some Finite Element or Volume
implementations different components F+

i of F+ contain the same or
simultaneously generated expressions and the evaluation of F+(x) may
be cheaper than n function component evaluations F+

i (x).)

With easily separable function component evaluations it may pay-off to
compute the needed entries of J+ individually according to

eTi J
+(xk)ej ≈

F+
i (xk + h‖xk‖ej)− F+

i (xk)

h‖xk‖
.



J. Duintjer Tebbens, M. Tůma 21

2. Approximate preconditioner updates

By individual estimation with function component evaluations, we are able
to avoid running a graph coloring algorithm.

Easily separable function components also give cheap estimations of
inner products with rows of the Jacobian. For an arbitrary vector v, the
inner product with the ith row of J+ can be computed as

eTi J
+(xk)v ≈

F+
i (xk + h‖xk‖v)− F+

i (xk)

h‖xk‖

⇒ the entries of J+W needed to form

band(ZT∆W ) = band(ZT (J − J+)W )

can be obtained from inner products with the rows of J+ [Bellavia,
Bertaccini, Morini - 2011]. This is in general faster than estimating the
needed entries of J+ individually. For extracting bands of Hessians in
truncated Newton with function component evaluations, see [Lukšan,
Matonoha, Vlček - submitted].
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2. Approximate preconditioner updates

For the preconditioner update L(DU − triu∆) (or (LD − tril∆)U ) we can
avoid any estimation of entries of J+ (except for the main diagonal). We
can apply L(DU − triu∆) as follows:

● The forward solves with L are done with the stored entries of L.

● For the backward solves, use a mixed explicit-implicit solves: Split

DU − triu∆ = DU − triu(J) + triu(J+) ≡ X + triu(J+)

in the explicitly given X ≡ DU − triu(J) and the implicit triu(J+).

● We then have to solve the upper triangular systems

(DU − triu∆) z =
(

X + triu(J+)
)

z = y,

yielding the standard backward substitution cycle

zi =
yi −

∑

j>iXijzj −
∑

j>i J
+
ij zj

Xii + J+
ii

, i = n, n− 1, . . . , 1.
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2. Approximate preconditioner updates

In

zi =
yi −

∑

j>iXijzj −
∑

j>i J
+
ij zj

Xii + J+
ii

, i = n, n− 1, . . . , 1.

the inner product
∑

j>i J
+
ij zj with the ith row of J+ can be computed by

the function component evaluation
∑

j>i

J+
ij zj = eTi J

+(0, . . . , 0, zi+1, . . . , zn)
T

≈
F+
i (xk + h‖xk‖(0, . . . , 0, zi+1, . . . , zn)

T )− F+
i (xk)

h‖xk‖
.

The diagonal {J+
11, . . . , J

+
nn} can be found by individual estimation

J+
ii = eTi J

+(xk)ei ≈
F+
i (xk + h‖xk‖ei)− F+

i (xk)

h‖xk‖
, 1 ≤ i ≤ n.
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2. Approximate preconditioner updates

● This last technique enables to do backward or forward solves with J+

without storage of off-diagonal entries.

● The same can be done for the reference Jacobian, hence we do not
need to form or store off-diagonal entries of ∆ = J − J+

● This gain in storage costs is paid be slightly higher computational costs:
Every forward or backward solve requires n function component
evaluations, i.e. roughly one function evaluation, instead of n inner
products.
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2. Approximate preconditioner updates

As an example consider a two-dimensional nonlinear convection-diffusion
model problem: It has the form

−∆u+Ru

(

∂u

∂x
+

∂u

∂y

)

= 2000x(1− x)y(1− y), (1)

on the unit square, discretized by 5-point finite differences on a uniform
grid.

● The initial approximation is the discretization of u0(x, y) = 0.
● We use here R = 500.
● We use the Newton method with a line search and solve the resulting

linear systems with BiCGSTAB with right preconditioning.
● We use a flexible stopping criterion (see e.g. [Eisenstat, Walker - 1996]).
● Fortran implementation (embedded in the UFO - software for testing

nonlinear solvers [Lukšan et al. - 2008]).
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2. Approximate preconditioner updates
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Figure 1: BiCGStab iterations and CPU-times for a 250 × 250 grid (dimension 62 500)
with varying sizes of ILUT-factorizations (depending on the fill parameter) for freezing (dashed
lines), recomputing (dash-dotted lines), triangular updating with modified graph coloring (solid
lines) and triangular updating with mixed explicit-implicit solves (dotted lines).
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2. Approximate preconditioner updates
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Figure 2: BiCGStab iterations and CPU-times for a 310 × 310 grid (dimension 96 100)
with varying sizes of ILUT-factorizations (depending on the fill parameter) for freezing (dashed
lines), recomputing (dash-dotted lines), triangular updating with modified graph coloring (solid
lines) and triangular updating with mixed explicit-implicit solves (dotted lines).
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2. Approximate preconditioner updates
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Figure 3: BiCGStab iterations and CPU-times for a 490 × 490 grid (dimension 240 100)
with varying sizes of ILUT-factorizations (depending on the fill parameter) for freezing (dashed
lines), recomputing (dash-dotted lines), triangular updating with modified graph coloring (solid
lines) and triangular updating with mixed explicit-implicit solves (dotted lines).
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Conclusion

Conclusions and future work:

● The described preconditioner updates are suitable for Jacobian-free
sequences of linear systems

● We showed that triangular solves with the Jacobians can be done while
storing only their diagonal → all Gauss-Seidel type preconditioners can
be implemented in this way

● For the far future: work towards ILU preconditioning without storing the
L and U factors (or only their main diagonal) ??
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For more details see:
● DUINTJER TEBBENS J, TŮMA M: Preconditioner Updates for Solving Sequences of Linear Systems in

Matrix-Free Environment, Num. Lin. Alg. Appl. vol. 17, pp. 997–1019, 2010.

● BIRKEN PH, DUINTJER TEBBENS J, MEISTER A, TŮMA M: Preconditioner Updates Applied to CFD Model

Problems, Applied Numerical Mathematics vol. 58, no. 11, pp. 1628–1641, 2008.

● DUINTJER TEBBENS J, TŮMA M: Efficient Preconditioning of Sequences of Nonsymmetric Linear Systems,
SIAM J. Sci. Comput., vol. 29, no. 5, pp. 1918–1941, 2007.

Thank you for your attention!
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