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1. Linear systems in the Simplex Method

We consider a ,,linear program” (LP):

• Let A ∈ IRm×n with m < n be the constraint matrix

• Let b be the right hand side vector, c be the cost vector and

s be the vector of slack variables

• We search for x ∈ IRn solving the optimization problem

max cTx

s. t. (A, Im)
(

x
s

)

= b

x, s ≥ 0 .
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The simplex method to solve LP’s is considered one of the top

ten algorithms of the 20th century [SIAM News - 2000].

In the simplex method an optimal solution is found by traversing

a sequence of (neighboring) vertices of the polyhedron defined

by the linear constraints of the LP.

For a set of column indices B let (A, Im)·B be the basis matrix

and let N denote the non-basic column indices of A.

A statement of the (Dual) Simplex Algorithm, focusing on the

computational steps, is as follows:

4



A Dual Simplex Algorithm

1. Pricing: If the current solution cannot be improved, termi-

nate. Else choose a leaving index p ∈ B of column to leave

the basis matrix.

2. Solve (A, Im)T
·B∆h = ep

3. Ratio test: Based on the previous solution, select an entering

index q ∈ N of a column that should enter the basis matrix

in order to improve the current solution.

4. Solve (A, Im)·B∆f = (A, Im)· q

5. Update: B = B \ {p} ∪ {q}, N = N \ {q} ∪ {p}
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• In all implementations of the simplex method each of the

individual vertex traversals requires the solution of two linear

systems: one with the basis matrix (A, Im)·B and one with

its transpose.

• In every iteration, one column of the basis matrix is replaced

with a nonbasic column from A.

Depending on the strategy chosen, the solution of a third or even

fourth system per iteration might be necessary.
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In one run of the simplex method typically hundreds of linear

systems have to be solved.

The solution of these systems accounts for the major slice of

computation time: 60-90%.

Modern implementations of the Simplex Method all use a di-

rect solution strategy, Markowitz pivoting, dating back from the

fifties [Markowitz - 1957] !

Can modern linear algebra provide tools that improve the per-

formance of the linear algebra kernel of LP codes ?
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2. Efficient Solution

Properties of basis matrices (A, Im)·B:

• Non-symmetric and indefinite.

• The vast majority is sparse, that is, most constraint matrices

have about 10 to 20 nonzeros per column

• The basis matrix typically contains an important number of

unit vectors (25-50%); especially during the first iterations,

unit vectors can make a very large part of the basis.

• The 2-norm condition number of an optimal basis matrix

may have values of 106 to 108 .

• The matrices have unpredictable structure; at first sight they

seem to lack any structure.

8



0 2000 4000 6000 8000 10000

0

2000

4000

6000

8000

10000

nz = 43345

Structure of typical basis matrix (momentum1 from MIPLIB)

9



However, it is common practice in LP codes to perform a pre-

processing step by successively moving column and row single-

tons to the front (triangulation).

We obtain permutations such that the permuted basis matrix is

of the form

P A·B Q =







U0 ∗ ∗

0 L0 0
0 ∗ N





 ,

with an upper triangular matrix U0, a lower triangular matrix L0

and a matrix N , called the nucleus (or kernel).
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Based on empirical observation, we found that the size of the

nucleus is in general very small. This effect is the stronger the

larger are the considered LP’s. Consider for example the follow-

ing large-scale LP’s provided by ZIB:

LP name no. fact. no. N size B Ø size N Ø deviation

BER P*od10 1979 1978 1425456 11519 2298
N BA2*mann 4913 107 3160202 43 31
aflow 1*50 2658 210 500998 584 436
aflow 2*50 10382 1374 2001998 488 705
scm30*0pre 6016 6013 1220936 31156 6997
ts.lo*0315 913 911 1654588 3684 1779
ts.lo*2029 664 663 1089131 1846 765
ts.lo*2253 739 738 1089128 3186 2037
ts.lo*4012 1368 1366 1654588 12762 10819
ts.lo*4139 1006 1005 2214771 3713 2245
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We tested in total 200 LP’s (with 392.701 factorizations) from

four sources:

1. The NETLIB set of real-world LP’s (94 LP’s).

2. The MIPLIB 2003 test set of mixed-integer linear programs

(60 LP’s).

3. The LP’s from the Mittelmann benchmark of free LP solvers

that do not come from source 1 or 2 (35 LP’s).

4. Large scale LP’s, mostly with the dimension of B exceeding

5 ∗ 105, provided to us by ZIB (11 LP’s).

They represent a wide range of different application areas, so

that the numerical results we present are tightly coupled with

the behaviour encountered in practice.

13



0

20

40

60

80

100

relative size of nucleus

10
1

10
2

10
3

10
4

10
5

10
6

10
7

dim
ension of basis m

atrix

14



These observations have important consequences:

• Many LP basis matrices have the pronounced, unusual struc-

ture:






U0 ∗ ∗

0 L0 0
0 ∗ N





 .

• The triangulation is crucial for efficient solution; only a sys-

tem with the nucleus N remains to be solved.

• The sizes of nuclei rarely exceed 105; solution of the cor-

responding linear systems is more or less trivial for modern

linear algebra and may be seen as mere ,,cleaning up”.

Still we can ask: What solution method is best for systems with

the nucleus?
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Are iterative methods competitive with direct methods?

• The constraint matrix A is explicitly stored; the advantage
of matrix-free implementation does not apply here

• We need ,,exact” solutions

• The nuclei N are completely unstructured and their spectra
indicate rather unfavorable convergence behavior of iterative
methods, unless a very good preconditioner is used.

• Even in case such preconditioner is obtained “for free”, our
results show the fill-in in the LU factorization of N may be
very low, which implies that a preconditioned iterative solver
would have to compute a good approximate solution within
very few iterations.

Not competitive in the setting of Simplex-based LP solvers !
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We will next compare different LU-codes by the amount of fill

they produce only. A greater number of nonzeros outweighs any

performance gain from fast factorization.

Note basis matrices are factorized only periodically and the fac-

torizations are being updated in between. This is straightforward

because basis matrices differ by one column only (e.g. Forrest-

Tomlin updates). They do create some fill, though.

Fill-in during LU-factorization is restricted to the fill created in-

side the nucleus. Thus in many cases we have close to optimal

fill (only a few percents) for the whole basis matrix.
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Markowitz pivoting

During the (sparse) LU decomposition algorithm we have to

choose a pivot element from our active submatrix Â.

• Let ri be the number of nonzeros in row i
• Let cj be the number of nonzeros in column j
• When âij is pivot, the Markowitz number

mij = (ri − 1)(cj − 1)

is an upper bound for the number of fill-in elements
• Among elements that satisfy, for a threshold ρ,

∣

∣

∣âij

∣

∣

∣ ≥ ρmax
k∈J

|âik|

we choose an element with smallest Markowitz number.

Note Markowitz identifies the nucleus.
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We compared Markowitz pivoting (1957) with more modern LU-

factorization techniques (last two decades):

• UMFPACK (right looking multifrontal)

• PARDISO (left/right supernodal with nested dissection)

• WSMP (multifrontal with nested dissection, Block Triangular

Form (BTF))

In the following,

cN ≡
nnz(I − L) + nnz(U)

nnz(I − LMark) + nnz(UMark)
.
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Good old Markowitz outperforms all modern solvers (but UMF-

PACK is close)! This may be due to the

• high sparsity of the nucleus but lack of structure of the nu-

cleus

• fact that Markowitz is a cheap nonsymmetric minimum de-

gree heuristic

• low degree of structural symmetry which may cause bad per-

formance of colmmd, colamd etc.

• no exploitation of BTF possible
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Conclusion

• Markowitz pivoting is ideal because (1) it detects the nucleus

(2) inside the nucleus it yields near minimal fill-in

• Hence LA has not come up with an improvement to solve

the Simplex method linear systems for 50 years

• positively said: Already many decades ago, LA provided a

near optimal strategy to solve the Simplex method linear

systems, namely LU-factorization with Markowitz pivoting.

Good news for both communities !
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More details can be found in ,,On the linear algebra kernel of

Simplex-based LP solvers”, by R. Luce, J. Duintjer Tebbens, J.

Liesen and R. Nabben (to be submitted to Mathematical Pro-

gramming).

Thank you for your attention.
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