Implementations for the minimum covariance determinant estimator J. Duintjer Tebbens^{1,2} and J. Kalina¹

Institute of Computer Science, Czech Academy of Sciences¹ and Faculty of Pharmacy in Hradec Králové, Charles University in Prague²

Robust estimation of location and scatter

In statistics, the term *robustness* is mostly used to indicate robustness with regards to outliers in the observed data. More precisely, a descriptive value is said to be robust of it is not significantly influenced by possible outliers in the data. The detection of outliers in p-dimensional data (i.e. observations with p recorded properties) is difficult if p > 3 because one can not rely on visual inspection. In the univariate case, a single outlier might still be relatively easily detected by measuring with a norm called Mahalanobis distance. This distance is in fact the energy norm for the inverse of the symmetric positive definite covariance matrix S and scales the p-dimensional space such that the variabilities of the individual properties are normalized. In a multivariate situation, with multiple outliers, the Mahalanobis distance itself is too strongly influenced by the outliers to give a reliable tool for their detection, a phenomenon called the masking effect.

If the aim is to estimate the location and scatter by robust estimators (i.e. to compute a robust mean vector and robust covariance matrix), one can compute the location and scatter for a subset of the observations which hopefully does not contain outliers. Assume we • have *n* observations $x_i \in \mathbb{R}^p$ of *p* variables, given by the data matrix

$$X = [x_1, \ldots, x_n]^T \in \mathbb{R}^{n \times p},$$

• and look for a subset of size h of the indices $\{1, 2, \ldots, n\}$, where $[(n+p+1)/2] \le h \le n$, such that no index in the subset corresponds to an outlier.

A criterion to base the search of the subset on and that has been proved to lead to highly robust estimators of location and scatter is to *minimize the determinant* of the covariance matrix [2]. For a given subset H of size h of the indices $\{1, 2, \ldots, n\}$, let • the corresponding mean \bar{x}_H be

$$\bar{x}_H = \frac{\sum_{i \in H} x_i}{h} \in \mathbb{R}^p$$

 \bullet and the corresponding covariance matrix S_H be

$$S_{H} = \frac{1}{h-1} \sum_{i \in H} (x_{i} - \bar{x}_{H})(x_{i} - \bar{x}_{H})^{T} = \frac{1}{h-1} (X_{H}^{T} - \bar{x}_{H} \mathbf{1}_{h}^{T})(X_{H} - \mathbf{1}_{h} \bar{x}_{H}^{T}) = \frac{1}{h-1} (X_{H}^{c})^{T} X_{H}^{c} \in \mathbb{R}^{p \times p},$$

where $\mathbf{1}_h \in \mathbb{R}^h$ is the vector of ones, X_H the data matrix for the indices in H and $X_H^c \in \mathbb{R}^{h \times p}$ is the corresponding centered data matrix. The Minimum Covariance Determinant Estimator [3] defines the optimal subset H_0 of size h of $\{1, 2, ..., n\}$ as

$$H_0 = \arg\min_{H} \det(S_H) = \arg\min_{H} \det(\sum_{i \in H} (x_i - \bar{x}_H)(x_i - \bar{x}_H)^T)$$

and defines the corresponding estimates of location and scatter as \bar{x}_{H_0} and S_{H_0} , respectively.

The fast MCD algorithm [4]

The computation of the Minimum Covariance Determinant Estimator requires minimization over all $\binom{n}{h}$ h-subsets of $\{1, 2, \ldots, n\}$, thus has combinatorial complexity and becomes infeasible for very moderate numbers of observations *n*. In the widely used *fast MCD* [4] algorithm:

- one attempts to approximate the minimum determinant
- with several determinant minimizing steps for a large (\pm 500) number of trial h-subsets • and selects the *h*-subset leading after the minimizing steps to the smallest determinant The determinant minimizing steps are called C-steps (concentration steps) and rely on the following theorem:

Theorem (C-step [4])

Let H_1 be an h-subset with corresponding location \bar{x}_{H_1} and scatter S_{H_1} . If $\det(H_1) \neq 0$ compute the Mahalanobis distances

$$d(i) = \sqrt{(x_i - \bar{x}_{H_1})^T S_{H_1}^{-1}(x_i - \bar{x}_{H_1})}, \qquad i = 1, \dots, n$$

and find a re-ordering j_1, \ldots, j_n of $\{1, 2, \ldots, n\}$ such that

$$d(j_1) \leq d(j_2) \leq \cdots \leq d(j_n).$$

Then if H_2 is the h-subset consisting of the indices $\{j_1, \ldots, j_h\}$ and S_{H_2} is the corresponding covariance matrix,

$$\det(S_{H_2}) \leq \det(S_{H_1})$$

with equality if and only if $\bar{x}_{H_1} = \bar{x}_{H_2}$ and $S_{H_1} = S_{H_2}$.

The main computational costs of one C-step can be summarized as follows:

- construction of the current covariance matrix S_{H_1} : $\mathcal{O}(np^2)$ flops.
- Cholesky- or eigendecomposition of S_{H_1} (this also yields $\det(S_{H_1})$) : $\mathcal{O}(p^3)$ flops.
- computation of the distances d(i): $\mathcal{O}(np^2)$ flops.

We will consider C-steps based on eigendecomposition, that is, they compute

$$S_{H_1} = Z_1 D_1 Z_1^T$$

with D_1, Z_1 the eigenvalue and eigenvector matrix, respectively, and find the Mahalanobis distances d(i) using

$$d(i) = \sqrt{(x_i - \bar{x}_{H_1})^T Z_1 D_1^{-1} Z_1^T (x_i - \bar{x}_{H_1})}, \qquad i = 1, \ldots, n.$$

Our contribution consists of two cheap, $\mathcal{O}(np)$ permutations that can be added to the C-step to improve its power with regards to minimizing the determinant.

An *a-posteriori* permutation

Suppose after a C-step, we have selected a new h-subset based on the ordered distances $d(j_1) \le d(j_2) \le \cdots \le d(j_n)$ as described in the previous theorem. In other words, the new h-subset H_2 consists of the indices $\{j_1,\ldots,j_h\}$. A natural question is whether among the discarded indices $\{j_{h+1},\ldots,j_n\}$ there may be indices that, if included in H_2 , would yield a covariance matrix with smaller determinant. This can be checked in a computationally inexpensive way as follows.

If instead of H_2 we use the h-subset $\{j_1,\ldots,j_{h-1},j_r\}\equiv H_r$ for some index $j_r\in\{j_{h+1},\ldots,j_n\}$, then the data matrix for H_r differs from the data matrix for H_2 in one column only. Therefore, the corresponding covariance matrices are small rank updates from eachother.

Theorem (Low rank update of a covariance matrix ([1], Theorem 3.2.2))

Let $d_r = x_{j_h} - x_{j_r} \in \mathbb{R}^p$, let S_r denote the covariance matrix for H_r and let $f = e_h - \mathbf{1}_h/h \in \mathbb{R}^h$, where e_h denotes the hth unit vector. Then there holds

$$S_r = S_{H_2} - d_r f^T X_2^c - (X_2^c)^T f d_r^T + ||f||^2 d_r d_r^T.$$

All vectors involved in the low-rank update can be computed with $\mathcal{O}(p)$ flops. Moreover, information on the determinant of S_r can be obtained from the determinant of S_{H_2} in $\mathcal{O}(p)$ flops as well: Using the eigendecomposition $S_{H_2} = Z_2 D_2 Z_2^T$, the eigendecomposition of S_r for the modified h-subset H_r can be written as

$$S_r = S_{H_2} - d_r f^T X_2^c - (X_2^c)^T f d_r^T + ||f||^2 d_r d_r^T$$

= $Z_2 \left(D_2 - Z_2^T d_r f^T X_2^c Z_2 - (X_2^c Z_2)^T f d_r^T Z_2 + ||f||^2 Z_2^T d_r d_r^T Z_2 \right) Z_2^T.$

Thus the eigenvalues of S_r are the eigenvalues of a symmetric rank-three update of the diagonal matrix D_2 and each eigenvalue can be obtained, using (inverse) power iteration, in $\mathcal{O}(p)$ flops. To keep the flop count at $\mathcal{O}(p)$, we propose to compute only the $s, s \leq 5$, largest eigenvalues of each covariance matrix S_r . After testing for all $j_r \in \{j_{h+1}, \ldots, j_n\}$, we select the index j_r for which the product of the s largest eigenvalues of S_r is minimal. The total flop count for this a posteriori permutation is of order (n - h)sp.

A look-ahead permutation

The weakness of the *a posteriori* permutation is that it tends to find, in numerical tests, an index j_r to exchange the index j_h of H_2 with, which would have been found anyway in the next C-step, i.e. the index j_r often becomes a member of H_3 anyway. The proposed a posteriori permutation is therefore mainly useful to add to the very last C-step to be performed.

To overcome this weakness, we propose a second permutation which looks ahead at the indices of H_3 and attempts to add an index to H_2 that will not be in H_3 . Assume that with a candidate h-subset H_2 we compute the Mahalanobis distances

$$d(i) = \sqrt{(x_i - \bar{x}_{H_2})^T S_{H_2}^{-1}(x_i - \bar{x}_{H_2})}, \qquad i = 1, \dots, n$$
(1)

and find a re-ordering k_1, \ldots, k_n of $\{1, 2, \ldots, n\}$ such that

$$d(k_1) \leq d(k_2) \leq \cdots \leq d(k_n).$$

Then H_3 would be defined as the indices $\{k_1, \ldots, k_h\}$. We can test whether indices in $\{k_{h+1},\ldots,k_n\}\setminus H_2$ yield a lower determinant of S_{H_2} when interchanged with i_h . This can be done in $\mathcal{O}((n-h)sp)$ flops as before. When the index for which the product of the s largest eigenvalues of S_r is minimal is found, we replace H_2 with H_r and have to recompute the Mahalanobis distances

$$d(i) = \sqrt{(x_i - \bar{x}_{H_r})^T S_{H_r}^{-1}(x_i - \bar{x}_{H_r})}, \qquad i = 1, \ldots, n$$

to perform the next C-step. Fortunately, this does not require the full $\mathcal{O}(np^2)$ flops for a regular C-step. Thanks to the fact that H_r is a small-rank update of H_2 , it can be done in $\mathcal{O}(np)$ flops using (1) and the Sherman-Morrison formula.

Experiment

We generated 10 data sets $X = [x_1, \dots, x_n]^T \in \mathbb{R}^{100 \times 10}$ each with 100 observations and 10 variables. 80 observations were normally distributed with mean vector 0 and covariance matix $\Sigma = 0.6 \cdot I_{10} + 0.4 \cdot \mathbf{1}_p \cdot \mathbf{1}_p^T$ and 20 randomly placed outliers were normally distributed with mean vector $3 \cdot \mathbf{1}_p$ and covariance matrix $2 \cdot \Sigma$. For 25 random initial choices of H_0 and each of the ten datasets, we performed 4 regular C-steps and compared with 4 C-steps including the look-ahead permutations (dashed curve) and with 4 C-steps including both proposed permutations (solid curve). The quality of the results is measured by the squared norm of \bar{x}_{H_4} (left figure) and the Frobenius norm of $\Sigma - S_{H_4}$ (right figure). The curves give the ratio of these measures for the improved vs. regular C-steps, averaged over all 25 random initial *h*-subsets.

Figure 1: Ratios (averaged over 25 random initial choices of H_0) of $||\bar{x}_{H_4}||^2$ for look-ahead improved C-steps (dashed) or C-steps improved with both proposed permutations (solid) versus regular C-steps; the x-axis gives the data set number.

Figure 2: Ratios (averaged over 25 random initial choices of H_0) of $\|\Sigma - S_{H_4}\|_F$ for look-ahead improved C-steps (dashed) or C-steps improved with both proposed permutations (solid) versus regular C-steps; the x-axis gives the data set number.

http://www.cs.cas.cz/duintjertebbens

Acknowledgements

The work of J. Kalina was financially supported by the Neuron Fund for Support of Science. The work of J. Duintjer Tebbens was supported by the grant GA13-06684S of the Czech Science Foundation.

- 1. Athanasiadis, S. *The small sample size problem in gene expression tasks*, Diploma thesis, Faculty of Pharmacy, Charles University, 2015.
- 2. Grübel, R. A minimal characterization of the covariance matrix Metrika, vol. 35, 49–52, 1988.
- 3. Hubert, M. and Debruyne, M. *Minimal covariance determinant* Metrika, Wiley Interdisciplinary Reviews: Computational Statistics, vol. 2, 36–43, 2010.
- 4. Rousseeuw, P. and Van Driessen, K. A fast algorithm for the minimum covariance determinant estimator Technometrics, vol. 34(3), 212-223, 1999.