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Robust estimation of location and scatter
In statistics, the term robustness is mostly used to indicate robustness with regards to outliers

in the observed data. More precisely, a descriptive value is said to be robust of it is not

significantly influenced by possible outliers in the data. The detection of outliers in

p-dimensional data (i.e. observations with p recorded properties) is di�cult if p > 3 because

one can not rely on visual inspection. In the univariate case, a single outlier might still be

relatively easily detected by measuring with a norm called Mahalanobis distance. This distance

is in fact the energy norm for the inverse of the symmetric positive definite covariance matrix

S and scales the p-dimensional space such that the variabilities of the individual properties

are normalized. In a multivariate situation, with multiple outliers, the Mahalanobis distance

itself is too strongly influenced by the outliers to give a reliable tool for their detection, a

phenomenon called the masking e�ect.

If the aim is to estimate the location and scatter by robust estimators (i.e. to compute a

robust mean vector and robust covariance matrix), one can compute the location and scatter

for a subset of the observations which hopefully does not contain outliers. Assume we

have n observations xi ∈ R
p of p variables, given by the data matrix

X = [x1, . . . , xn]
T ∈ R

n×p,

and look for a subset of size h of the indices {1, 2, . . . , n}, where [(n + p + 1)/2] ≤ h ≤ n,
such that no index in the subset corresponds to an outlier.

A criterion to base the search of the subset on and that has been proved to lead to highly

robust estimators of location and scatter is to minimize the determinant of the covariance

matrix [2]. For a given subset H of size h of the indices {1, 2, . . . , n}, let

the corresponding mean x̄H be

x̄H =

∑

i∈H xi

h
∈ R

p

and the corresponding covariance matrix SH be

SH =
1

h− 1

∑

i∈H

(xi − x̄H)(xi − x̄H)
T =

1

h− 1
(XTH − x̄H1

T
h )(XH − 1hx̄

T
H) =

1

h− 1
(X cH)

TX cH ∈ R
p×p,

where 1h ∈ R
h is the vector of ones, XH the data matrix for the indices in H and X cH ∈ R

h×p is

the corresponding centered data matrix. The Minimum Covariance Determinant Estimator [3]

defines the optimal subset H0 of size h of {1, 2, . . . , n} as

H0 = argmin
H

det(SH) = argmin
H

det(
∑

i∈H

(xi − x̄H)(xi − x̄H)
T)

and defines the corresponding estimates of location and scatter as x̄H0
and SH0

, respectively.

The fast MCD algorithm [4]
The computation of the Minimum Covariance Determinant Estimator requires minimization

over all

(

n

h

)

h-subsets of {1, 2, . . . , n}, thus has combinatorial complexity and becomes

infeasible for very moderate numbers of observations n. In the widely used fast MCD [4]

algorithm:

one attempts to approximate the minimum determinant

with several determinant minimizing steps for a large (± 500) number of trial h-subsets

and selects the h-subset leading after the minimizing steps to the smallest determinant

The determinant minimizing steps are called C-steps (concentration steps) and rely on the

following theorem:

Theorem (C-step [4])
Let H1 be an h-subset with corresponding location x̄H1

and scatter SH1
. If det(H1) 6= 0 compute

the Mahalanobis distances

d(i) =
√

(xi − x̄H1
)TS−1

H1
(xi − x̄H1

), i = 1, . . . , n

and find a re-ordering j1, . . . , jn of {1, 2, . . . , n} such that

d(j1) ≤ d(j2) ≤ · · · ≤ d(jn).

Then if H2 is the h-subset consisting of the indices {j1, . . . , jh} and SH2
is the corresponding

covariance matrix,

det(SH2
) ≤ det(SH1

)
with equality if and only if x̄H1

= x̄H2
and SH1

= SH2
.

The main computational costs of one C-step can be summarized as follows:

construction of the current covariance matrix SH1
: O(np2) flops.

Cholesky- or eigendecomposition of SH1
(this also yields det(SH1

)) : O(p3) flops.

computation of the distances d(i) : O(np2) flops.

We will consider C-steps based on eigendecomposition, that is, they compute

SH1
= Z1D1Z

T
1

with D1, Z1 the eigenvalue and eigenvector matrix, respectively, and find the Mahalanobis

distances d(i) using

d(i) =
√

(xi − x̄H1
)TZ1D

−1
1 Z

T
1 (xi − x̄H1

), i = 1, . . . , n.

Our contribution consists of two cheap, O(np) permutations that can be added to the C-step

to improve its power with regards to minimizing the determinant.

An a-posteriori permutation
Suppose after a C-step, we have selected a new h-subset based on the ordered distances

d(j1) ≤ d(j2) ≤ · · · ≤ d(jn) as described in the previous theorem. In other words, the new

h-subset H2 consists of the indices {j1, . . . , jh}. A natural question is whether among the

discarded indices {jh+1, . . . , jn} there may be indices that, if included in H2, would yield a

covariance matrix with smaller determinant. This can be checked in a computationally

inexpensive way as follows.

If instead of H2 we use the h-subset {j1, . . . , jh−1, jr} ≡ Hr for some index jr ∈ {jh+1, . . . , jn},
then the data matrix for Hr di�ers from the data matrix for H2 in one column only. Therefore,

the corresponding covariance matrices are small rank updates from eachother.

Theorem (Low rank update of a covariance matrix ([1], Theorem 3.2.2))

Let dr = xjh − xjr ∈ R
p, let Sr denote the covariance matrix for Hr and let f = eh − 1h/h ∈ R

h,
where eh denotes the hth unit vector. Then there holds

Sr = SH2
− drf

TX c2 − (X c2 )
T fdTr + ‖f ‖2 drd

T
r .

All vectors involved in the low-rank update can be computed with O(p) flops. Moreover,

information on the determinant of Sr can be obtained from the determinant of SH2
in O(p)

flops as well: Using the eigendecomposition SH2
= Z2D2Z

T
2 , the eigendecomposition of Sr for

the modified h-subset Hr can be written as

Sr = SH2
− drf

TX c2 − (X c2 )
T fdTr + ‖f ‖2 drd

T
r

= Z2
(

D2 − ZT2 drf
TX c2Z2 − (X c2Z2)

T fdTr Z2 + ‖f ‖2 ZT2 drd
T
r Z2

)

ZT2 .

Thus the eigenvalues of Sr are the eigenvalues of a symmetric rank-three update of the

diagonal matrix D2 and each eigenvalue can be obtained, using (inverse) power iteration, in

O(p) flops. To keep the flop count at O(p), we propose to compute only the s, s ≤ 5, largest
eigenvalues of each covariance matrix Sr. After testing for all jr ∈ {jh+1, . . . , jn}, we select the

index jr for which the product of the s largest eigenvalues of Sr is minimal. The total flop

count for this a posteriori permutation is of order (n− h)sp.

A look-ahead permutation
The weakness of the a posteriori permutation is that it tends to find, in numerical tests, an

index jr to exchange the index jh of H2 with, which would have been found anyway in the next

C-step, i.e. the index jr often becomes a member of H3 anyway. The proposed a posteriori

permutation is therefore mainly useful to add to the very last C-step to be performed.

To overcome this weakness, we propose a second permutation which looks ahead at the

indices of H3 and attempts to add an index to H2 that will not be in H3. Assume that with a

candidate h-subset H2 we compute the Mahalanobis distances

d(i) =
√

(xi − x̄H2
)TS−1

H2
(xi − x̄H2

), i = 1, . . . , n (1)

and find a re-ordering k1, . . . , kn of {1, 2, . . . , n} such that

d(k1) ≤ d(k2) ≤ · · · ≤ d(kn).

Then H3 would be defined as the indices {k1, . . . , kh}. We can test whether indices in

{kh+1, . . . , kn} \ H2 yield a lower determinant of SH2
when interchanged with ih. This can be

done in O((n− h)sp) flops as before. When the index for which the product of the s largest

eigenvalues of Sr is minimal is found, we replace H2 with Hr and have to recompute the

Mahalanobis distances

d(i) =
√

(xi − x̄Hr)
TS−1

Hr
(xi − x̄Hr), i = 1, . . . , n

to perform the next C-step. Fortunately, this does not require the full O(np2) flops for a
regular C-step. Thanks to the fact that Hr is a small-rank update of H2, it can be done in

O(np) flops using (1) and the Sherman-Morrison formula.

Experiment

We generated 10 data sets X = [x1, . . . , xn]
T ∈ R

100×10 each with 100 observations and 10

variables. 80 observations were normally distributed with mean vector 0 and covariance matix

Σ = 0.6 · I10+ 0.4 · 1p · 1
T
p and 20 randomly placed outliers were normally distributed with mean

vector 3 · 1p and covariance matix 2 · Σ. For 25 random initial choices of H0 and each of the

ten datasets, we performed 4 regular C-steps and compared with 4 C-steps including the

look-ahead permutations (dashed curve) and with 4 C-steps including both proposed

permutations (solid curve). The quality of the results is measured by the squared norm of x̄H4

(left figure) and the Frobenius norm of Σ− SH4
(right figure). The curves give the ratio of these

measures for the improved vs. regular C-steps, averaged over all 25 random initial h-subsets.
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Figure 1 : Ratios (averaged over 25 random initial

choices of H0) of ‖x̄H4‖
2 for look-ahead improved

C-steps (dashed) or C-steps improved with both

proposed permutations (solid) versus regular C-steps;

the x-axis gives the data set number.

1 2 3 4 5 6 7 8 9 10

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2 : Ratios (averaged over 25 random initial

choices of H0) of ‖Σ− SH4‖F for look-ahead improved

C-steps (dashed) or C-steps improved with both

proposed permutations (solid) versus regular C-steps;

the x-axis gives the data set number.
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