Homework assignment L5: Regression models for item description

Assignment date:	05.11.2019
Deadline:	$11.11.2019 \ 23:59$
Slides:	http://www.cs.cas.cz/martinkova/NMST570
Note:	Send answers to hladka@cs.cas.cz
Name:	

1 Interpretation of logistic regression models

Ex. 1.1 Logistic regression model for probability of correct answer on total scores X to given item is given by:

$$\mathsf{P}(Y=1|X,b_0,b_1) = \frac{\exp(b_0 + b_1 X)}{1 + \exp(b_0 + b_1 X)}.$$
(1)

Consider parameters $b_0 = -5$ and $b_1 = 0.5$.

- 1. How do you interpret these parameters? [0.5]
- 2. Fill in the table below with probabilities of correct answer given by (1). [1]

Total score X	0	5	10	15	20
$P(Y=1 X,b_0,b_1)$					

3. Using table above, try to sketch curve for probability of correct answer (1) [0.75].

Ex. 1.2 Consider logistic regression model on standardized total scores Z, that is

$$\mathsf{P}(Y=1|Z,\tilde{b_0},\tilde{b_1}) = \frac{\exp(\tilde{b_0}+\tilde{b_1}Z)}{1+\exp(\tilde{b_0}+\tilde{b_1}Z)}.$$
(2)

1. What are the values of parameters $\tilde{b_0}$ and $\tilde{b_1}$ in model (2) when values of parameters b_0 and b_1 are given by Exercise 1.1 and mean of total scores X is M = 10 and their standard deviation is SD = 3? Provide whole calculation. [1.25]

HINT: Use Z = (X - M)/SD for arbitrary X and solve $\mathsf{P}(Y = 1|X, b_0, b_1) = \mathsf{P}(Y = 1|Z, \tilde{b_0}, \tilde{b_1})$

2. Use calculated values of $\tilde{b_0}$ and $\tilde{b_1}$ and interpret them. [0.5]

Ex. 1.3 Consider logistic regression model on standardized total scores Z with IRT parameterization, that is

$$\mathsf{P}(Y=1|Z,a,b) = \frac{\exp(a(Z-b))}{1+\exp(a(Z-b))}.$$
(3)

- 1. What are the values of parameters a and b in model (3) when values of parameters $\tilde{b_0}$ and $\tilde{b_1}$ are given by Exercise 1.2.1? Provide whole calculation. [0.75]
- 2. Use calculated values of a and b and interpret them. [0.5]

2 Extensions of logistic regression models

Ex. 2.1 Consider non-linear extension of logistic regression model on Z-scores with IRT parameterization, that is

$$\mathsf{P}(Y=1|Z,a,b,c,d) = c + (d-c)\frac{\exp(a(Z-b))}{1+\exp(a(Z-b))},\tag{4}$$

with parameters a = 1.5, b = 0, c = 0.3, and d = 0.9.

- 1. How do you interpret parameters c and d? [0.5]
- 2. Sketch curve for probability of correct answer and show how it is related to parameters c and d. Describe how is now defined parameter b compare to the case when c = 0 and d = 1. [1]

Ex. 2.2 Consider multinomial model, that is

$$\mathsf{P}(Y=k|Z,a_k,b_k) = \frac{\exp(a_k(Z-b_k))}{\sum_{j=1}^K \exp(a_j(Z-b_j))}, \ k = 0, 1, 2,$$
(5)

where $a_0 = 0, b_0 = 0, a_1 = 1.5, b_1 = -0.6, a_2 = 2$ and $b_2 = 0$.

1. Fill table below with probabilities of k = 0, k = 1 and k = 2 for different levels of Z. [1.25]

Z	-1.8	-0.6	0	0.6	1.8
P(Y=0)					
P(Y=1)					
P(Y=2)					

2. Using table above, sketch curves for probabilities of k = 0, k = 1, and k = 2 in one plot. For what levels of Z do the curves cross? [1]

3 ShinyItemAnalysis

Run ShinyItemAnalysis (online or locally) and change data to HCI.

- 1. Fit various logistic regression models (Logistic IRT Z, Logistic 3P IRT Z and Logistic 4P IRT Z) for item 4. Which model does fit the best using likelihood ratio test? Interpret parameter estimates for the best model. (Regression/Model Comparison) [0.5]
- Fit various logistic regression models (Logistic IRT Z, Logistic 3P IRT Z and Logistic 4P IRT Z) for item 19. Which model does fit the best using likelihood ratio test? Interpret parameter estimates for the best model. [0.5]

4 Provide feedback

Here you can provide feedback on lecture, lab session and/or materials (slides, HW assignment, ShinyItemAnalysis manual) [1pt bonus] :)