Comparison of regression curves for detection of differential item functioning

Adéla Hladká & Patrícia Martinková

ISCB ČR, 12.9.2019

Institute of Computer Science of the Czech Academy of Sciences Faculty of Mathematics and Physics, Charles University

Overview

Introduction

Motivation Problem description

Available methods

Research methods

Parametric approaches for DIF detection Parametric approaches for DIF/DDF detection Nonparametric approaches for DIF detection Other topics

Simulation studies

Simulation study 1

Simulation study 2

Simulation study 3

Implementation and examples

difNLR R packge

Nonparametric method

Conclusion and future work

Introduction

Differential item and distractor functioning

Definition of DIF

- respondents with the same latent trait but from different social groups have different probabilities to endorse an item
- Latent trait = knowledge, health outcome, attitudes, etc.

Social group = gender, race, age, etc.

- reference (majority) and focal (minority)

Differential item and distractor functioning

Definition of DDF

= respondents with the same latent trait but from different social groups have different probabilities of option selection

Examples of DIF items

Pain "How often did pain prevent you from walking more than 1 mile?" (reported more often by older patient¹)

"How often did pain prevent you from standing for more than 1 hour?" (reported more often by older patients¹)

Depression "I felt like crying" (endorsed more often by females²)

 Anger
 "I was angry when people were unfair"

 (endorsed more often by older patients²)

"I was angry when I did something stupid" (endorsed more often by older patients²)

¹Amtmann, D. et al. (2010). Development of a PROMIS® item bank to measure pain interference. *Pain*, 150(1), 173-182.

²Pilkonis, P. A., et al. (2011). Item banks for measuring emotional distress from the Patient-Reported Outcomes Measurement Information System (PROMIS®): depression, anxiety, and anger. Assessment, 18(3), 263-283.

Examples of DIF items

Education "Growth of long bones"

A) occurs in growth cartilage

B) is hormone-controlled

C) usually ends at about 10-13 years of age, in boys earlier than in girls

D) usually ends around 16-19 years of age, in girls earlier than in boys (more often correctly answered by males³)

"Runner is to marathon as"

A) envoy to embassy

B) martyr to massacre

C) oarsman to regatta

D) referee to tournament

E) horse to stable

(more often correctly answered by white students⁴)

³Martinková, P., Hladká, A., Leupen, S., Štěpánek, L, & Králíčková, M. (2019). Submitted.

⁴Cramp, A., & McDougall, J. (2018). *Doing Theory on Education: Using Popular Culture to Explore Key Debates.* Routledge.

Why is DIF/DDF detection important?

Routine for checking item fairness in large-scale assessment⁵

- Difference in total scores does not imply DIF
- DIF can be present without differences in total score!

DIF is not necessarily threat to fairness and validity

⁵Martinková, P., Drabinová, A., Liaw, Y. L., Sanders, E. A., McFarland, J. L., & Price, R. M. (2017). Checking equity: Why differential item functioning analysis should be a routine part of developing conceptual assessments. CBE–Life Sciences Education, 16(2), rm2.

More general problem description

Two measurements on two populations (reference and focal)

$$\begin{split} \mathrm{E}(Y_R|X_R) &= \mathrm{P}(Y_R = 1|X_R) = m_R(X_R),\\ \mathrm{E}(Y_F|X_F) &= \mathrm{P}(Y_F = 1|X_F) = m_F(X_F), \end{split}$$

 $Y_R \in \{0, 1\}, Y_F \in \{0, 1\}$ (endorsement of the item) $E|Y_R| < \infty, E|Y_F| < \infty, X_R, X_F$ (standardized) total score of the test

More general problem description

Two measurements on two populations (reference and focal)

$$\begin{split} \mathrm{E}(Y_R|X_R) &= \mathrm{P}(Y_R = 1|X_R) = m_R(X_R),\\ \mathrm{E}(Y_F|X_F) &= \mathrm{P}(Y_F = 1|X_F) = m_F(X_F), \end{split}$$

 $Y_R \in \{0, 1\}, Y_F \in \{0, 1\}$ (endorsement of the item) $E|Y_R| < \infty, E|Y_F| < \infty, X_R, X_F$ (standardized) total score of the test

We want to test $H_0: m_R \equiv m_F$ vs. $H_1: m_R \neq m_F$

More general problem description

Two measurements on two populations (reference and focal)

$$\begin{split} \mathrm{E}(Y_R|X_R) &= \mathrm{P}(Y_R = 1|X_R) = m_R(X_R),\\ \mathrm{E}(Y_F|X_F) &= \mathrm{P}(Y_F = 1|X_F) = m_F(X_F), \end{split}$$

 $Y_R \in \{0, 1\}, Y_F \in \{0, 1\}$ (endorsement of the item) $E|Y_R| < \infty, E|Y_F| < \infty, X_R, X_F$ (standardized) total score of the test

We want to test $H_0: m_R \equiv m_F$ vs. $H_1: m_R \neq m_F$

Two main goals:

- **1.** Estimation of m_R and m_F
- **2.** Comparison of m_R and m_F

DIF detection methods overview

Most often used methods:

- Mantel-Haenszel test⁶
 - Odds ratio across all ability levels for a specific item
- Logistic regression method⁷
 - Effect of ability, group membership and their interaction
- SIBTEST⁸
 - Similar to MH test, uses a regression correction
- IRT models
 - Wide range of models
 - Estimate of ability as a random effect of respondent

⁸Shealy, R., & Stout, W. (1993). A model-based standardization approach that separates true bias/DIF from group ability differences and detects test bias/DTF as well as item bias/DIF. Psychometrika, 58(2), 159-194.

⁶Mantel, N., & Haenszel, W. (1959). Statistical aspects of the analysis of data from retrospective studies of disease. *Journal of the National Cancer Institute*, 22(4), 719-748.

⁷Swaminathan, H., & Rogers, H. J. (1990). Detecting differential item functioning using logistic regression procedures. *Journal of Educational measurement*, *27*(4), 361-370.

DIF detection methods overview

Most often used methods:

Type of DIF	Uniform	Non-uniform	Other
Mantel-Haenszel	\checkmark	Х	Х
Logistic regression	\checkmark	\checkmark	Х
SIBTEST	\checkmark	Х	Х
IRT models	\checkmark	\checkmark	\checkmark

DIF detection methods overview

Most often used methods:

Type of DIF	Uniform	Non-uniform	Other
Mantel-Haenszel	\checkmark	Х	Х
Logistic regression	\checkmark	\checkmark	X
SIBTEST	\checkmark	Х	X
IRT models	\checkmark	\checkmark	\checkmark
Other properties	Score-based	Small samples	Easy to fit
Other properties Mantel-Haenszel	Score-based ✓	Small samples ✓	Easy to fit ✓
Other properties Mantel-Haenszel Logistic regression	Score-based ✓ ✓	Small samples ✓ ✓	Easy to fit ✓ ✓
Other properties Mantel-Haenszel Logistic regression SIBTEST	Score-based ✓ ✓ ✓	Small samples ✓ ✓ ✓	Easy to fit ✓ ✓ ✓

Research methods

- Extension of logistic regression method for DIF detection^{7,9}
- Introducing guessing and inattention parameters
- Allows for testing difference in these parameters
- Also called 4PL non-IRT model

⁷Swaminathan, H., & Rogers, H. J. (1990). Detecting differential item functioning using logistic regression procedures. *Journal of Educational measurement*, *27*(4), 361-370.

⁹Drabinová, A., & Martinková, P. (2017). Detection of differential item functioning with nonlinear regression: A non-IRT approach accounting for guessing. *Journal of Educational Measurement, 54*(4), 498-517.

$$P(Y_{pi} = 1 | X_p, G_p) = \frac{e^{a_i (X_p - b_i)}}{1 + e^{a_i (X_p - b_i)}}$$

probability that person p endorses an item i
 X_p (standardized) total score, G_p group membership⁹

⁹Drabinová, A., & Martinková, P. (2017). Detection of differential item functioning with nonlinear regression: A non-IRT approach accounting for guessing. *Journal of Educational Measurement*, 54(4), 498-517.

$$P(Y_{pi} = 1 | X_p, G_p) = c_i + (d_i - c_i) \frac{e^{a_i (X_p - b_i)}}{1 + e^{a_i (X_p - b_i)}}$$

probability that person p endorses an item i
 X_p (standardized) total score, G_p group membership⁹

⁹Drabinová, A., & Martinková, P. (2017). Detection of differential item functioning with nonlinear regression: A non-IRT approach accounting for guessing. *Journal of Educational Measurement*, 54(4), 498-517.

$$\mathsf{P}(\mathsf{Y}_{pi} = 1 | \mathsf{X}_{p}, \mathsf{G}_{p}) = c_{i} + (d_{i} - c_{i}) \frac{e^{a_{i}\mathsf{G}_{p}}(\mathsf{X}_{p} - b_{i}\mathsf{G}_{p})}{1 + e^{a_{i}\mathsf{G}_{p}}(\mathsf{X}_{p} - b_{i}\mathsf{G}_{p})}$$

probability that person p endorses an item i
 X_p (standardized) total score, G_p group membership⁹

⁹Drabinová, A., & Martinková, P. (2017). Detection of differential item functioning with nonlinear regression: A non-IRT approach accounting for guessing. *Journal of Educational Measurement*, 54(4), 498-517.

$$P(Y_{pi} = 1|X_p, G_p) = c_{iG_p} + (d_{iG_p} - c_{iG_p}) \frac{e^{a_{iG_p}(X_p - b_{iG_p})}}{1 + e^{a_{iG_p}(X_p - b_{iG_p})}}$$
probability that person *p* endorses an item *i*

$$X_p \text{ (standardized) total score, } G_p \text{ group membership}^9$$

$$u_{iG_p} = \frac{d = 0.95}{0.75}$$

⁹Drabinová, A., & Martinková, P. (2017). Detection of differential item functioning with nonlinear regression: A non-IRT approach accounting for guessing. *Journal of Educational Measurement*, 54(4), 498-517.

=

Parametric approaches for DIF/DDF detection

- Extension of logistic regression for ordinal and nominal data
- Wide range of models including:
 - Cumulative logit model
 - Adjacent category logit model
 - Multinomial model

Cumulative logit model

For K + 1 ordinal outcome

$$\mathsf{P}(\mathsf{Y}_{ip} \geq k | X_p, G_p) = \frac{e^{a_{iG_p}(X_p - b_{iG_pk})}}{1 + e^{a_{iG_p}(X_p - b_{iG_pk})}},$$

Category probability for $k = 0, \ldots, K - 1$

$$\mathsf{P}(\mathsf{Y}_{ip} = k | X_p, G_p) = \mathsf{P}(\mathsf{Y}_{ip} \ge k | X_p, G_p) - \mathsf{P}(\mathsf{Y}_{ip} \ge k + 1 | X_p, G_p)$$

where $a_{iG_p}(X_p - b_{iG_p0}) = 0$

 X_p (standardized) total score, G_p group membership

Proxy to a graded response IRT model¹⁰

¹⁰Samejima, F. (1969). Estimation of latent ability using a response pattern of graded scores. Psychometrika 34(Suppl 1).

Introduction Research methods Simulation studies Implementation and examples Conclusion and future work Parametric approaches for DIF detection Parametric approaches for DIF/DDF detection Nonparametric approaches for DIF detection Other topics

Cumulative logit model

Adjacent category logit model

For K + 1 ordinal outcome

$$\log \frac{P(Y_{ip} = k | X_p, G_p)}{P(Y_{ip} = k - 1 | X_p, G_p)} = a_{iG_p}(X_p - b_{iG_pk})$$

Category probability for $k = 0, \ldots, K$

$$\mathsf{P}(Y_{ip} = k | X_p, G_p) = \frac{e^{\sum_{l=0}^{k} a_{iG_p}(X_p - b_{iG_p}l)}}{\sum_{j=0}^{K} e^{\sum_{l=0}^{j} a_{iG_p}(X_p - b_{iG_p}l)}},$$

where $a_{iG_p}(X_p - b_{iG_p0}) = 0$ X_p (standardized) total score, G_p group membership Proxy to a rating scale IRT model¹¹

¹¹Andrich, D. (1978). A rating formulation for ordered response categories. *Psychometrika*, 43(4), 561-573.

Introduction Research methods Simulation studies Implementation and examples Conclusion and future work Parametric approaches for DIF detection Parametric approaches for DIF/DDF detection Nonparametric approaches for DIF detection Other topics

Adjacent category logit model

Multinomial model

For K + 1 nominal outcome

$$\mathsf{P}(\mathsf{Y}_{pi} = k | X_p, G_p) = \frac{e^{\alpha_{iG_pk}(X_p - \beta_{iG_pk})}}{\sum_{l=0}^{K} e^{\alpha_{iG_pl}(X_p - \beta_{iG_pl})}},$$

= probability of option selection k by person p on item i where k = 0, ..., K and $\alpha_{iG_p0}(X_p - \beta_{iG_p0}) = 0$ X_p (standardized) total score, G_p group membership Proxy to Bock's nominal model¹²

¹²Bock, R. D. (1972). Estimating item parameters and latent ability when responses are scored in two or more nominal categories. *Psychometrika*, *37*(1), 29-51.

Introduction Research methods Simulation studies Implementation and examples Conclusion and future work Parametric approaches for DIF detection Parametric approaches for DIF/DDF detection Nonparametric approaches for DIF detection Other topics

Multinomial model

Nonparametric approaches for DIF detection

- Estimation of 3PL-4PL IRT and non-IRT models is challenging
- And requires large sample size in both groups (\geq 500)
- Parametric model does not necessarily correspond to reality

Nonparametric approaches for DIF detection

- Estimation of 3PL-4PL IRT and non-IRT models is challenging
- And requires large sample size in both groups (\geq 500)
- Parametric model does not necessarily correspond to reality
- Need for method which detects DIF caused by various sources

Kernel smoothing estimate of ICC

Nearest-neighbor estimate^{13, 14}

$$\hat{m}_{R}(x) = \sum_{p=1}^{n_{R}} Y_{Rp} W_{Rp}(x),$$
$$W_{Rp}(x) = \frac{K\left(\frac{\hat{r}_{R}(X_{Rp}) - \hat{r}_{R}(x)}{h}\right)}{\sum_{k=1}^{n_{R}} K\left(\frac{\hat{r}_{R}(X_{Rk}) - \hat{r}_{R}(x)}{h}\right)}$$

- K symmetric kernel function
- $\hat{F}_R(x)$ empirical distribution function of X_{R1}, \ldots, X_{Rn_R}
- h bandwidth
- n_R number of respondents in the reference group

 ¹³Nadaraya, E. A. (1964). On estimating regression. *Theory of Probability & Its Applications*, 9(1), 141-142.
 ¹⁴Srihera, R., & Stute, W. (2010). Nonparametric comparison of regression functions. *Journal of Multivariate Analysis*, 101(9), 2039–2059

Kernel smoothing estimate

Test statistic

Test statistic: 14

$$\hat{T} = \frac{1}{n_R n_F} \sum_{i=1}^{n_R} \sum_{j=1}^{n_F} W\left(\frac{X_{Ri} + X_{Fj}}{2}\right) \left[\hat{m}_R\left(\frac{X_{Ri} + X_{Fj}}{2}\right) - \hat{m}_F\left(\frac{X_{Ri} + X_{Fj}}{2}\right)\right]$$

- Can be shown that \hat{T} is normally distributed
- Which weight function W to use?

¹⁴Srihera, R., & Stute, W. (2010). Nonparametric comparison of regression functions. *Journal of Multivariate Analysis*, 101(9), 2039–2059 Adéla Hladká, Comparison of regression curves for DIF detection Introduction Research methods Simulation studies Implementation and examples Conclusion and future work Parametric approaches for DIF detection Parametric approaches for DIF/DDF detection Nonparametric approaches for DIF detection Other topics

Weight function

1. Fixed weight function¹⁴

 $W_1(x) = 1, \forall x$

¹⁴Srihera, R., & Stute, W. (2010). Nonparametric comparison of regression functions. *Journal of Multivariate Analysis*, 101(9), 2039–2059

¹⁵Hladká, A., & Martinková, P. (2019). Nonparametric comparison of regression curves for DIF detection. In progress.

Introduction Research methods Simulation studies Implementation and examples Conclusion and future work Parametric approaches for DIF detection Parametric approaches for DIF/DDF detection Nonparametric approaches for DIF detection Other topics

Weight function

1. Fixed weight function¹⁴

$$W_1(x) = 1, \forall x$$

2. Optimal weight function^{9,15}

(in the sense of maximizing power of the test)

$$W_{O}(x) = \frac{m_{R}(x) - m_{F}(x)}{(1 - \lambda)m_{R}(x)(1 - m_{R}(x))\frac{e(x)}{f_{R}(x)} + \lambda m_{F}(x)(1 - m_{F}(x))\frac{e(x)}{f_{F}(x)}}$$

 $\lambda = \lim \frac{n_R}{n_R + n_F}$

$f_R(x), f_F(x)$ pdf of X_R and X_F , e(x) pdf of $\frac{X_R + X_F}{2}$

¹⁴Srihera, R., & Stute, W. (2010). Nonparametric comparison of regression functions. Journal of Multivariate Analysis, 101(9), 2039–2059

¹⁵Hladká, A., & Martinková, P. (2019). Nonparametric comparison of regression curves for DIF detection. In progress.

Weight function

For 4PL IRT model with normally distributed latent trait¹⁵

¹⁵Hladká, A., & Martinková, P. (2019). Nonparametric comparison of regression curves for DIF detection. In progress.

Weight function

3. Natural estimate of optimal weights¹⁵

$$\hat{W}_{O}(x) = \frac{\hat{m}_{R}(x) - \hat{m}_{F}(x)}{(1 - \hat{\lambda})\hat{m}_{R}(x)(1 - \hat{m}_{R}(x))\frac{\hat{e}(x)}{\hat{f}_{R}(x)} + \hat{\lambda}\hat{m}_{F}(x)(1 - \hat{m}_{F}(x))\frac{\hat{e}(x)}{\hat{f}_{F}(x)}}$$

- Using kernel smoothing estimates $\hat{m}_R(x)$ and $\hat{m}_F(x)$
- Test statistic is no longer normally distributed
- Asymptotic distribution not known

¹⁵Hladká, A., & Martinková, P. (2019). Nonparametric comparison of regression curves for DIF detection. In progress.
Wild bootstrap

Wild bootstrap^{15, 16, 17}

1. Perform DIF detection:

- Estimate m_R and m_F with \hat{m}_R and \hat{m}_F
- Estimate W_0 with \hat{W}_0
- Calculate \hat{T} using \hat{W}_O
- 2. Estimate under H_0 :

 $(\hat{y}_p)_{p=1}^N$ fitted values $(\hat{e}_p)_{p=1}^N$ residuals

¹⁵Hladká, A., & Martinková, P. (2019). Nonparametric comparison of regression curves for DIF detection. In progress.

¹⁶Wu, C. F. J. (1986). Jackknife, bootstrap and other resampling methods in regression analysis. *The Annals of Statistics*, 14(4), 1261-1295.

¹⁷ Mammen, E. (1993). Bootstrap and wild bootstrap for high dimensional linear models. *The Annals of Statistics*, *21*(1), 255-285.

Wild bootstrap

- 3. Bootstrapped samples, for $b = 1, \dots B$:
 - 3A. Create samples:

$$\begin{split} y_{pb}^* &= \hat{y}_p + v_{pb} \hat{e}_p, \text{where} \\ v_{pb} &= \begin{cases} -(\sqrt{5}-1)/2 & \text{with probability } (\sqrt{5}+1)/(2\sqrt{5}), \\ (\sqrt{5}+1)/2 & \text{with probability } (\sqrt{5}-1)/(2\sqrt{5}) \end{cases} \end{split}$$

- 3B. Estimates:
 - Mean functions m_{Rb}^* and m_{Fb}^*
 - Optimal weight function W_{Ob}^*
- 3B. Perform DIF detection:
 - Calculate \hat{T}_b^*
- 4. Compare \hat{T}_b^* with \hat{T}

Other topics

Most methods for DIF detection

- Test for DIF in one item after another
- This may cause two issues
 - 1. Potential bias if DIF items are present
 - 2. Inflated Type I error rates due to multiple comparisons

Other topics

Most methods for DIF detection

- Test for DIF in one item after another
- This may cause two issues
 - 1. Potential bias if DIF items are present
 - 2. Inflated Type I error rates due to multiple comparisons

These drawbacks can be addressed by two controlling procedures:

- 1. Item purification
- 2. Adjustments for multiple comparisons

Other topics

Most methods for DIF detection

- Test for DIF in one item after another
- This may cause two issues
 - 1. Potential bias if DIF items are present
 - 2. Inflated Type I error rates due to multiple comparisons

These drawbacks can be addressed by two controlling procedures:

- 1. Item purification
- 2. Adjustments for multiple comparisons
- Conceptually different with different purposes
- Share the same objective improvement of DIF detection

Item purification

Item purification¹⁸

= iterative removal of items flagged as DIF from the matching criterion (e.g., total score)

¹⁸Candell, G. L., & Drasgow, F. (1988). An iterative procedure for linking metrics and assessing item bias in item response theory. *Applied Psychological Measurement*, *12*(3), 253-260.

Multiple comparison corrections

Multiple comparison corrections

- also called adjustments of p-values
- easy to implement
- non-iterative procedures that improve the accuracy of DIF detection¹⁹

Holm's procedure controls family-wise error²⁰

Benjamini-Hochberg (BH) procedure controls false discovery rate²¹

¹⁹Kim, J., & Oshima, T. C. (2013). Effect of multiple testing adjustment in differential item functioning detection. *Educational and Psychological Measurement*, 73(3), 458-470.

²⁰Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics, 65-70.

²¹Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. *Journal of the Royal statistical society: series B (Methodological)*, 57(1), 289-300.

Multiple comparison corrections

Evampla

Example							
				Holm's	;	BH	
Item	Order	p-value	DIF	Boundary	DIF	Boundary	DIF
5	1	0.001	\checkmark	0.005	\checkmark	0.005	\checkmark
10	2	0.004	\checkmark	0.006	\checkmark	0.010	\checkmark
9	3	0.011	\checkmark	0.006	Х	0.015	\checkmark
8	4	0.018	\checkmark	0.007	Х	0.020	\checkmark
3	5	0.021	\checkmark	0.008	Х	0.025	\checkmark
6	6	0.031	\checkmark	0.010	Х	0.030	Х
2	7	0.039	\checkmark	0.013	Х	0.035	Х
4	8	0.243	Х	0.017	Х	0.040	Х
7	9	0.362	Х	0.025	Х	0.045	Х
1	10	0.783	Х	0.050	Х	0.050	Х

Simulation studies

Simulation study 1: Nonlinear regression

Aims⁹

- Investigation of properties of 3PL non-IRT model (nonlinear regression)
- Comparison to commonly used methods

⁹Drabinová, A., & Martinková, P. (2017). Detection of differential item functioning with nonlinear regression: A non-IRT approach accounting for guessing. *Journal of Educational Measurement*, 54(4), 498-517.

Simulation study 1: Nonlinear regression

Aims⁹

- Investigation of properties of 3PL non-IRT model (nonlinear regression)
- Comparison to commonly used methods

DIF detection methods:

- Mantel-Haenszel test
- Logistic regression
- Lord's test (3PL IRT model)
- Nonlinear regression (3PL non-IRT model)

In total 4 detection approaches In total 5 \times 2 \times 2 \times 3 + 5 = 65 designs

Design factors:

- Sample size (5)
- DIF type (2)
- DIF proportion (2 + 1)
- DIF size (3)

⁹Drabinová, A., & Martinková, P. (2017). Detection of differential item functioning with nonlinear regression: A non-IRT approach accounting for guessing. *Journal of Educational Measurement*, 54(4), 498-517.

Simulation study 1: Results

- Lower rate of convergence failures compared to 3PL IRT model
- Good control of type I error
- Sufficient power

⁹Drabinová, A., & Martinková, P. (2017). Detection of differential item functioning with nonlinear regression: A non-IRT approach accounting for guessing. *Journal of Educational Measurement*, 54(4), 498-517.

Simulation study 1: Results

- Lower rate of convergence failures compared to 3PL IRT model
- Good control of type I error
- Sufficient power
- Possibility to account for guessing
- Possibility to detect DIF caused by various guessing

⁹Drabinová, A., & Martinková, P. (2017). Detection of differential item functioning with nonlinear regression: A non-IRT approach accounting for guessing. *Journal of Educational Measurement*, 54(4), 498-517.

Simulation study 2: Nonparametric methods

Aims¹⁵

- Investigation of properties of nonparametric method

Design factors:

- 20 items (1 DIF, 19 non-DIF)
- 4PL IRT model with DIF caused parameters a, b, c, or d
- Sample sizes N = 100, 200, and 300

Simulation setting:

- Epanechnikov kernel $K(u) = \frac{3}{4}(1-u^2), |u| \le 1, h \sim n^{-\frac{7}{24}}$
- Using optimal weights W_0 , fixed weights W_1 , and natural estimate \hat{W}_0 with bootstrap
- 100 simulation runs

¹⁵Hladká, A., & Martinková, P. (2019). Nonparametric comparison of regression curves for DIF detection. In progress.

Simulation study 2: Very first results

Simulation study 2: Estimates of weights

Simulation study 3: Item purification and corrections

Research questions:²²

- **Q1.** Are the DIF detection methods able to control for Type I error with sufficient power even without any controlling procedure?
- **Q2.** Which of the studied controlling procedures are significantly superior over others?
- **Q3.** What factors have significant impact on Type I error and power rates?

²²Hladká, A., Martinková, P., & Magis, D. (2019). Issues and practice in detection of differential item functioning: Applying item purification, correction for multiple comparisons, or combination of both? *Educational Measurement: Issues and Practice.* Under review.

Simulation study 3: Study design

DIF detection methods:

- Mantel-Haenszel test
- Logistic regression
- Lord's test (2PL IRT model)
- SIBTEST

Controlling procedures:

- None
- Item purification
- 2 corrections: Holm's and BH
- 2 mixtures

Design factors:

- Sample size (3)
- Test length (2)
- DIF type (2)
- DIF proportion (2 + 1)
- DIF size (2)
- Ability distribution (3)

In total 4 × 6 = 24 detection approaches In total 3 × 2 × 2 × 2 × 2 × 3 + 3 × 2 × 3 = 162 designs²²

²²Hladká, A., Martinková, P., & Magis, D. (2019). Issues and practice in detection of differential item functioning: Applying item purification, correction for multiple comparisons, or combination of both? *Educational Measurement: Issues and Practice*. Under review.

Simulation study 3: Questions and answers

Research questions:

Q1. Are the DIF detection methods able to control for Type I error with sufficient power even without any controlling procedure?

Researchers' answers:

- A1. Good control of Type I error in MH, LR, and SIBTEST
 - Poor control of Type I error in Lord's test of 2PL IRT model
 - MH and SIBTEST not able to detect non-uniform DIF

Simulation study 3: Questions and answers

Research questions:

Q2. Which of the studied controlling procedures are significantly superior over others?

Researchers' answers:

- A2. No significant effect of item purification on power
 - Significant increase of Type I error with item purification for all methods except MH
 - Corrections caused rapid significant decrease in both Type I error and power rate
 - Mixtures caused significant decrease in both Type I error and power rate
 - Mixture of purification and BH correction was the most powerful after purification and none controlling procedure

Simulation study 3: Questions and answers

Research questions:

Q3. Are the DIF detection methods able to control for Type I error with sufficient power even without any controlling procedure?

Researchers' answers:

- A3. Type I error mainly influenced by test length and sample size
 - Power rate positively influenced by sample size, DIF proportion, DIF size and test length

Implementation and examples

Implementation - parametric methods

difNLR: DIF and DDF detection by non-linear regression models²³

- R package (over 23,000 downloads)
- Version 1.3.0 on 🕨 CRAN

install.packages("difNLR")

The newest development version on
GitHub

devtools::install_github("adelahladka/difNLR")

- Run it with

library("difNLR")

- Try some features online

https://shiny.cs.cas.cz/ShinyItemAnalysis/

²³Hladká, A. & Martinková, P. (2019). difNLR: Generalized Logistic Regression Models for DIF and DDF Detection. *The R Journal*. Under review.

Implementation of parametric models

Main functions¹⁵

- difNLR() DIF detection for dichotomous data based on non-linear regression model
- ddford() DDF detection for ordinal data based either on adjacent category logit model or on cumulative logit model
- ddfMLR() DDF detection for nominal data based on multinomial model

²³Hladká, A. & Martinková, P. (2019). difNLR: Generalized Logistic Regression Models for DIF and DDF Detection. *The R Journal*. Under review.

Introduction Research methods Simulation studies Implementation and examples Conclusion and future work difNLR R packge Nonparametric method

Example - DIF detection with difNLR() function

A Measure of Anxiety²⁴

```
data(Anxiety, package = "lordif")
dim(DataOrd <- Anxiety[, ids])</pre>
[1] 766 17
head(DataOrd)
   R3 R6 R8 R9 R10 R11 R12 R13 R18 R19 R20 R21 R24 R25 R26 R29
1
   1 1 2
                2
                     1
                             2
                                    2
                                        1
                                                2
                                                      1
                                                             2
                                                                   2
                                                                         2
                                                                               3
                                                                                     2
                                                                                           2
2
  1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1
                                                                   1 1 2 1
                                                                                           1
                                                            1

      3
      1
      1
      2
      1
      2
      1
      1
      1
      1
      3
      2

      4
      1
      1
      2
      1
      1
      1
      1
      1
      3
      2

      4
      1
      1
      2
      1
      1
      3
      1
      1
      1
      1
      3

                                                                                           2
                                                                                           1
                                                                   1 1 1 1
  1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1
5
                                                                                           1
                                          1
   1 1
             1
                        1
                              2
                                    1
                                                 1
                                                      1
                                                             1
                                                                   1
                                                                         1
                                                                               2
                                                                                     1
                                                                                           1
6
                  1
DataBin <- sapply(DataOrd, function(x) as.numeric(x >= 2))
table(group <- Anxiety$gender)</pre>
   0
         1
369 397
```

²⁴PROMIS Cooperative Group. Unpublished Manual for the Patient-Reported Outcomes Measurement Information System (PROMIS) Version 1.1. October, 2008: http://www.nihpromis.org

```
(fit1 <- difNLR(DataBin, group,</pre>
                 focal.name = 1,
                 model = "3PLd",
                 type = "all"))
```

(fit1 <- difNLR(DataBin, group, focal.name = 1,	Detection of all types of differential item functioning using generalized logistic regression model			
<pre>model = "3PLd", type = "all"))</pre>	Generalized logistic regression likelihood ratio chi-square statistics based on 3PL model with inattention parameter			
<pre># R6: I was concerned about my mental health # R20: My worries overwhelmed me</pre>	Parameters were estimated with non-linear least squares			
# R24: Many situations made me worry	Item purification was not applied No p-value adjustment for multiple comparisons			
	Chisq-value P-value			
	R3 1.8134 0.6120			
	R8 1.4523 0.6933			
	R9 3.4299 0.3300			
	R10 4.1015 0.2507			
	R11 4.5327 0.2094			
	R12 0.6706 0.8801			
	R13 0.5729 0.9026			
	R18 1.0155 0.7975			
	R19 0.3352 0.9493			
	R21 6.9948 0.0721 .			
	R24 8.1791 0.0425 *			
	R25 2.7145 0.4378			
	R26 0.7457 0.8624			
	R29 1.2394 0.7436			
	Sign. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1			
	Detection thresholds: 7.8147 (significance level: 0.05)			
	Items detected as DIF items:			
	R6			
	R20			
	R24			

(fit1 <- difNLR(DataBin, group,	a b d aDif bDif dDif R3 2.799 0.851 1.000 0.000 0.000 0.000
	R6 1.685 0.483 1.000 0.964 0.197 0.000
model = 3PLd,	R8 1.615 0.609 1.000 0.000 0.000 0.000
type = "all"))	R9 1.518 0.262 1.000 0.000 0.000 0.000
# P6. T was concerned about my mental health	R10 2.787 0.816 1.000 0.000 0.000 0.000
# RO. 1 was concerned about my mental nearth	R11 1.683 0.198 1.000 0.000 0.000 0.000
# R24: Many situations made me worry	R12 2.660 -0.409 0.963 0.000 0.000 0.000
# K24. Many Situations made me worry	R13 1.681 0.436 1.000 0.000 0.000 0.000
# coefficients	R18 2.173 -0.451 0.898 0.000 0.000 0.000
round(coef(fit1) = 3)	R19 2.523 0.834 1.000 0.000 0.000 0.000
round(cocr(rici); 5)	R20 2.403 0.705 1.000 0.189 -0.254 0.000
	R21 1.256 0.688 1.000 0.000 0.000 0.000
	R24 3.072 -0.172 0.977 0.397 -0.225 -0.067
	R25 3.233 -0.855 0.938 0.000 0.000 0.000
	R26 3.928 -0.550 0.945 0.000 0.000 0.000
	R29 3.173 0.266 0.956 0.000 0.000 0.000

```
(fit1 <- difNLR(DataBin, group,</pre>
                  focal.name = 1,
                  model = "3PLd",
                  type = "all"))
# R6: I was concerned about my mental health
# R20: My worries overwhelmed me
# R24: Many situations made me worry
# coefficients
round(coef(fit1), 3)
# fit measures
AIC(fit1, item = 2)
BIC(fit1, item = 2)
logLik(fit1, item = 2)
```

<pre>(fit1 <- difNLR(DataBin, group,</pre>	[1] 485.8436
<pre>model = "3PLd", type = "all"))</pre>	[1] 513.6907
<pre># R6: I was concerned about my mental health # R20: My worries overwhelmed me # R24: Many situations made me worry</pre>	'log Lik.' -236.9218 (df=6)
<pre># coefficients round(coef(fit1), 3)</pre>	
<pre># fit measures AIC(fit1, item = 2) BIC(fit1, item = 2)</pre>	
logLik(fit1, item = 2)	

```
(fit1 <- difNLR(DataBin, group,</pre>
                  focal.name = 1,
                  model = "3PLd",
                  type = "all"))
# R6: I was concerned about my mental health
# R20: My worries overwhelmed me
# R24: Many situations made me worry
# coefficients
round(coef(fit1), 3)
# fit measures
AIC(fit1, item = 2)
BIC(fit1, item = 2)
logLik(fit1, item = 2)
# prediction
predict(fit1, item = 2,
        match = 0, group = 0)
predict(fit1, item = 2,
        match = 0, group = 1)
```

<pre>(fit1 <- difNLR(DataBin, group,</pre>	R6 0.3071129 R6 0.1417547
<pre># coefficients round(coef(fit1), 3)</pre>	
<pre># fit measures AIC(fit1, item = 2) BIC(fit1, item = 2) logLik(fit1, item = 2) # prediction predict(fit1, item = 2,</pre>	

```
(fit1 <- difNLR(DataBin, group,</pre>
                  focal.name = 1,
                  model = "3PLd",
                  type = "all"))
# R6: I was concerned about my mental health
# R20: My worries overwhelmed me
# R24: Many situations made me worry
# coefficients
round(coef(fit1), 3)
# fit measures
AIC(fit1, item = 2)
BIC(fit1, item = 2)
logLik(fit1, item = 2)
# prediction
predict(fit1, item = 2,
        match = 0, group = 0)
predict(fit1, item = 2,
         match = 0, group = 1)
# plotting ICC
plot(fit1, item = 2)
```



```
# item purification
(fit2 <- difNLR(DataBin, group,</pre>
                focal.name = 1,
                model = "3PLd",
                type = "all",
                purify = TRUE))
```
```
# item purification
                                              Detection of all types of differential item functioning
                                              using generalized logistic regression model
(fit2 <- difNLR(DataBin. group.
                   focal.name = 1.
                                              Generalized logistic regression likelihood ratio chi-square
                                              statistics based on 3PL model with inattention parameter
                   model = "3PLd",
                   type = "all",
                                              Parameters were estimated with non-linear least squares
                   purify = TRUE))
                                              Item purification was applied with 2 iterations.
                                              No p-value adjustment for multiple comparisons
                                                 Chisg-value P-value
                                              R3 2.9094 0.4058
                                              R6 12.2778 0.0065 **
                                              R8 1.2140 0.7496
                                              R9 4.0661 0.2544
                                              R10 2.7692
                                                           0.4286
                                              R11 4.5099
                                                            0.2114
                                                           0.8320
                                              R12 0.8727
                                              R13 0.3288 0.9545
                                              R18 0.9653 0.8097
                                              R19 0.0563 0.9965
                                              R20 9.9210 0.0193 *
                                              R21 7.4482 0.0589 .
                                              R24 6.9028 0.0751 .
                                              R25 2.2930
                                                            0.5139
                                              R26 0.5606
                                                           0.9054
                                              R29 2.0642
                                                           0.5592
                                              Sign. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
                                              Detection thresholds: 7.8147 (significance level: 0.05)
                                              Items detected as DIE items:
                                               R6
                                               R20
```


	R3	R6	R8	R9	R10	R11	R12	R13	R18
Step0	Θ	1	0	Θ	Θ	Θ	Θ	Θ	Θ
Step1	Θ	1	0	0	Θ	Θ	Θ	Θ	Θ
Step2	Θ	1	0	0	Θ	Θ	Θ	0	0
	R19	R2	20	R21	R24	R25	R26	R29	
Step0	0		1	0	1	Θ	Θ	0	
Step1	0		1	0	Θ	Θ	Θ	0	
Step2	0		1	0	0	0	0	0	

```
# item purification
(fit2 <- difNLR(DataBin, group,</pre>
                 focal.name = 1,
                model = "3PLd",
                 type = "all",
                 purify = TRUE))
# purification process
fit2$difPur
# multiple comparison correction
(fit3 <- difNLR(DataBin, group,</pre>
         p.adjust.method = "BH",
                 focal.name = 1,
                 model = "3PLd",
                 type = "all"))
```

<pre># item purification (fit2 <- difNLR(DataBin, group,</pre>	Detu usin Genu sta Para
<pre># purification process fit2\$difPur</pre>	Iter Muli adju
<pre># multiple comparison correction (fit3 <- difNLR(DataBin, group,</pre>	R3 R6 R9 R10 R11 R12 R13 R18 R19 R20 R21 R24 R25 R26 R29 Sigg Detc R26 R26 R26 R29

Detection of all types of differential item functioning sing generalized logistic regression model

eneralized logistic regression likelihood ratio chi-square tatistics based on 3PL model with inattention parameter

Parameters were estimated with non-linear least squares

tem purification was not applied Aultiple comparisons made with Benjamini-Hochberg adjustment of p-values

	Chisq-value	P-value	Adj. P-value			
R3	1.8134	0.6120	0.9493			
R6	15.8001	0.0012	0.0199	*		
R8	1.4523	0.6933	0.9493			
R9	3.4299	0.3300	0.7542			
R10	4.1015	0.2507	0.6686			
R11	4.5327	0.2094	0.6686			
R12	0.6706	0.8801	0.9493			
R13	0.5729	0.9026	0.9493			
R18	1.0155	0.7975	0.9493			
R19	0.3552	0.9493	0.9493			
R20	12.5446	0.0057	0.0459	*		
R21	6.9948	0.0721	0.2883			
R24	8.1791	0.0425	0.2264			
R25	2.7145	0.4378	0.8755			
R26	0.7457	0.8624	0.9493			
R29	1.2394	0.7436	0.9493			
Sig	n. codes: 0	'***' 0.(0.01 '**' 0.01	'*' 0.05 '.' 0.1	1 ' 1	
Detection thresholds: 7.8147 (significance level: 0.05)						
Ttems detected as DTE items:						

R20

Example - DDF detection with ddfORD() function

A Measure of Anxiety²⁴

29
88
δ5
86
22
5

²⁴ PROMIS Cooperative Group. Unpublished Manual for the Patient-Reported Outcomes Measurement Information System (PROMIS) Version 1.1. October, 2008: http://www.nihpromis.org

```
# cumulative logit
(fit4 <- ddfORD(DataOrd, group,</pre>
                 focal.name = 1,
         model = "cumulative"))
```

<pre># cumulative logit (fit4 <- ddfORD(DataOrd, group,</pre>
<pre># R19: I found it hard to focus on anything # other than my anxiety</pre>

Detection of both types of Differential Distractor Functioning for ordinal data using cumulative logit regression model

Likelihood-ratio Chi-square statistics

Item purification was not applied No p-value adjustment for multiple comparisons

	Chiso-value	P-value				
R3	0.1029	0.9499				
R6	8,9062	0.0116	*			
R8	1.6033	0.4486				
R9	2.8795	0.2370				
R10	3.6480	0.1614				
R11	3.3894	0.1837				
R12	2.5989	0.2727				
R13	0.7204	0.6975				
R18	1.9843	0.3708				
R19	6.7181	0.0348	*			
R20	15.6995	0.0004	***			
R21	4.0303	0.1333				
R24	2.4008	0.3011				
R25	1.2703	0.5299				
R26	0.1898	0.9094				
R29	0.7360	0.6921				
Sig	n. codes: 0	'***' 0.0	01 '**' 0.01	'*' 0.05	'.' 0.1	' ' 1
Iter	ms detected	as DDF it	ems:			
R6						
R19	9					
R2(Θ					

```
# cumulative logit
(fit4 <- ddfORD(DataOrd, group,</pre>
                  focal.name = 1,
          model = "cumulative"))
# R19: I found it hard to focus on anything
     other than my anxiety
# plotting cumulative probs
plot(fit4, item = 10,
     plot.type = "cumulative")
```



```
# cumulative logit
(fit4 <- ddfORD(DataOrd, group,</pre>
                 focal.name = 1,
         model = "cumulative"))
# R19: I found it hard to focus on anything
     other than my anxiety
# plotting cumulative probs
plot(fit4, item = 10,
     plot.type = "cumulative")
# plotting category probs
plot(fit4, item = 10,
     plot.type = "category")
# adjacent category
(fit5 <- ddfORD(DataOrd, group,</pre>
                 focal.name = 1.
         model = "adjacent"))
```

```
# cumulative logit
                                             Detection of both types of Differential Distractor
(fit4 <- ddfORD(DataOrd. group.
                                             Functioning for ordinal data using adjacent category
                                             logit regression model
                  focal.name = 1,
          model = "cumulative"))
                                             Likelihood-ratio Chi-square statistics
# R19: I found it hard to focus on anything
                                             Item purification was not applied
     other than my anxiety
                                             No p-value adjustment for multiple comparisons
# plotting cumulative probs
                                                Chisg-value P-value
plot(fit4, item = 10,
                                             R3 0.2987
                                                         0.8613
     plot.type = "cumulative")
                                             R6 5.9257 0.0517 .
                                             R8 1.4320 0.4887
# plotting category probs
                                             R9 1.6799 0.4317
plot(fit4, item = 10,
                                             R10 3.2452
                                                         0.1974
     plot.type = "category")
                                             R11 4.4222
                                                         0.1096
                                             R12 2.5353
                                                         0.2815
                                                         0.7090
                                             R13 0.6878
                                             R18 0.9893 0.6098
                                             R19 6.3403 0.0420 *
# adjacent category
                                             R20 16,5813 0.0003 ***
(fit5 <- ddfORD(DataOrd, group,</pre>
                                             R21 2.0704
                                                         0.3552
                  focal.name = 1.
                                             R24 2.2645 0.3223
                                             R25 1.3606
                                                         0.5065
          model = "adjacent"))
                                             R26 0.2213
                                                         0.8953
                                             R29 0.8419
                                                         0.6564
                                             Sign. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
                                             Items detected as DDE items:
                                             R19
                                             R20
```

```
# cumulative logit
(fit4 <- ddfORD(DataOrd, group,</pre>
                 focal.name = 1,
         model = "cumulative"))
# R19: I found it hard to focus on anything
     other than my anxiety
# plotting cumulative probs
plot(fit4, item = 10,
     plot.type = "cumulative")
# plotting category probs
plot(fit4, item = 10,
     plot.type = "category")
# adjacent category
(fit5 <- ddfORD(DataOrd, group,</pre>
                 focal.name = 1.
         model = "adjacent"))
# plotting category probs
plot(fit5, item = 10)
```


Implementation of nonparametric method

- Work in progress
- Standard R kernel estimating functions do not return kernel values
- Computationally complex
- Implementation into C++

Implementation of nonparametric method

- Work in progress
- Standard R kernel estimating functions do not return kernel values
- Computationally complex
- Implementation into C++

Implementation of nonparametric method

- Work in progress
- Standard R kernel estimating functions do not return kernel values
- Computationally complex
- Implementation into C++

Adéla Hladká, Comparison of regression curves for DIF detection

- DIF and DDF phenomena
- Mostly used methods for their detection

- DIF and DDF phenomena
- Mostly used methods for their detection
- New methods including
 - Nonlineaer regression (3-4PL non-IRT models)
 - Cumulative logit and adjacent category logit models
 - Multinomial model
 - Nonparametric comparison of regression curves

- DIF and DDF phenomena
- Mostly used methods for their detection
- New methods including
 - Nonlineaer regression (3-4PL non-IRT models)
 - Cumulative logit and adjacent category logit models
 - Multinomial model
 - Nonparametric comparison of regression curves
- Simulation studies
 - Nonlineaer regression (3-4PL non-IRT models)
 - Nonparametric comparison of regression curves
 - Item purification and multiple comparison corrections

- DIF and DDF phenomena
- Mostly used methods for their detection
- New methods including
 - Nonlineaer regression (3-4PL non-IRT models)
 - Cumulative logit and adjacent category logit models
 - Multinomial model
 - Nonparametric comparison of regression curves
- Simulation studies
 - Nonlineaer regression (3-4PL non-IRT models)
 - Nonparametric comparison of regression curves
 - Item purification and multiple comparison corrections
- Implementation of methods

Future work

- Nonparametric comparison of regression curves
 - Complex simulation study
 - Show possible superiority when true model is not 4PL IRT
 - Implementation to C++ and R user-friendly functions

Future work

- Nonparametric comparison of regression curves
 - Complex simulation study
 - Show possible superiority when true model is not 4PL IRT
 - Implementation to C++ and R user-friendly functions
- Dissertation

Questions and ideas are welcomed!

hladka@cs.cas.cz
www.cs.cas.cz/hladka/