On Anti-unification in Absorption Theories

Andrés Felipe González Barragan[†] (UnB) David M. Cerna (CAS ICS), Mauricio Ayala-Rincón (UnB) Temur Kutsia (RISC - U. Linz)

[†]Author supported by a Brazilian CAPES Scholarship

37th Int. Workshop on Unification (UNIF), FSCD 2023 Rome, July 2nd, 2023

Motivation 0000000	Absorption Theory	Anti-Unification Algorithm for absorption theory	
Outline			

- 1. Motivation
- 2. Absorption Theory
- 3. Anti-Unification Algorithm for absorption theory
- 4. Conclusions and Future work

Conclusions and Future work

Motivation ●000000	Absorption Theory	Anti-Unification Algorithm for absorption theory	Conclusions and Future work
Motiva	tion		
Unifica	ition		
Goal: 1	find a substitution th	at identifies two expressions (terms).	
where	$t\sigma \approx r' \approx s\sigma.$		

Example 1

Identify the terms h(g(a), y) and h(g(z), f(w)). Using the substitution $\sigma = \{y \mapsto f(w), z \mapsto a\}$ the expressions *unify* to h(g(a), b).

Motivation	
0000000	

Anti-unification

Goal: find the commonalities between two expressions (terms).

An expression with such commonalities is called a generalization.

where $r\sigma \approx s$ and $r\rho \approx t$.

Example 2

Generalize the terms h(g(a), y) and h(g(z), f(w)).

 $\underset{\bigcirc}{\text{Conclusions and Future work}}$

Anti-unification

Goal: find the commonalities between two expressions (terms). An expression with such commonalities is called a *generalization*.

where $r\sigma \approx s$ and $r\rho \approx t$.

Example 2

Generalize the terms h(g(a), y) and h(g(z), f(w)). generalization: h(g(u), v), with substitutions $\sigma = \{u \mapsto a, v \mapsto y\}$ and $\rho = \{u \mapsto z, v \mapsto f(w)\}.$ Motivation 000●000

Absorption Theory

Anti-Unification Algorithm for absorption theory

 $\underset{\bigcirc}{\text{Conclusions and Future work}}$

Unification and Anti-unification

Motivation	
0000000	

Motivation

One interesting example of verbatim plagiarism:

- (Original sentence). All around the world, technology is continuing to become a part of everyday life, and its capabilities are progressing rapidly.
- (Possibly sentence with plagiarism). All over the world, technology became a part of our lives, and its capabilities are progressing very quickly.

Motivation 00000●0	Absorption Theory	Anti-Unification Algorithm for absorption theory
Motivat	tion	

Then finding the common parts and the differences in the sentences:

- All around the world, technology is continuing to become a part of everyday life , and its capabilities are progressing rapidly .
- All over the world, technology became a part of our lives , and its capabilities are progressing very quickly .

All
the world, technology
a part of
, and its capabilities are progressing
.

onclusions and Future work

Motivation 000000●	Absorption Theory	Anti-Unification Algorithm for absorption theory
Motiva	tion	

Applications of anti-unification include:

- searching parallel recursion schemes to transform sequential algorithms into parallel algorithms (Barwell et al. [BBH18]);
- preventing bugs and misconfigurations in software (Mehta et al. [MBK⁺20]);
- finding duplicate code and similarities;
- detecting code clones (i.e., plagiarism).

Conclusions and Future work

Absorption Theory

- The alphabet consists of a countable set of variables \mathcal{V} and set \mathcal{F} of function and with a special constant symbol \star (The wild card).
- Terms over this alphabet, $\mathcal{T}(\mathcal{F}, \mathcal{V})(\mathcal{T})$ and $\mathcal{T}(\mathcal{F} \cup \{\star\}, \mathcal{V})(\mathcal{T}_{\star})$, defined as usually:

$$t := x \mid f(t_1, \dots, t_n)$$

- A finite set E that consists of equations $s \approx t$.
- A preorder \leq_E , which states that $s \leq_E t$ if there exists a substitution σ such that $s\sigma \approx_E t$.

 $\underset{\bigcirc}{\text{Conclusions and Future work}}$

Absorption Theory

Type of anti-unification problems

The type of an anti-unification modulo E problem is classified as below.

- Nullary(0): if there are terms s and t such that $mcsg_E(s,t)$ does not exist. Also, called type zero.
- Unitary(1): if for all s and t, $mcsg_E(s,t)$ has just one generalization.
- Finitary(ω): if for all s and t, $mcsg_E(s,t)$ has more than one generalization.
- Infinitary (∞): there are terms s and t such that $mcsg_E(s,t)$ is infinite.

 $\underset{\bigcirc}{\text{Conclusions and Future work}}$

Type of some Theories

Theory	Туре	Authors and References	Procedure or Term
Syntactic (Ø)	1	G. Plotkin and [Plo70, Rey70]	Dec, Sol, Rec
		J. Reynolds	
Associativity (A)	ω	M. Alpuente et al. [AEEM14]	A-left, A-right
Commutativity(C)	ω	M. Alpuente et al. [AEEM14]	С
Unital (U)	ω	D. Cerna [CK20a]	Start-C, Sat-C, M
$Idempotency_{\geq 1} \ (I)$	∞	D. Cerna and T. Kutsia [CK20a]	M, Id-left,Id-right
			ld-both (1,2,3)
$Unital_{\geq 2}$ (U $_2$)	0	D. Cerna and T. Kutsia [CK20b]	$e_f \triangleq e_g$
			f(g(x,y),x)

 $\underset{\odot}{\text{Conclusions and Future work}}$

Type of some Theories

Theory	Туре	Authors and References	Procedure or Term
AC, ACU	ω	M. Alpuente et al. [AEEM14]	AC-left, AC-right
AU_2 , CU_2 , ACU_2	0	D. Cerna and T. Kutsia [CK20b]	$e_f \triangleq e_g$
			f(g(x,y),x)
(UI) $_2$, (ACUI) $_2$	0	D. Cerna and T. Kutsia [CK20b]	$e_f \triangleq e_g$
			$f(g(f(x,y),e_f),x)$
Semirings (S), SC	0	D. Cerna [Cer20]	$e_f \triangleq e_g$
			$\prod_{n=1}^{n} x$
			II = 1

Conclusions and Future work $_{\odot}$

Type of some Theories

Theory	Туре	Authors and References	Procedure or Term
$Absorption_{\geq 1} \; (\texttt{Abs})$?	_	_
$(ACU)_2$, $(ACU)_2Abs$	0	D. Cerna [Cer20]	$e_f \triangleq e_g$
			$\prod_{i=1}^{n} x$
Simply-typed λ -calculus	0	D. Cerna and	$\lambda xy.f(x) \triangleq \lambda xy.f(y)$
		M. Buran[BC22]	
$IAbs,(UI)_2Abs$	\emptyset,∞ ?	_	-

Absorption Theory

- An anti-unification equation (AUE) between s and t in a normal form is denoted by $s \stackrel{x}{\triangleq}_{E} t$, where x is called as label.
- A valid set of AUEs is a set of AUEs where all the labels are different.
- An AUE $s \stackrel{\sim}{\triangleq} t$ is *solved* if head(s) and head(t) are not related absorption symbols, where $s, t \in \mathcal{T}$.

• An AUE $s \stackrel{a}{\triangleq} t$ is *wild* if one of the terms is the wild card and the other belongs to \mathcal{T} .

 $\underset{\bigcirc}{\text{Conclusions and Future work}}$

Absorption Theory

Absorption Theory

Absorption is an important algebraic attribute in some magmas: for some function symbol f there is a constant ε_f such that

$$f(x,\varepsilon_f) \approx \varepsilon_f, \text{ or/and } f(\varepsilon_f,x) \approx \varepsilon_f$$

Equational theories with these equations are called an absorption theories (Abs).

Example 3

Let's find one generalization of the AUE
$$\varepsilon_f \triangleq_{Abs} f(f(a, b), c)$$
.

Absorption Theory

Motivation

Anti-Unification Algorithm for absorption theory

Conclusions and Future work

Anti-Unification Algorithm for Absorption Theory

The idea of the algorithm is to expand the ε_f to get the generalization:

$$\begin{array}{c|c} \varepsilon_{f} \stackrel{x}{\triangleq} f(f(a,b),c) & x \\ f(\varepsilon_{f},c) \stackrel{x}{\triangleq} f(f(a,b),c) & x \\ \varepsilon_{f} \stackrel{x}{\triangleq} f(a,b),c \stackrel{z}{\triangleq} c & f(y,z) \\ f(\varepsilon_{f},b) \stackrel{y}{\triangleq} f(a,b) & f(y,c) \\ \varepsilon_{f} \stackrel{a}{\triangleq} a,b \stackrel{a}{\triangleq} b \\ \varepsilon_{f} \stackrel{u}{\triangleq} a & f(f(u,v),c) \\ \varepsilon_{f} \stackrel{u}{\triangleq} a & f(f(u,b),c) \end{array}$$

 $\underset{\bigcirc}{\text{Conclusions and Future work}}$

Anti-Unification Algorithm for Absorption Theory

Algorithm for absorption theory

To build the algorithm we consider a quadruple $\langle A; S; T; \theta \rangle$ as a *configuration* in each step of the procedure, where:

- A is the valid set of *unsolved* AUEs;
- S is the *store*, the valid set of *solved* AUEs;
- T is the *abstraction*, the valid set of wild AUEs;
- θ is a *substitution* mapping the labels of the AUEs to the term of the generalization given by the rules.

Conclusions and Future work $_{\rm O}$

Anti-Unification Algorithm for Absorption Theory

Inference Rules

Then we define the next rules (Dec): **Decompose**

$$\langle \{f(s_1, \dots, s_n) \stackrel{x}{\triangleq} f(t_1, \dots, t_n)\} \sqcup A; S; \theta \rangle$$

$$\stackrel{Dec}{\Longrightarrow} \langle \{s_1 \stackrel{y_1}{\triangleq} t_1, \dots, s_n \stackrel{y_n}{\triangleq} t_n\} \cup A; S; \theta \{x \mapsto f(y_1, \dots, y_n)\} \rangle$$
For f any function symbol, $n > 0$, and y_1, \dots, y_n are fresh variables.

Anti-Unification Algorithm for absorption theory ○○●○○○○○○○○○ Conclusions and Future work $_{\rm O}$

Anti-Unification Algorithm for Absorption Theory

Inference Rules

(Solve): Solve

$$\langle \{s \stackrel{x}{\triangleq} t\} \sqcup A; S; T; \theta \rangle \stackrel{Sol}{\Longrightarrow} \langle A; \{s \stackrel{x}{\triangleq} t\} \cup S; T; \theta \rangle$$

Where $head(s) \neq head(t)$ are not related absorption symbols. (Mer): Merge

$$\langle \emptyset; \{s \stackrel{x}{\triangleq} t\} \cup \{s \stackrel{y}{\triangleq} t\} \cup S; \theta \rangle \stackrel{Mer}{\Longrightarrow} \langle \emptyset; \{s \stackrel{y}{\triangleq} t\} \cup S; \theta \{x \mapsto y\} \rangle$$

Conclusions and Future work $_{\rm O}$

Anti-Unification Algorithm for Absorption Theory

Inference Rules

(ExpLA1): Expansion for Absorption, Left 1

$$\langle \{ \varepsilon_f \stackrel{x}{\triangleq} f(t_1, t_2) \} \sqcup A; S; T; \theta \rangle$$

$$\stackrel{\text{ExpLAI}}{\Longrightarrow} \langle \{ \varepsilon_f \stackrel{y_1}{\triangleq} t_1 \} \cup A; S; \{ \star \stackrel{y_2}{\triangleq} t_2 \} \cup T; \theta \{ x \mapsto f(y_1, y_2) \} \rangle$$

(ExpLA2): Expansion for Absorption, Left 2

$$\langle \{ \varepsilon_f \stackrel{x}{\triangleq} f(t_1, t_2) \} \sqcup A; S; T; \theta \rangle$$

$$\stackrel{\text{ExpLA2}}{\Longrightarrow} \langle \{ \varepsilon_f \stackrel{y_2}{\triangleq} t_2 \} \cup A; S; \{ \star \stackrel{y_1}{\triangleq} t_1 \} \cup T; \theta \{ x \mapsto f(y_1, y_2) \} \rangle$$

Conclusions and Future work $_{\rm O}$

Anti-Unification Algorithm for Absorption Theory

Inference Rules

 $(\mathsf{ExpRA1}): \ \textbf{Expansion for Absorption, Right 1}$

$$\langle \{f(s_1, s_2) \stackrel{x}{\triangleq} \varepsilon_f\} \sqcup A; S; T; \theta \rangle$$

$$\stackrel{\text{ExpRA1}}{\Longrightarrow} \langle \{s_1 \stackrel{y_1}{\triangleq} \varepsilon_f\} \cup A; S; \{s_2 \stackrel{y_2}{\triangleq} \star\} \cup T; \theta\{x \mapsto f(y_1, y_2)\} \rangle$$

(ExpRA2): Expansion for Absorption, Right 2

$$\langle \{f(s_1, s_2) \stackrel{x}{\triangleq} \varepsilon_f\} \sqcup A; S; T; \theta \rangle$$

$$\stackrel{\text{ExpRA2}}{\Longrightarrow} \langle \{s_2 \stackrel{y_2}{\triangleq} \varepsilon_f\} \cup A; S; \{s_1 \stackrel{y_1}{\triangleq} \star\} \cup T; \theta\{x \mapsto f(y_1, y_2)\} \rangle$$

 $\underset{\bigcirc}{\text{Conclusions and Future work}}$

Algorithm ANT_UNIF

Algorithm ANT_UNIF

The algorithm ANT_UNIF is an exhaustive application of the inference rules to transform an *initial configuration* $\langle A; \emptyset; \emptyset; \iota \rangle$ into a set of final configurations with an empty set of unsolved AUEs of the form $\langle \emptyset, S, T, \theta \rangle$ and there are no different AUEs with the same terms s, t and with a different label.

Example 4

Apply ANT_UNIF to the anti-unification problem $g(\varepsilon_f, a) \triangleq g(f(h(\varepsilon_f), a), \varepsilon_f)$.

Absorption Theory

Anti-Unification Algorithm for absorption theory

 $\underset{\odot}{\text{Conclusions and Future work}}$

Algorithm $A{\rm NT}_{-}U{\rm NIF}$

$$\begin{split} &\langle \{g(\varepsilon_{f},a) \stackrel{x}{\triangleq} g(f(h(\varepsilon_{f}),a),\varepsilon_{f})\}; \emptyset; \emptyset; \iota\rangle \stackrel{Dec}{\Longrightarrow} \\ &\langle \{\varepsilon_{f} \stackrel{a}{\triangleq} f(h(\varepsilon_{f}),a), a \stackrel{w_{2}}{\triangleq} \varepsilon_{f}\}; \emptyset; \emptyset; \{x \mapsto g(w_{1},w_{2})\}\rangle \stackrel{\text{ExpLA2}}{\Longrightarrow} \\ &\langle \{\varepsilon_{f} \stackrel{u_{2}}{\triangleq} a, a \stackrel{w_{2}}{\triangleq} \varepsilon_{f}\}; \emptyset; \{\star \stackrel{u_{1}}{\triangleq} h(\varepsilon_{f})\}; \{x \mapsto g(f(u_{1},u_{2}),w_{2})\}\rangle \stackrel{Sol}{\Longrightarrow} \\ &\langle \{\varepsilon_{f} \stackrel{a}{\triangleq} a\}; \{a \stackrel{w_{2}}{\triangleq} \varepsilon_{f}\}; \{\star \stackrel{u_{1}}{\triangleq} h(\varepsilon_{f})\}; \{x \mapsto g(f(u_{1},u_{2}),w_{2})\}\rangle \stackrel{Sol}{\Longrightarrow} \\ &\langle \emptyset; \{\varepsilon_{f} \stackrel{a}{\triangleq} a, a \stackrel{a}{\triangleq} \varepsilon_{f}\}; \{\star \stackrel{a}{\triangleq} h(\varepsilon_{f})\}; \{x \mapsto g(f(u_{1},u_{2}),w_{2})\}\rangle \end{split}$$

<ロト < 部 ト < 王 ト < 王 ト シ ミ の < @ 24 / 32

Absorption Theory

Anti-Unification Algorithm for absorption theory

 $\underset{\bigcirc}{\text{Conclusions and Future work}}$

Algorithm ANT_UNIF

Then, $g(f(u_1, u_2), w_2)$ is a generalization with the substitutions σ and ρ .

<ロ > < (日 >) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1) < (1 + 1)

 $\underset{\bigcirc}{\text{Conclusions and Future work}}$

Abstraction Set

Abstraction Set

Let t be a term in Abs-normal form, and σ be a substitution with images in Abs-normal form. The abstraction of t with respect to σ is the set:

 $\uparrow (t,\sigma) := \{ r \mid r\sigma \approx_{\text{\tiny Abs}} t, r \text{ is an Abs-normal form, and } Var(r) \subseteq Dom(\sigma) \}$

<ロト<部ト<主ト<主ト 26/32

 $\underset{\bigcirc}{\text{Conclusions and Future work}}$

Algorithm ANT_UNIF

Example 5

Find the abstraction set of $h(\varepsilon_f)$ with respect to $\rho = \{u_2 \mapsto a, w_2 \mapsto \varepsilon_f\}$:

$$\uparrow (h(\varepsilon_f), \rho) = \{h(\varepsilon_f), h(w_2), h(f(w_2, \star)), h(f(\star, w_2)), h(f(u_2, w_2)), \dots \}$$

Where \star could be replaced by a term whose variables are included in $Dom(\rho)$. For example, $h(f(w_2, a))$ and $h(f(w_2, h(g(u_2, w_2))))$ belong to the abstraction set.

Algorithm ANT_UNIF

Continue with Example 4:

$$(\varepsilon_f, a) \triangleq g(f(h(\varepsilon_f), a), \varepsilon_f)$$

The final branch:

$$\langle \emptyset; \{ \varepsilon_f \stackrel{u_2}{\triangleq} a, a \stackrel{w_2}{\triangleq} \varepsilon_f \}; \{ \star \stackrel{u_1}{\triangleq} h(\varepsilon_f) \}; \{ x \mapsto g(f(u_1, u_2), w_2) \} \rangle$$

To find a less general generalization, it is possible to replace the variable u_1 in the generalization $g(f(u_1, u_2), w_2)$ for one of the elements of the abstraction set $\uparrow (h(\varepsilon_f), \rho)$.

Absorption Theory

Anti-Unification Algorithm for absorption theory

 $\underset{\bigcirc}{\text{Conclusions and Future work}}$

Algorithm ANT_UNIF

Then, the term $g(f(h(f(w_2, a)), u_2), w_2)$ is a generalization too.

<ロト < 団ト < 巨ト < 巨ト < 巨ト 三 のへで 29 / 32

 $\underset{\bigcirc}{\text{Conclusions and Future work}}$

Algorithm for ANT_UNIF

Termination

The procedure ANT_UNIF is terminating. Particularly, for any configuration $\langle A; S; T; \theta \rangle$, it outputs a finite set of configurations of the form $\langle \emptyset; S'; T'; \theta' \rangle$.

・ロト・1日・1日・1日・1日・2000

Anti-Unification Algorithm for absorption theory ○○○○○○○○○○● Conclusions and Future work

Algorithm for ANT_UNIF

Soundness

If $\langle A_0; S_0; T_0; \theta_0 \rangle \Longrightarrow^* \langle \emptyset; S_n; T_n; \theta_n \rangle$ is a derivation to a final configuration, then for each $s \stackrel{x}{\triangleq} t \in A_0 \cup S_0 \cup T_0$:

- $x\theta_n$ is a generalization of s and t, and $x\theta_n\sigma_{\mathcal{D}}\approx_{\mathtt{Abs}}s$ and
- $x\theta_n\rho_{\mathcal{D}} \approx_{\mathsf{Abs}} t.$

Conclusions and Future work

Conclusions and Future work

- We design an algorithm for anti-unification in absorption theories. The algorithm is terminating and sound.
- We conjecture that the algorithm is complete. The complete set of least general generalizers can be built from the computed substitutions, the store, and the *abstraction set*.

References

María Alpuente, Santiago Escobar, Javier Espert, and José Meseguer.

A modular order-sorted equational generalization algorithm. Information and Computation, 235:98–136, 2014.

Adam D. Barwell, Christopher Brown, and Kevin Hammond.

Finding parallel functional pearls: Automatic parallel recursion scheme detection in haskell functions via anti-unification. *Future Gener. Comput. Syst.*, 79:669–686, 2018.

Michal Buran and David M. Cerna.

One or nothing: Anti-unification over the simply-typed lambda calculus. *CoRR*, abs/2207.08918, 2022.

David M. Cerna.

Anti-unification and the theory of semirings. *Theo. Com. Sci.*, 848:133–139, 2020.

David M. Cerna and Temur Kutsia.

Idempotent anti-unification. ACM Trans. Comput. Log., 21(2):10:1–10:32, 2020.

David M. Cerna and Temur Kutsia.

Unital anti-unification: type algorithms. 5th International Conference on Formal Structures for Computation and Deduction, FSCD, 167(6):26:1–26:20, 2020.

Gordon D. Plotkin.

A note on inductive generalization. Machine Intelligence 5, 5:153–163, 1970.

John C. Reynolds.

Transformational system and the algebric structure of atomic formulas. *Machine Intelligence* 5, 5:135–151, 1970.

