Abstract Algebraic Logic – 4th lesson

Petr Cintula¹ and Carles Noguera²

¹Institute of Computer Science, Academy of Sciences of the Czech Republic Prague, Czech Republic

²Institute of Information Theory and Automation, Academy of Sciences of the Czech Republic Prague, Czech Republic

www.cs.cas.cz/cintula/AAL

AAL is the evolution of Algebraic Logic that wants to:

- understand the several ways by which a logic can be given an algebraic semantics
- build a general and abstract theory of non-classical logics based on their relation to algebras
- understand the rôle of connectives in (non-)classical logics
- classify non-classical logics
- find general results connecting logical and algebraic properties (bridge theorems)
- generalize properties from syntax to semantics (transfer theorems)
- advance the study of particular (families of) non-classical logics by using the abstract notions and results

Abstract Algebraic Logic

What have we done so far?

- understand the several ways by which a logic can be given an algebraic semantics
- build a general and abstract theory of non-classical logics based on their relation to algebras
- understand the rôle of connectives in (non-)classical logics: implication, equivalence, disjunction,...
- classify non-classical logics
- find general results connecting logical and algebraic properties (bridge theorems)
- generalize properties from syntax to semantics (transfer theorems)
- advance the study of particular (families of) non-classical logics by using the abstract notions and results

Theorem 4.1 (Bloom)

Let L be a logic. Then: $P_U(MOD(L)) = MOD(L)$ iff L is finitary.

It is a brigde theorem, relating a logical property with an algebraic (or matricial) one.

Theorem 4.2

Given a logic L in a language \mathcal{L} , the following conditions are equivalent:

- **1** L is finitary, i.e. Th_L is a finitary closure operator.
- **2** $\operatorname{Fi}_{L}^{A}$ is a finitary closure operator for any \mathcal{L} -algebra A.

It is a transfer theorem, transfering a property of $Fm_{\mathcal{L}}$ to a formally equal property of all \mathcal{L} -algebras.

A logic L has the parameterized local deduction-detachment theorem if there is a family of sets of formulae $\Sigma \subseteq \mathcal{P}(Fm_{\mathcal{L}})$ in two variables (and possible parameters) such that for all $\Gamma \cup \{\varphi, \psi\} \subseteq Fm_{\mathcal{L}}$,

 $\Gamma, \varphi \vdash_{\mathrm{L}} \psi \text{ iff } \exists \Delta(x, y, \overrightarrow{z}) \in \Sigma \text{ such that } \Gamma \vdash_{\mathrm{L}} \bigcup_{\overrightarrow{\gamma} \in Fm_{\mathcal{C}}} \Delta(\varphi, \psi, \overrightarrow{\gamma}).$

Theorem 4.3

A logic L is protoalgebraic iff it has the parameterized local deduction-detachment theorem.

A logic L has the local deduction-detachment theorem (LDDT) if it has the parameterized local deduction-detachment theorem with an empty set of parameters, i.e. there is a family of sets of formulae $\Sigma \subseteq \mathcal{P}(Fm_{\mathcal{L}})$ in two variables such that for all $\Gamma \cup \{\varphi, \psi\} \subseteq Fm_{\mathcal{L}}$,

 $\Gamma, \varphi \vdash_{\mathcal{L}} \psi \text{ iff } \exists \Delta(x, y) \in \Sigma \text{ such that } \Gamma \vdash_{\mathcal{L}} \Delta(\varphi, \psi).$

$$\begin{array}{c|c} \mathsf{Logic} & \Sigma \\ \hline \texttt{L} \text{ (infinitely-valued Łukasiewicz logic)} & \{p \rightarrow^n q \mid n \ge 0\} \\ & \texttt{global modal logic T} & \{\Box^n p \rightarrow q \mid n \ge 0\} \end{array}$$

A class of models of a logic $\mathbb{K} \subseteq \text{MOD}(L)$ has the L-filter-extension-property iff for all $\langle A, F \rangle, \langle B, G \rangle \in \mathbb{K}$ such that $\langle A, F \rangle \subseteq \langle B, G \rangle$ and every $F' \in \mathcal{F}i_{L}(A)$ such $F \subseteq F'$ and $\langle A, F' \rangle \in \mathbb{K}$, there exists a $G' \in \mathcal{F}i_{L}(B)$ such that $G \subseteq G'$, $\langle B, G' \rangle \in \mathbb{K}$, and $G' \cap A = F'$.

Theorem 4.4 (Czelakowski, Blok-Pigozzi)

Let L be a finitary protoalgebraic logic. TFAE:

- L has the LDDT.
- **2 MOD**(L) has the L-filter-extension-property.
- **MOD**^{*}(L) has the L-filter-extension-property.

A logic L has the global deduction-detachment theorem (GDDT) if it has the local deduction-detachment theorem with a set Σ consisting of just one finite set of formulae i.e. there is a finite $\Delta(x, y) \subseteq Fm_{\mathcal{L}}$ in two variables such that for all $\Gamma \cup \{\varphi, \psi\} \subseteq Fm_{\mathcal{L}}$,

 $\Gamma, \varphi \vdash_{\mathcal{L}} \psi \text{ iff } \Gamma \vdash_{\mathcal{L}} \Delta(\varphi, \psi).$

Logic	Δ
CL, IL, local modal logics	$\{p \rightarrow q\}$
\mathbb{E}_n (<i>n</i> -valued Łukasiewicz logic)	$\{p \rightarrow^n q\}$
global S4 and S5	$\{\Box p \to q\}$

A class of models of a logic $\mathbb{K} \subseteq \mathbf{MOD}(L)$ has formula-definable principal L-filters if there is a finite set of formulae $\Delta(x, y) = \{\delta_i(x, y) \mid i < n\}$ of formulae in two variables such that, for every $\langle A, F \rangle \in \mathbb{K}$ and every $a \in A$,

 $\operatorname{Fi}_{\operatorname{L}}^{A}(F \cup \{a\}) = \{b \in A \mid \forall \delta \in \Delta, \delta^{A}(a, b) \in F\}.$

Theorem 4.5 (Blok-Pigozzi)

Let L be a finitary protoalgebraic logic. TFAE:

- L has the GDDT.
- **2 MOD**(L) has formula-definable principal L-filters.
- MOD*(L) has formula-definable principal L-filters.

Deduction theorems – 6

A dual Brouwerian semilattice is an algebra $A = \langle A, *^A, \vee^A, \top^A \rangle$ such that $\langle A, \vee^A, \top^A \rangle$ is a bounded join-semilattice and, for $a, b \in A$, there exists $a *^A b$, the smallest element *c* such that $a \leq b \vee^A c$. Hence for every $a, b, c \in A$:

$$a *^A b \leq c \text{ iff } a \leq b \vee^A c.$$

Theorem 4.6 (Czelakowski)

Let L be a finitary protoalgebraic logic. TFAE:

- L has the GDDT.
- The join-semilattice of finitely axiomatizable theories of L is dually Brouwerian.
- For every A, the join-semilattice of finitely generated L-filters of A is dually Brouwerian.

A quasivariety \mathbb{K} has equationally definable principal relative congruences (EDPRC) if there is a finite set of equations in at most four variables $\{\varepsilon_i(x_0, x_1, y_0, y_1) \approx \delta_i(x_0, x_1, y_0, y_1) \mid i < n\}$ such that for every algebra $A \in \mathbb{K}$ and all $a, b, c, d \in A$,

 $\langle c, d \rangle \in \Theta^{A}_{\mathbb{K}}(a, b) \text{ iff } \forall i < n \ \varepsilon^{A}_{i}(a, b, c, d) = \delta^{A}_{i}(a, b, c, d),$

where $\Theta^{A}_{\mathbb{K}}(a,b)$ denotes the relative congruence generated by $\langle a,b \rangle$.

Theorem 4.7 (Blok-Pigozzi)

Let L be a finitary and finitely algebraizable logic. TFAE:

- L has the GDDT.
- **2** ALG^{*}(L) has EDPRC.

A quasivariety \mathbb{K} has the relative congruence extension property (RCEP) if, only if, for every $A, B \in \mathbb{K}$ such that $B \subseteq A$ and every $\theta \in Con_{\mathbb{K}}(B)$, there exists $\theta' \in Con_{\mathbb{K}}(A)$ such that $\theta' \cap B^2 = \theta$.

Theorem 4.8 (Blok-Pigozzi, Czelakowski-Dziobiak)

Let L be a finitary and finitely algebraizable logic. TFAE:

- L has the LDDT.
- **2** ALG^{*}(L) has the RCEP.

Let L be a logic and $P, R \subseteq Var, P \cap R = \emptyset, \Gamma(\overrightarrow{p}, \overrightarrow{r}) \subseteq Fm_{\mathcal{L}}, \overrightarrow{p} \in P, \overrightarrow{r} \in R$. We say that $\Gamma(\overrightarrow{p}, \overrightarrow{r})$ defines *R* explicitly in terms of *P* if for every $r \in R$ there is $\varphi_r \in Fm_{\mathcal{L}}$ with variables in *P* such that $\langle r, \varphi_r \rangle \in \Omega(\operatorname{Fi}_{L}^{P \cup R}(\Gamma))$ (filter generated in the subalgebra of formulae in variables $P \cup R$).

We say that $\Gamma(\overrightarrow{p}, \overrightarrow{r})$ defines *R* implicitly in terms of *P* if for every $R' \subseteq Var$, $R' \cap (P \cup R) = \emptyset$, |R'| = |R|, and every bijection *f* between *R* and *R'*, we have that for every $r \in R$, $\langle r, f(r) \rangle \in \Omega(\operatorname{Fi}_{L}^{P \cup R \cup R'}(\Gamma))$.

L has the Beth property if for all disjoint sets of variables *P* and *R*, each set $\Gamma(\vec{p}, \vec{r}) \subseteq Fm_{\mathcal{L}}$ that defines *R* implicitly in terms of *P*, defines also *R* explicitly in terms of *P*.

Let \mathbb{K} be a class of algebras of the same type, $A, B \in \mathbb{K}$, and $h: A \to B$ a homomorphism. h is an epimorphism in \mathbb{K} if for every $C \in \mathbb{K}$ and each $g, g': B \to C$, if $g \circ h = g' \circ h$, then g = g'.

A class \mathbb{K} of algebras has the property that epimorphisms are surjective (ES) if every epimorphism between algebras of \mathbb{K} is a surjective mapping.

Theorem 4.9 (Hoogland)

Let L be an algebraizable logic. TFAE:

- L has the Beth property.
- **2** $ALG^*(L)$ has the ES.

Craig interpolation

A logic L has the Craig interpolation property for consequence if for every $\Gamma \cup \{\varphi\} \subseteq Fm_{\mathcal{L}}$ such that $\Gamma \vdash_{L} \varphi$, there is $\Gamma' \subseteq Fm_{\mathcal{L}}$ with variables in $Var(\Gamma) \cap Var(\varphi)$ such that $\Gamma \vdash_{L} \Gamma'$ and $\Gamma' \vdash_{L} \varphi$.

A class of algebras \mathbb{K} has the amalgamation property if for any $A, B, C \in \mathbb{K}$ and any embeddings $f: C \to A$ and $g: C \to B$, there is $D \in \mathbb{K}$ and embeddings $h: A \to D$ and $t: B \to D$ such that $h \circ f = t \circ g$.

Theorem 4.10 (Czelakowski)

Let L be an algebraizable logic with GDDT. TFAE:

- **1** L has the Craig interpolation property for consequence.
- **ALG**^{*}(L) has the amalgamation property.

 $CPC_{\wedge\vee}$ is defined as the $\{\wedge, \vee\}$ -fragment of classical logic.

Gentzen presentation [Font and Verdú, 1991]

Hilbert presentation [Dyrda and Prucnal, 1980]:

 $\begin{array}{lll} \varphi \land \psi \rhd \varphi & \varphi \lor (\psi \lor \xi) \rhd (\varphi \lor \psi) \lor \xi \\ \varphi \land \psi \rhd \psi \land \varphi & (\varphi \lor \psi) \lor \xi \rhd \varphi \lor (\psi \lor \xi) \\ \varphi, \psi \rhd \varphi \land \psi & \varphi \lor (\psi \land \xi) \rhd (\varphi \lor \psi) \land (\varphi \lor \xi) \\ \varphi \rhd \varphi \lor \psi & (\varphi \lor \psi) \land (\varphi \lor \xi) \rhd \varphi \lor (\psi \land \xi) \\ \varphi \lor \psi \rhd \psi \lor \varphi & \varphi \land (\psi \lor \xi) \rhd (\varphi \land \psi) \lor (\varphi \land \xi) \\ \varphi \lor (\varphi \lor \psi) \rhd \varphi \lor \psi & \varphi \lor \varphi \lor \varphi \end{array}$

It is a logic without theorems, not almost inconsistent, and hence not protoalgebraic.

 $\mathbf{2}_{\wedge,\vee} {:} \ \{\wedge,\vee\}{\text{-reduct of the two-element Boolean algebra 2}}$

 $\text{CPC}_{\wedge\vee} = \models_{\mathbf{2}_{\wedge,\vee}}$

 $V(\mathbf{2}_{\wedge,\vee})=\mathbb{D}$ (variety of distributive lattices)

Is $\mathbb D$ the algebraic semantics of $CPC_{\wedge\vee}?$

ALG^{*}(CPC_{$\land\lor$}) = { $A \in \mathbb{D} | A$ has a maximum element 1 and for every $a, b \in A$ if a < b then there is $c \in A$ such that $a \lor c \neq 1$ and $b \lor c = 1$ } (a proper subclass of \mathbb{D} , not even quasivariety).

Theorem 4.12

 $\ensuremath{\mathbb{D}}$ is not the equivalent algebraic semantics of any algebraizable logic.

 $ALG(CPC_{\wedge\vee}) = \mathbb{D}$ [Font-Jansana] (alternative AAL theory based on generalized models)

- $\mathbf{ALG}(L) = \mathbf{P}_{SD}(\mathbf{ALG}^*(L)).$
- If L is protoalgebraic, then $ALG(L) = ALG^*(L)$.

Proposition 4.13

A logic L in a language \mathcal{L} is protoalgebraic iff for every $T \cup \{\varphi, \psi\} \subseteq Fm_{\mathcal{L}}$

 $\langle \alpha, \beta \rangle \in \Omega_{Fm_{\mathcal{L}}}(T)$ implies $\operatorname{Th}_{L}(T, \alpha) = \operatorname{Th}_{L}(T, \beta)$.

Frege relation: $\langle \varphi, \psi \rangle \in \Lambda_L$ iff $\varphi \vdash_L \psi$ and $\psi \vdash_L \varphi$.

Selfextensional logic: L is selfextensional iff $\Lambda_L \in Con(Fm_{\mathcal{L}})$.

Frege relation w.r.t. a theory: $\langle \varphi, \psi \rangle \in \Lambda_{L}(T)$ iff $T, \varphi \vdash_{L} \psi$ and $T, \psi \vdash_{L} \varphi$.

Fregean logic: L is Fregean iff $\Lambda_L(T) \in Con(Fm_{\mathcal{L}})$ for every $T \in Th(L)$.

Frege hierarchy – 2

Inc, AInc, CL, IL, CPC $_{\wedge\vee}$ are Fregean.

Dumb is selfextensional but not Fregean.

L₃ is not selfextensional ($\varphi \dashv \vdash \psi$ does not imply $\neg \varphi \dashv \vdash \neg \psi$; take $\varphi = p$ and $\psi = \neg(p \rightarrow \neg p)$, $e(p) = \frac{1}{2}$).

Theorem 4.14

- Every protoalgebraic Fregean logic with theorems is regularly algebraizable.
- Every finitary and protoalgebraic Fregean logic with theorems is regularly, finitely algebraizable.

Linear logic is not Fregean.

Infinitely-valued Łukasiewicz logics

$$A = \langle [0,1], \rightarrow, \neg \rangle, a \rightarrow b = \min\{1, 1-a+b\} \text{ and } \neg a = 1-a.$$

- Infinitary version \mathbb{L}_{∞} : $\models_{\langle A, \{1\} \rangle}$
- Finitary version L: finitary companion of \mathbb{L}_{∞} $\Gamma \vdash_{\mathbb{L}} \varphi$ iff there is a finite $\Gamma_0 \subseteq \Gamma$ s.t. $\Gamma_0 \models_{\langle A, \{1\} \rangle} \varphi$.
- Degree-preserving version L[≤]: φ₁,..., φ_n ⊢_{L[≤]} φ iff for each *A*-evaluation *e*, min{*e*(φ₁),...,*e*(φ_n)} ≤ *e*(φ).

They all have the same theorems.

 L_{∞} is Rasiowa-implicative (but $ALG^*(L_{\infty})$ is not quasivariety) and not selfextensional (counterexample as in L_3).

 \underline{k} is Rasiowa-implicative (and strongly BP-algebraizable) and not selfextensional (counterexample as in \underline{k}_3).

 L^{\leq} is selfextensional (not Fregean) and not protoalgebraic.

 $\begin{array}{ll} (\text{PD}) & \varphi \vdash_{\text{CL}} \varphi \lor \psi \quad \text{and} \quad \psi \vdash_{\text{CL}} \varphi \lor \psi \\ \text{PCP} & \text{If } \Gamma, \varphi \vdash_{\text{CL}} \chi \text{ and } \Gamma, \psi \vdash_{\text{CL}} \chi, \text{ then } \Gamma, \varphi \lor \psi \vdash_{\text{CL}} \chi. \end{array}$

The same holds for many other logics: IL, E, FL_{ew} , HL, ...

(PD) and PCP could be equivalently formulated as: $\Gamma, \varphi \vdash_{CL} \chi$ and $\Gamma, \psi \vdash_{CL} \chi$, if and only if, $\Gamma, \varphi \lor \psi \vdash_{CL} \chi$.

Dummett in '*The Logical Basis of Metaphysics*, HUP, 1991' says about (a weaker variant of) PCP:

If this law does not hold, the operator \lor could not legitimately be called disjunction operator.

In FL_e, the lattice connective \lor does not satisfy the PCP (it would entail $\varphi \lor \psi \vdash (\varphi \land \overline{1}) \lor (\psi \land \overline{1})$).

A solution of this problem:

Theorem 4.16

The connective \lor' defined as $\varphi \lor' \psi = (\varphi \land \overline{1}) \lor (\psi \land \overline{1})$ satisfies

$$\begin{array}{ll} (\text{PD}) & \varphi \vdash (\varphi \land \overline{1}) \lor (\psi \land \overline{1}) & \textit{and} & \psi \vdash (\varphi \land \overline{1}) \lor (\psi \land \overline{1}) \\ \text{PCP} & \textit{If } \Gamma, \varphi \vdash \chi \textit{ and } \Gamma, \psi \vdash \chi, \textit{ then } \Gamma, (\varphi \land \overline{1}) \lor (\psi \land \overline{1}) \vdash \chi. \end{array}$$

In the implication fragment of Gödel-Dummett logic we cannot define any connective \lor satisfying (PD) and PCP.

A solution of this problem:

Theorem 4.18

The 'connective' $\{(\varphi \rightarrow \psi) \rightarrow \psi, (\psi \rightarrow \varphi) \rightarrow \varphi\}$ satisfies

 $\begin{array}{ll} (\mathrm{PD})_{\varphi} & \varphi \vdash (\varphi \rightarrow \psi) \rightarrow \psi \quad \textit{and} \quad \varphi \vdash (\psi \rightarrow \varphi) \rightarrow \varphi \\ (\mathrm{PD})_{\psi} & \psi \vdash (\varphi \rightarrow \psi) \rightarrow \psi \quad \textit{and} \quad \psi \vdash (\psi \rightarrow \varphi) \rightarrow \varphi \\ \mathrm{PCP} & \textit{If} \ \Gamma, \varphi \vdash \chi \textit{ and} \ \Gamma, \psi \vdash \chi, \textit{ then} \\ & \Gamma, (\varphi \rightarrow \psi) \rightarrow \psi, (\psi \rightarrow \varphi) \rightarrow \varphi \vdash \chi. \end{array}$

In FL no finite set of formulae of two variables defines any 'connective' satisfying $(PD)\,$ and PCP.

BUT there is still a solution of this problem:

Theorem 4.20

The following 'connective' satisfies both (PD) and PCP $\{\gamma_1(\varphi) \lor \gamma_2(\psi) \mid \text{where } \gamma_1, \gamma_2 \text{ are iterated conjugates} \}.$

An iterated conjugate of φ is a formula $\gamma_{\alpha_1}(\gamma_{\alpha_2}(\dots\gamma_{\alpha_n}(\varphi)\dots))$ where $\gamma_{\alpha_i} = \lambda_{\alpha_i}(\varphi) = (\alpha_i \setminus \varphi \& \alpha_i) \land \overline{1}$ or $\gamma_{\alpha_i} = \rho_{\alpha_i}(\varphi) = (\alpha_i \& \varphi / \alpha_i) \land \overline{1}$ for some formulae α_i .

Let $\nabla(p, q, \overrightarrow{r})$ be a set of formulae. We write $\varphi \nabla \psi = \bigcup \{ \nabla(\varphi, \psi, \overrightarrow{\alpha}) \mid \overrightarrow{\alpha} \in Fm^{\leq \omega} \}.$

$$\Sigma_1 \nabla \Sigma_2 = \bigcup \{ \varphi \nabla \psi \mid \varphi \in \Sigma_1, \psi \in \Sigma_2 \}$$

A (parameterized) set of formulae ∇ is a (p-)protodisjunction if: (PD) $\varphi \vdash_{L} \varphi \nabla \psi$ and $\psi \vdash_{L} \varphi \nabla \psi$

We will consider the following three properties:

wPCP	$\varphi \vdash_{\mathrm{L}} \chi$	and	$\psi \vdash_{\mathrm{L}} \chi$	implies	$\varphi \nabla \psi \vdash_{\mathrm{L}} \chi$
PCP	$\Gamma, \varphi \vdash_{\mathbf{L}} \chi$	and	$\Gamma, \psi \vdash_{\mathcal{L}} \chi$	implies	$\Gamma, \varphi \nabla \psi \vdash_{L} \chi$
sPCP	$\Gamma,\Sigma\vdash_{\mathrm{L}}\chi$	and	$\Gamma,\Pi\vdash_{\mathrm{L}}\chi$	implies	$\Gamma, \Sigma \nabla \Pi \vdash_{\mathcal{L}} \chi$

Clearly: $sPCP \Rightarrow PCP \Rightarrow wPCP$

Theorem 4.21

For finitary logics: $sPCP \Leftrightarrow PCP \notin wPCP$ But in general: $sPCP \notin PCP$

We define also transferred variants of these notions.

Example 4.22

Consider the non-distributive lattice *diamond*, with the domain $\{\perp, a, b, t, \top\}$, with *t* as central element, and the finitary logic given by all matrices over this algebra with a lattice filter.

Observe: $\Gamma \vdash \varphi$ iff $\bigwedge e[\Gamma] \leq e(\varphi)$ for every evaluation *e*.

 \lor is a protodisjunction with wPCP.

Assume now, for a contradiction, that it satisfies the PCP too. Then from $\varphi, \psi \vdash (\varphi \land \psi) \lor \chi$ and $\chi, \psi \vdash (\varphi \land \psi) \lor \chi$ we obtain $\varphi \lor \chi, \psi \vdash (\varphi \land \psi) \lor \chi$ and thus also (applying the PCP again) $\varphi \lor \chi, \psi \lor \chi \vdash (\varphi \land \psi) \lor \chi$ (a form of distributivity). Then, we reach a contradiction by observing that $a \lor b = t \lor b = \top$ while $(a \land t) \lor b = \bot \lor b = b$.

Example 4.23

Let *A* be a complete distributive lattice such that it is not a dual frame, i.e. there are elements $x_i \in A$ for $i \ge 0$ such that

$$\bigwedge_{i\geq 1} (x_0 \lor x_i) \not\leq x_0 \lor \bigwedge_{i\geq 1} x_i$$

expand the lattice language by constants $\{c_i \mid i \ge 0\} \cup \{c\}$ and define algebra A' in this language by setting $c_i^{A'} = x_i$ and $c = \bigwedge_{i\ge 1} x_i$. Then we define the logic L in this language semantically given by the class of matrices $\{\langle A', F \rangle \mid F \text{ is a principal lattice filter in } A\}$.

Observe: $\Gamma \vdash_{\mathcal{L}} \varphi$ iff $\bigwedge_{\psi \in \Gamma} e(\psi) \leq e(\varphi)$ for each *A*-evaluation *e*.

Example 4.24 (continuation)

First we show that \lor enjoys the PCP: assume that for each e evaluation holds $(\bigwedge_{\delta \in \Gamma} e(\delta)) \land e(\varphi) \leq e(\chi)$ and $(\bigwedge_{\delta \in \Gamma} e(\delta)) \land e(\psi) \leq e(\chi)$, thus $[(\bigwedge_{\delta \in \Gamma} e(\delta)) \land e(\varphi)] \lor [(\bigwedge_{\delta \in \Gamma} e(\delta)) \land e(\psi)] \leq e(\chi)$, the distributivity of A completes the proof. Finally, by the way of contradiction, assume that \lor enjoys the sPCP. Observe that: $c_0 \vdash_L c_0 \lor c$ and $\{c_i \mid i \geq 1\} \vdash_L c_0 \lor c$. Using the sPCP we obtain $\{c_0 \lor c_i \mid i \geq 1\} \vdash_L c_0 \lor c$ —a contradiction.

Let ∇ a commutative and idempotent *p*-protodisjunction. TFAE:

- $\bigcirc \nabla \text{ satisfies sPCP,}$
- 2 whenever $\Gamma \vdash_{L} \varphi$ we have also: $\Gamma \nabla \chi \vdash_{L} \varphi \nabla \chi$ for each χ .

This theorem was previously known for finitary logics and PCP.

Theorem 4.26*TFAE:***1** There is a (p-)protodisjunction satisfying wPCP.**2** For each (surjective) substitution σ and formulae φ, ψ : $Th_L(\sigma\varphi) \cap Th_L(\sigma\psi) = Th_L(\sigma[Th_L(\varphi) \cap Th_L(\psi)]).$

If there is a (p-)protodisjunction satisfying wPCP, then ${\rm Th}_{\rm L}(p)\cap{\rm Th}_{\rm L}(q)$ is the largest.

More definitions

Th(L) is both a closure system and a complete lattice. A theory is intersection-prime if it is finitely \cap -irreducible in Th(L).

Definition 4.27

We say that L:

- is distributive if Th(L) is a distributive lattice
- is framal if Th(L) is a frame (meets distribute over arbitrary joins)
- has the IPEP (intersection-prime extension property) if intersection-prime theories form a base of Th(L), i.e. if *T* ∈ Th(L) and φ ∉ *T*, there is an intersection-prime theory *T'* ⊇ *T* such that φ ∉ *T'*.

We define filter-distributivity/framality by demanding the defining conditions for $\mathcal{F}i_{L}(A)$ for each \mathcal{L} -algebra A.

Every finitary logic has IPEP and NOT vice versa.

Example 4.29

Recall that \mathbb{L}_{∞} . If $T \nvDash_{\mathbb{L}_{\infty}} \chi$, then there is an evaluation e such that $e[T] = \{1\}$ and $e(\chi) \neq 1$. We define $T' = e^{-1}[\{1\}]$. Obviously T' is a theory, $T \subseteq T'$ and $T' \nvDash_{\mathbb{L}_{\infty}} \chi$. Assume that T' is not intersection-prime; thus there are formulae $\varphi, \psi \notin T'$ such that $T' = \mathrm{Th}_{\mathbb{L}_{\infty}}(T,\varphi) \cap \mathrm{Th}_{\mathbb{L}_{\infty}}(T,\psi)$. Assume without loss of generality that $e(\varphi) \leq e(\psi)$, so $e(\varphi \rightarrow \psi) = 1$ and so $\varphi \rightarrow \psi \in T'$. Thus $\psi \in \mathrm{Th}_{\mathbb{L}_{\infty}}(T,\varphi)$ (because $\varphi, \varphi \rightarrow \psi \vdash_{\mathbb{L}_{\infty}} \psi$) and thus $\psi \in T'$ —a contradiction. Therefore, it has the IPEP.

Definition 4.30

A theory *T* is ∇ -prime if it is consistent and $T \vdash \varphi \nabla \psi$ implies $T \vdash \varphi$ or $T \vdash \psi$.

 ∇ has the PEP if ∇ -prime theories form a base of Th(L).

Theorem 4.31

If ∇ has PCP, then ∇ -prime and intersection-prime theories coincide.

Theorem 4.32

Let L be a logic satisfying the IPEP. TFAE:

- ∇ has the sPCP.
- 2 ∇ has the PCP.
- $\bigcirc \nabla$ has the PEP.

Disjunctions, distributivity, and framality

Theorem 4.33 (Characterizations of sPCP)

The following are equivalent:

- ∇ enjoys the sPCP,
- 2 ∇ enjoys the wPCP and the logic L is framal,
- \bigcirc ∇ enjoys the wPCP and the logic L is filter-framal,
- ∇ enjoys the transferred sPCP.

Theorem 4.34 (Characterizations of PCP)

Let L have IPEP. The following are equivalent:

- ∇ enjoys the PCP,
- 2 ∇ enjoys the wPCP and the logic L is distributive,
- **③** ∇ enjoys the wPCP and the logic L is filter-distributive,
- ∇ enjoys the transferred PCP.

Let L be a protoalgebraic logic.

- L is distributive/framal IFF there is a p-protodisjunction ∇ which has PCP/sPCP.
- If L has IPEP and is distributive, then it is filter-framal.
- If ∇ has PCP, then it has transferred PCP.

Corollary 4.36

Let L be a logic with the IPEP, ∇ a *p*-protodisjunction with PCP, and let L₁, L₂ be axiomatic extensions of L by sets of axioms A_1 and A_2 , respectively. Then:

$$\mathbf{L}_1 \cap \mathbf{L}_2 = \mathbf{L} + \{ \varphi \nabla \psi \mid \varphi \in \mathcal{A}_1, \psi \in \mathcal{A}_2 \}.$$

Note: we can safely always assume that A_1 and A_2 are written in disjoint sets of variables.

Theorem 4.37

Let L be a logic with the IPEP, ∇ a p-protodisjunction with PCP, and C a set of positive clauses. Then:

$$\models_{\{\mathbf{A}\in\mathbf{MOD}^*(\mathbf{L})\mid\mathbf{A}\models\mathcal{C}\}}=\mathbf{L}+\{\nabla_{\psi\in\Sigma_C}\psi\mid C\in\mathcal{C}\}.$$