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Abstract Algebraic Logic

AAL is the evolution of Algebraic Logic that wants to:

understand the several ways by which a logic can be given
an algebraic semantics
build a general and abstract theory of non-classical logics
based on their relation to algebras
understand the rôle of connectives in (non-)classical logics
classify non-classical logics
find general results connecting logical and algebraic
properties (bridge theorems)
generalize properties from syntax to semantics (transfer
theorems)
advance the study of particular (families of) non-classical
logics by using the abstract notions and results
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Abstract Algebraic Logic

What have we done so far?

understand the several ways by which a logic can be given
an algebraic semantics
build a general and abstract theory of non-classical logics
based on their relation to algebras
understand the rôle of connectives in (non-)classical
logics: implication, equivalence, disjunction,...
classify non-classical logics
find general results connecting logical and algebraic
properties (bridge theorems)
generalize properties from syntax to semantics (transfer
theorems)
advance the study of particular (families of) non-classical
logics by using the abstract notions and results
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Bridge theorems vs. transfer theorems

Theorem 4.1 (Bloom)

Let L be a logic. Then: PU(MOD(L)) = MOD(L) iff L is finitary.

It is a brigde theorem, relating a logical property with an
algebraic (or matricial) one.

Theorem 4.2
Given a logic L in a language L, the following conditions are
equivalent:

1 L is finitary, i.e. ThL is a finitary closure operator.
2 FiAL is a finitary closure operator for any L-algebra A.

It is a transfer theorem, transfering a property of FmL to a
formally equal property of all L-algebras.

Petr Cintula and Carles Noguera Abstract Algebraic Logic – 4th lesson



Deduction theorems – 1

A logic L has the parameterized local deduction-detachment
theorem if there is a family of sets of formulae Σ ⊆ P(FmL) in
two variables (and possible parameters) such that for all
Γ ∪ {ϕ,ψ} ⊆ FmL,

Γ, ϕ `L ψ iff ∃∆(x, y,−→z ) ∈ Σ such that Γ `L
⋃
−→γ ∈FmL ∆(ϕ,ψ,−→γ ).

Theorem 4.3
A logic L is protoalgebraic iff it has the parameterized local
deduction-detachment theorem.
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Deduction theorems – 2

A logic L has the local deduction-detachment theorem (LDDT)
if it has the parameterized local deduction-detachment theorem
with an empty set of parameters, i.e. there is a family of sets of
formulae Σ ⊆ P(FmL) in two variables such that for all
Γ ∪ {ϕ,ψ} ⊆ FmL,

Γ, ϕ `L ψ iff ∃∆(x, y) ∈ Σ such that Γ `L ∆(ϕ,ψ).

Logic Σ

� (infinitely-valued Łukasiewicz logic) {p→n q | n ≥ 0}
global modal logic T {2np→ q | n ≥ 0}

Petr Cintula and Carles Noguera Abstract Algebraic Logic – 4th lesson



Deduction theorems – 3

A class of models of a logic K ⊆MOD(L) has the
L-filter-extension-property iff for all 〈A,F〉, 〈B,G〉 ∈ K such that
〈A,F〉 ⊆ 〈B,G〉 and every F′ ∈ F iL(A) such F ⊆ F′ and
〈A,F′〉 ∈ K, there exists a G′ ∈ F iL(B) such that G ⊆ G′,
〈B,G′〉 ∈ K, and G′ ∩ A = F′.

Theorem 4.4 (Czelakowski, Blok-Pigozzi)

Let L be a finitary protoalgebraic logic. TFAE:

1 L has the LDDT.
2 MOD(L) has the L-filter-extension-property.
3 MOD∗(L) has the L-filter-extension-property.
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Deduction theorems – 4

A logic L has the global deduction-detachment theorem
(GDDT) if it has the local deduction-detachment theorem with a
set Σ consisting of just one finite set of formulae i.e. there is a
finite ∆(x, y) ⊆ FmL in two variables such that for all
Γ ∪ {ϕ,ψ} ⊆ FmL,

Γ, ϕ `L ψ iff Γ `L ∆(ϕ,ψ).

Logic ∆

CL, IL, local modal logics {p→ q}
�n (n-valued Łukasiewicz logic) {p→n q}

global S4 and S5 {2p→ q}
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Deduction theorems – 5

A class of models of a logic K ⊆MOD(L) has
formula-definable principal L-filters if there is a finite set of
formulae ∆(x, y) = {δi(x, y) | i < n} of formulae in two variables
such that, for every 〈A,F〉 ∈ K and every a ∈ A,

FiAL(F ∪ {a}) = {b ∈ A | ∀δ ∈ ∆, δA(a, b) ∈ F}.

Theorem 4.5 (Blok-Pigozzi)

Let L be a finitary protoalgebraic logic. TFAE:

1 L has the GDDT.
2 MOD(L) has formula-definable principal L-filters.
3 MOD∗(L) has formula-definable principal L-filters.
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Deduction theorems – 6

A dual Brouwerian semilattice is an algebra A = 〈A, ∗A,∨A,>A〉
such that 〈A,∨A,>A〉 is a bounded join-semilattice and, for
a, b ∈ A, there exists a ∗A b, the smallest element c such that
a ≤ b ∨A c. Hence for every a, b, c ∈ A:

a ∗A b ≤ c iff a ≤ b ∨A c.

Theorem 4.6 (Czelakowski)
Let L be a finitary protoalgebraic logic. TFAE:

1 L has the GDDT.
2 The join-semilattice of finitely axiomatizable theories of L is

dually Brouwerian.
3 For every A, the join-semilattice of finitely generated

L-filters of A is dually Brouwerian.
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Deduction theorems – 7

A quasivariety K has equationally definable principal relative
congruences (EDPRC) if there is a finite set of equations in at
most four variables {εi(x0, x1, y0, y1) ≈ δi(x0, x1, y0, y1) | i < n}
such that for every algebra A ∈ K and all a, b, c, d ∈ A,

〈c, d〉 ∈ ΘA
K(a, b) iff ∀i < n εA

i (a, b, c, d) = δA
i (a, b, c, d),

where ΘA
K(a, b) denotes the relative congruence generated by

〈a, b〉.

Theorem 4.7 (Blok-Pigozzi)

Let L be a finitary and finitely algebraizable logic. TFAE:
1 L has the GDDT.
2 ALG∗(L) has EDPRC.
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Deduction theorems – 8

A quasivariety K has the relative congruence extension
property (RCEP) if, only if, for every A,B ∈ K such that B ⊆ A
and every θ ∈ ConK(B), there exists θ′ ∈ ConK(A) such that
θ′ ∩ B2 = θ.

Theorem 4.8 (Blok-Pigozzi, Czelakowski-Dziobiak)

Let L be a finitary and finitely algebraizable logic. TFAE:

1 L has the LDDT.
2 ALG∗(L) has the RCEP.
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Beth property – 1

Let L be a logic and P,R ⊆ Var, P ∩ R = ∅, Γ(−→p ,−→r ) ⊆ FmL,
−→p ∈ P,−→r ∈ R. We say that Γ(−→p ,−→r ) defines R explicitly in
terms of P if for every r ∈ R there is ϕr ∈ FmL with variables in P
such that 〈r, ϕr〉 ∈ Ω(FiP∪R

L (Γ)) (filter generated in the
subalgebra of formulae in variables P ∪ R).

We say that Γ(−→p ,−→r ) defines R implicitly in terms of P if for
every R′ ⊆ Var, R′ ∩ (P ∪ R) = ∅, |R′| = |R|, and every bijection f
between R and R′, we have that for every r ∈ R,
〈r, f (r)〉 ∈ Ω(FiP∪R∪R′

L (Γ)).

L has the Beth property if for all disjoint sets of variables P and
R, each set Γ(−→p ,−→r ) ⊆ FmL that defines R implicitly in terms of
P, defines also R explicitly in terms of P.
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Beth property – 2

Let K be a class of algebras of the same type, A,B ∈ K, and
h : A→ B a homomorphism. h is an epimorphism in K if for
every C ∈ K and each g, g′ : B→ C, if g ◦ h = g′ ◦ h, then g = g′.

A class K of algebras has the property that epimorphisms are
surjective (ES) if every epimorphism between algebras of K is a
surjective mapping.

Theorem 4.9 (Hoogland)
Let L be an algebraizable logic. TFAE:

1 L has the Beth property.
2 ALG∗(L) has the ES.
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Craig interpolation

A logic L has the Craig interpolation property for consequence
if for every Γ ∪ {ϕ} ⊆ FmL such that Γ `L ϕ, there is Γ′ ⊆ FmL
with variables in Var(Γ) ∩ Var(ϕ) such that Γ `L Γ′ and Γ′ `L ϕ.

A class of algebras K has the amalgamation property if for any
A,B,C ∈ K and any embeddings f : C→ A and g : C→ B, there
is D ∈ K and embeddings h : A→ D and t : B→ D such that
h ◦ f = t ◦ g.

Theorem 4.10 (Czelakowski)
Let L be an algebraizable logic with GDDT. TFAE:

1 L has the Craig interpolation property for consequence.
2 ALG∗(L) has the amalgamation property.
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A non-protoalgebraic logic – 1

CPC∧∨ is defined as the {∧,∨}-fragment of classical logic.

Gentzen presentation [Font and Verdú, 1991]

Hilbert presentation [Dyrda and Prucnal, 1980]:
ϕ ∧ ψ � ϕ ϕ ∨ (ψ ∨ ξ) � (ϕ ∨ ψ) ∨ ξ
ϕ ∧ ψ � ψ ∧ ϕ (ϕ ∨ ψ) ∨ ξ � ϕ ∨ (ψ ∨ ξ)
ϕ,ψ � ϕ ∧ ψ ϕ ∨ (ψ ∧ ξ) � (ϕ ∨ ψ) ∧ (ϕ ∨ ξ)
ϕ� ϕ ∨ ψ (ϕ ∨ ψ) ∧ (ϕ ∨ ξ) � ϕ ∨ (ψ ∧ ξ)
ϕ ∨ ψ � ψ ∨ ϕ ϕ ∧ (ψ ∨ ξ) � (ϕ ∧ ψ) ∨ (ϕ ∧ ξ)
ϕ ∨ (ϕ ∨ ψ) � ϕ ∨ ψ ϕ ∨ ϕ� ϕ

It is a logic without theorems, not almost inconsistent, and
hence not protoalgebraic.
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A non-protoalgebraic logic – 2

2∧,∨: {∧,∨}-reduct of the two-element Boolean algebra 2

CPC∧∨ = |=2∧,∨

V(2∧,∨) = D (variety of distributive lattices)

Is D the algebraic semantics of CPC∧∨?
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A non-protoalgebraic logic – 3

Theorem 4.11
ALG∗(CPC∧∨) = {A ∈ D | A has a maximum element 1 and for
every a, b ∈ A if a < b then there is c ∈ A such that a ∨ c 6= 1 and
b ∨ c = 1} (a proper subclass of D, not even quasivariety).

Theorem 4.12
D is not the equivalent algebraic semantics of any algebraizable
logic.

ALG(CPC∧∨) = D [Font-Jansana] (alternative AAL theory
based on generalized models)

ALG(L) = PSD(ALG∗(L)).
If L is protoalgebraic, then ALG(L) = ALG∗(L).
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Frege hierarchy – 1

Proposition 4.13
A logic L in a language L is protoalgebraic iff for every
T ∪ {ϕ,ψ} ⊆ FmL

〈α, β〉 ∈ ΩFmL(T) implies ThL(T, α) = ThL(T, β).

Frege relation: 〈ϕ,ψ〉 ∈ ΛL iff ϕ `L ψ and ψ `L ϕ.

Selfextensional logic: L is selfextensional iff ΛL ∈ Con(FmL).

Frege relation w.r.t. a theory: 〈ϕ,ψ〉 ∈ ΛL(T) iff T, ϕ `L ψ and
T, ψ `L ϕ.

Fregean logic: L is Fregean iff ΛL(T) ∈ Con(FmL) for every
T ∈ Th(L).
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Frege hierarchy – 2

Inc, AInc, CL, IL, CPC∧∨ are Fregean.

Dumb is selfextensional but not Fregean.

�3 is not selfextensional (ϕ a` ψ does not imply ¬ϕ a` ¬ψ; take
ϕ = p and ψ = ¬(p→ ¬p), e(p) = 1

2 ).

Theorem 4.14
Every protoalgebraic Fregean logic with theorems is
regularly algebraizable.
Every finitary and protoalgebraic Fregean logic with
theorems is regularly, finitely algebraizable.

Linear logic is not Fregean.
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Infinitely-valued Łukasiewicz logics

A = 〈[0, 1],→,¬〉, a→ b = min{1, 1− a + b} and ¬a = 1− a.

Infinitary version �∞: |=〈A,{1}〉
Finitary version �: finitary companion of �∞
Γ `� ϕ iff there is a finite Γ0 ⊆ Γ s.t. Γ0 |=〈A,{1}〉 ϕ.
Degree-preserving version �≤: ϕ1, . . . , ϕn `�≤ ϕ iff for
each A-evaluation e, min{e(ϕ1), . . . , e(ϕn)} ≤ e(ϕ).

They all have the same theorems.

�∞ is Rasiowa-implicative (but ALG∗(�∞) is not quasivariety)
and not selfextensional (counterexample as in �3).

� is Rasiowa-implicative (and strongly BP-algebraizable) and
not selfextensional (counterexample as in �3).

�
≤ is selfextensional (not Fregean) and not protoalgebraic.
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Disjunction in Classical Logic

(PD) ϕ `CL ϕ ∨ ψ and ψ `CL ϕ ∨ ψ
PCP If Γ, ϕ `CL χ and Γ, ψ `CL χ, then Γ, ϕ ∨ ψ `CL χ.

The same holds for many other logics: IL, �, FLew, HL, ...

(PD) and PCP could be equivalently formulated as:
Γ, ϕ `CL χ and Γ, ψ `CL χ, if and only if, Γ, ϕ ∨ ψ `CL χ.

Dummett in ‘The Logical Basis of Metaphysics, HUP, 1991’ says
about (a weaker variant of) PCP:

If this law does not hold, the operator ∨ could not
legitimately be called disjunction operator.
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A problem

Theorem 4.15
In FLe, the lattice connective ∨ does not satisfy the PCP (it
would entail ϕ ∨ ψ ` (ϕ ∧ 1) ∨ (ψ ∧ 1)).

A solution of this problem:

Theorem 4.16

The connective ∨′ defined as ϕ∨′ ψ = (ϕ∧ 1)∨ (ψ ∧ 1) satisfies

(PD) ϕ ` (ϕ ∧ 1) ∨ (ψ ∧ 1) and ψ ` (ϕ ∧ 1) ∨ (ψ ∧ 1)

PCP If Γ, ϕ ` χ and Γ, ψ ` χ, then Γ, (ϕ ∧ 1) ∨ (ψ ∧ 1) ` χ.
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A bigger problem

Theorem 4.17
In the implication fragment of Gödel-Dummett logic we cannot
define any connective ∨ satisfying (PD) and PCP.

A solution of this problem:

Theorem 4.18
The ‘connective’ {(ϕ→ ψ)→ ψ, (ψ → ϕ)→ ϕ} satisfies

(PD)ϕ ϕ ` (ϕ→ ψ)→ ψ and ϕ ` (ψ → ϕ)→ ϕ
(PD)ψ ψ ` (ϕ→ ψ)→ ψ and ψ ` (ψ → ϕ)→ ϕ
PCP If Γ, ϕ ` χ and Γ, ψ ` χ, then

Γ, (ϕ→ ψ)→ ψ, (ψ → ϕ)→ ϕ ` χ.
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An even bigger problem

Theorem 4.19
In FL no finite set of formulae of two variables defines any
‘connective’ satisfying (PD) and PCP.

BUT there is still a solution of this problem:

Theorem 4.20
The following ‘connective’ satisfies both (PD) and PCP
{γ1(ϕ) ∨ γ2(ψ) | where γ1, γ2 are iterated conjugates}.

An iterated conjugate of ϕ is a formula γα1(γα2(. . . γαn(ϕ) . . .)) where
γαi = λαi(ϕ) = (αi\ϕ&αi) ∧ 1 or γαi = ραi(ϕ) = (αi&ϕ/αi) ∧ 1 for
some formulae αi.
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Definition and useful conventions

Let ∇(p, q,−→r ) be a set of formulae. We write

ϕ∇ψ =
⋃
{∇(ϕ,ψ,−→α ) | −→α ∈ Fm≤ω}.

Σ1∇Σ2 =
⋃
{ϕ∇ψ | ϕ ∈ Σ1, ψ ∈ Σ2}
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Generalized disjunctions

A (parameterized) set of formulae ∇ is a (p-)protodisjunction if:

(PD) ϕ `L ϕ∇ψ and ψ `L ϕ∇ψ

We will consider the following three properties:

wPCP ϕ `L χ and ψ `L χ implies ϕ∇ψ `L χ
PCP Γ, ϕ `L χ and Γ, ψ `L χ implies Γ, ϕ∇ψ `L χ
sPCP Γ,Σ `L χ and Γ,Π `L χ implies Γ,Σ∇Π `L χ

Clearly: sPCP ⇒ PCP ⇒ wPCP

Theorem 4.21

For finitary logics: sPCP ⇔ PCP : wPCP
But in general: sPCP : PCP

We define also transferred variants of these notions.
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A finitary logic with a ∇ satisfying wPCP but not PCP

Example 4.22
Consider the non-distributive lattice diamond, with the domain
{⊥, a, b, t,>}, with t as central element, and the finitary logic
given by all matrices over this algebra with a lattice filter.

Observe: Γ ` ϕ iff
∧

e[Γ] ≤ e(ϕ) for every evaluation e.

∨ is a protodisjunction with wPCP.

Assume now, for a contradiction, that it satisfies the PCP too.
Then from ϕ,ψ ` (ϕ ∧ ψ) ∨ χ and χ, ψ ` (ϕ ∧ ψ) ∨ χ we obtain
ϕ ∨ χ, ψ ` (ϕ ∧ ψ) ∨ χ and thus also (applying the PCP again)
ϕ ∨ χ, ψ ∨ χ ` (ϕ ∧ ψ) ∨ χ (a form of distributivity). Then, we
reach a contradiction by observing that a ∨ b = t ∨ b = > while
(a ∧ t) ∨ b = ⊥ ∨ b = b.
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An infinitary logic with a ∇ satisfying PCP but not sPCP

Example 4.23
Let A be a complete distributive lattice such that it is not a dual
frame, i.e. there are elements xi ∈ A for i ≥ 0 such that∧

i≥1

(x0 ∨ xi) 6≤ x0 ∨
∧
i≥1

xi

expand the lattice language by constants {ci | i ≥ 0} ∪ {c} and
define algebra A′ in this language by setting cA′

i = xi and
c =

∧
i≥1 xi. Then we define the logic L in this language

semantically given by the class of matrices
{〈A′,F〉 | F is a principal lattice filter in A}.

Observe: Γ `L ϕ iff
∧
ψ∈Γ e(ψ) ≤ e(ϕ) for each A-evaluation e.
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An finitary logic with a ∇ satisfying PCP but not sPCP

Example 4.24 (continuation)
First we show that ∨ enjoys the PCP: assume that for each e
evaluation holds (

∧
δ∈Γ e(δ)) ∧ e(ϕ) ≤ e(χ) and

(
∧
δ∈Γ e(δ)) ∧ e(ψ) ≤ e(χ), thus

[(
∧
δ∈Γ e(δ)) ∧ e(ϕ)] ∨ [(

∧
δ∈Γ e(δ)) ∧ e(ψ)] ≤ e(χ), the

distributivity of A completes the proof. Finally, by the way of
contradiction, assume that ∨ enjoys the sPCP. Observe that:
c0 `L c0 ∨ c and {ci | i ≥ 1} `L c0 ∨ c. Using the sPCP we obtain
{c0 ∨ ci | i ≥ 1} `L c0 ∨ c—a contradiction.
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Syntactical characterization

Theorem 4.25
Let ∇ a commutative and idempotent p-protodisjunction. TFAE:

1 ∇ satisfies sPCP,
2 whenever Γ `L ϕ we have also: Γ∇χ `L ϕ∇χ for each χ.

This theorem was previously known for finitary logics and PCP.

Theorem 4.26
TFAE:

1 There is a (p-)protodisjunction satisfying wPCP.
2 For each (surjective) substitution σ and formulae ϕ,ψ:

ThL(σϕ) ∩ ThL(σψ) = ThL(σ[ThL(ϕ) ∩ ThL(ψ)]).

If there is a (p-)protodisjunction satisfying wPCP, then
ThL(p) ∩ ThL(q) is the largest.
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More definitions

Th(L) is both a closure system and a complete lattice. A theory
is intersection-prime if it is finitely ∩-irreducible in Th(L).

Definition 4.27
We say that L:

is distributive if Th(L) is a distributive lattice
is framal if Th(L) is a frame (meets distribute over arbitrary
joins)

has the IPEP (intersection-prime extension property) if
intersection-prime theories form a base of Th(L), i.e. if
T ∈ Th(L) and ϕ /∈ T, there is an intersection-prime theory
T ′ ⊇ T such that ϕ /∈ T ′.

We define filter-distributivity/framality by demanding the
defining conditions for F iL(A) for each L-algebra A.
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Finitary vs. IPEP logics

Theorem 4.28
Every finitary logic has IPEP and NOT vice versa.

Example 4.29
Recall that �∞. If T 0�∞ χ, then there is an evaluation e such
that e[T] = {1} and e(χ) 6= 1. We define T ′ = e−1[{1}].
Obviously T ′ is a theory, T ⊆ T ′ and T ′ 0�∞ χ. Assume that T ′

is not intersection-prime; thus there are formulae ϕ,ψ 6∈ T ′ such
that T ′ = Th�∞(T, ϕ) ∩ Th�∞(T, ψ). Assume without loss of
generality that e(ϕ) ≤ e(ψ), so e(ϕ→ ψ) = 1 and so
ϕ→ ψ ∈ T ′. Thus ψ ∈ Th�∞(T, ϕ) (because ϕ,ϕ→ ψ `�∞ ψ)
and thus ψ ∈ T ′—a contradiction. Therefore, it has the IPEP.
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Prime theories

Definition 4.30
A theory T is ∇-prime if it is consistent and T ` ϕ∇ψ implies

T ` ϕ or T ` ψ.
∇ has the PEP if ∇-prime theories form a base of Th(L).

Theorem 4.31
If ∇ has PCP, then ∇-prime and intersection-prime theories
coincide.

Theorem 4.32
Let L be a logic satisfying the IPEP. TFAE:

1 ∇ has the sPCP.
2 ∇ has the PCP.
3 ∇ has the PEP.
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Disjunctions, distributivity, and framality

Theorem 4.33 (Characterizations of sPCP)
The following are equivalent:

1 ∇ enjoys the sPCP,
2 ∇ enjoys the wPCP and the logic L is framal,
3 ∇ enjoys the wPCP and the logic L is filter-framal,
4 ∇ enjoys the transferred sPCP.

Theorem 4.34 (Characterizations of PCP)
Let L have IPEP. The following are equivalent:

1 ∇ enjoys the PCP,
2 ∇ enjoys the wPCP and the logic L is distributive,
3 ∇ enjoys the wPCP and the logic L is filter-distributive,
4 ∇ enjoys the transferred PCP.
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Protoalgebraic logics: stronger results

Theorem 4.35
Let L be a protoalgebraic logic.

L is distributive/framal IFF there is a p-protodisjunction ∇
which has PCP/sPCP.
If L has IPEP and is distributive, then it is filter-framal.
If ∇ has PCP, then it has transferred PCP.
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Axiomatization of intersections of logics

Corollary 4.36
Let L be a logic with the IPEP, ∇ a p-protodisjunction with PCP,
and let L1, L2 be axiomatic extensions of L by sets of axioms
A1 and A2, respectively. Then:

L1 ∩ L2 = L + {ϕ∇ψ | ϕ ∈ A1, ψ ∈ A2}.

Note: we can safely always assume that A1 and A2 are written
in disjoint sets of variables.

Theorem 4.37
Let L be a logic with the IPEP, ∇ a p-protodisjunction with PCP,
and C a set of positive clauses. Then:

|={A∈MOD∗(L) | A|=C} = L + {∇ψ∈ΣC ψ | C ∈ C}.
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