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VALERIA SIMONCINI† AND DANIEL B. SZYLD‡

Abstract. In the context of the solution of large linear systems, a condition guaranteeing that
a minimal residual Krylov subspace method makes some progress, i.e., that it does not stagnate, is
that the symmetric part of the coefficient matrix be positive definite. This condition results in a
well-established bound due to Elman, for the convergence rate of the iterative method. This bound
is usually pessimistic. Nevertheless, it has been extensively used, e.g., to show that for certain
preconditioned problems, the convergence of GMRES (or of other minimal residual methods) is
independent of the underlying mesh size of the discretized partial differential equation. In this paper
we introduce more general non-stagnation conditions on the coefficient matrix, which do not require
the symmetric part of the coefficient matrix to be positive definite, and that guarantee, for example,
the non-stagnation of restarted GMRES for certain values of the restarting parameter.

1. Introduction. Minimal residual Krylov subspace methods, and in particular
in the implementation given in GMRES [27], are routinely employed for the solution of
large linear systems of the form Ax = b, and especially of those systems arising in the
discretization of partial differential equations; see, e.g., [12], [26], [32]. Let x0 be an
initial vector, and xm be the approximate solution after m iterations, with correspond-
ing residual rm = b − Axm. In these methods, the residual norm is non-increasing,
i.e., ‖rm‖ ≤ ‖rm−1‖. In some instances, though, there is possible stagnation, that is
‖rm‖ = ‖rm−1‖ holds for some m; see, e.g., [8], [19], [30], [38], [39] for examples and
discussion of this issue.

Elman [11] studied conditions for non-stagnation of minimal residual methods
(and thus applicable to GMRES), and obtained a useful bound on the associated
residual norm; see also [10]. Let H = H(A) =: (A + AT )/2 be the symmetric part
of A. If H is positive definite, i.e., if for real vectors x,

c = min
x6=0

(x,Ax)
(x, x)

= min
x6=0

(x,Hx)
(x, x)

> 0,(1.1)

then, there is no stagnation, and furthermore,

‖rm‖ ≤
(

1− c2

C2

)m/2

‖r0‖,(1.2)

where

C = ‖A‖ = max
x6=0

‖Ax‖
‖x‖

, c ≤ C.(1.3)

From (1.1) one has that ρ :=
(
1− c2/C2

)1/2
< 1. Elman’s results indicate that

if (1.1) holds, then, the residual norm decreases at each iteration at least by the
constant factor ρ. We note that from (1.1) and (1.3), it is immediate that if H is
negative definite (−H is positive definite), then the same results apply, i.e., there is
no stagnation and (1.2) holds.

∗This version dated 17 April 2007
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The convergence of GMRES is in most cases superlinear (see, e.g., [31], [36]),
while the bound (1.2) indicates linear convergence. Thus, it is generally understood
that (1.2) may be very pessimistic as a bound. Moreover, if ρ ≈ 1 the bound may
(possibly erroneously) predict a very small residual norm reduction. Nevertheless, this
bound is widely used in certain contexts. In particular, when the matrix A represents
a discretization of a differential operator, researchers have looked for preconditioners,
such that the quantities c and C defined in (1.1), (1.3), can be bounded independently
of the mesh size of the discretization; see, e.g., [33, §5.3], [35, §§2.3, 3.6]. These
bounds guarantee that a finer discretization does not increase the work per degree
of freedom beyond a bounded quantity. It turns out that for the (preconditioned)
coefficient matrix to satisfy (1.1), certain conditions on the discretization may need
to be imposed, and this limits the applicability of the bound (1.2); see, e.g., [1], [35,
§3.6]. In fact, in [6] a simple discretized one-dimensional partial differential equation is
presented such that the coefficient matrix obtained with overlapping additive Schwarz
preconditioning cannot satisfy (1.1).

A natural question is whether we can formulate some other conditions for non-
stagnation, and an associated convergence bound that is applicable to matrices whose
symmetric part is not positive definite, i.e., in the case where (1.1) does not hold. In
this paper we answer this question in the affirmative, providing new conditions for
non-stagnation which relate the symmetric part of the matrix A, i.e., H = H(A), with
its skew-symmetric part, S = S(A) := (A−AT )/2. In many cases the new conditions
are computable a priori, or can be inferred from the nature of the problem.

The rest of the paper is organized as follows. In the next section, we have some
preliminary discussion and describe work by other authors studying conditions for
non-stagnation, or related to bounds similar to (1.2). As we shall see, most of these
bounds require that (1.1) hold, i.e., that H(A) be positive definite. In section 3,
we present our new conditions together with a few elementary examples of their
applicability, while in section 4 we discuss the new results and present additional
illustrative examples.

In the preceeding expressions, as well as in the rest of this paper, the inner product
is the Euclidean one (v, w) = vT w, and the norm is the one associated with this inner
product, i.e., the 2-norm ‖v‖ = (vT v)1/2. Elman’s results, as well as all results in this
paper carry over to any other inner product, and its induced norm, but for simplicity
of the exposition we do not provide the details; cf. [8], [29], [34].

2. Preliminary and related results. In this section, we briefly discuss other
results related to non-stagnation and convergence bounds for GMRES.

As already mentioned, the bound in (1.2) may be used to ensure convergence
in a restarted process. Indeed, for nonsymmetric matrices, optimal minimal residual
methods are usually characterized by large computational and memory requirements;
these costs increase superlinearly with the number of iterations. For these reasons,
methods such as GMRES are often stopped after a fixed number of iterations, and
then restarted with the current approximation as initial guess. The estimate in (1.2)
ensures that a minimal residual method will be capable to reduce the residual norm
even after a very limited number of iterations, regardless of the properties of the
initial guess. In this context, it is worth remarking that conditions such as (1.2) try
to address worst-case scenarios. Indeed, it may be shown that after one iteration of a
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minimal residual iteration, it holds (see, e.g., [26, §5.3.2])

‖r1‖ =

√
1− (rT

0 Ar0)2

‖Ar0‖2 ‖r0‖2
‖r0‖,

therefore, for ‖r1‖ to be strictly less than ‖r0‖, it is sufficient that rT
0 Ar0 6= 0 for

the given vector r0. Clearly, it is quite unlikely, although not impossible, that rT
k Ark

is exactly zero for some k when A is indefinite. This explains why minimal residual
methods rarely show complete (namely at all iterations) stagnation in practice, even
in the case of indefinite problems. On the other hand, classes of matrices for which
complete stagnation occurs have been analyzed in detail; see [38].

If the matrix A is diagonalizable, other linear convergence bounds of a form
similar to (1.2) are available, but including a factor which is the condition number of
the eigenvector matrix of A; see. e.g., [10], [18, §3.2], [26, §6.11.14], [32]. See also [23]
for improvements of these bounds in certain cases, and [15] for analogous bounds for
non-diagonalizable matrices.

Other convergence bounds using the field of values F(A) were developed, where

F(A) = {ω ∈ C / ω =
(x,Ax)
(x, x)

, x ∈ Cn, x 6= 0},

and n is the order of the matrix. These bounds always assume that 0 /∈ F(A); see, e.g.,
[8, Corollary 6.2], [18, §3.2], [34]. It is precisely for those cases with 0 ∈ F(A) that we
look for new non-stagnation conditions. We refer to [13] for examples where each of
the aforementioned bounds is more descriptive than the others. We also mention the
paper [24] where bounds are presented in the case that the spectrum of A is contained
in a half plane.

If A is normal, i.e., if AAT = AT A, then its field of values coincides with the
convex hull of its set of eigenvalues σ(A). For a non-normal matrix, the field of values
can be, and it usually is, much larger than the convex hull of σ(A); see, e.g., [20].

Following [16], we say that a matrix A is positive (negative) definite, if xT Ax > 0
for all nonzero real vectors x (if −A is positive definite). In this case, its field of
values is completely contained in the right-half (left-half) plane C+ (C−), and Elman’s
bound (1.2) holds.

A minimal residual Krylov subspace method proceeds by finding at the mth itera-
tion an approximation xm, so that xm−x0 ∈ Km = span{r0, Ar0, A

2r0, . . . , A
m−1r0},

and such that ‖rm‖ ≤ ‖b − Ax‖ for all x − x0 ∈ Km. Equivalently, letting Pm be
the set of polynomials p of degree m satisfying p(0) = 1, we can write rm = pm(A)r0,
for pm ∈ Pm such that ‖pm(A)r0‖ ≤ ‖p(A)r0‖, for all p ∈ Pm. This polynomial pm

is called the GMRES residual polynomial. It follows from this standard characteri-
zation that stagnation is avoided as soon as m is large enough so that pm satisfies
‖pm(A)r0‖ < ‖r0‖. For a more intuitive argument, assume that A is not positive
definite but that a power of it is, say Ak. Using Elman’s results, a minimal residual
method applied to the system Akx = r0 with zero initial guess would not stagnate.
Denoting by q1 the hypothetical residual polynomial after one minimal residual it-
eration with Ak, it would hold that ‖q1(Ak)r0‖ < ‖r0‖. We notice that q1 = q1(η)
applied to ηk has degree k and satisfies q1(0) = 1. Therefore the residual after k
iterations of a minimal residual method applied to A satisfies

‖rk‖ = ‖pk(A)r0‖ ≤ ‖q1(Ak)r0‖ ≤
(

1− c2
k

C2
k

)1/2

‖r0‖ := ρk‖r0‖,
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where ck = min
(
x,H(Ak)x

)
/(x, x) > 0, with x ∈ Rn, x 6= 0, and Ck = ‖Ak‖. Thus,

after j · k iterations, the residual rjk of the minimal residual method applied to A
satisfies

‖rjk‖ ≤ ρk‖r(j−1)k‖ ≤ ρj
k‖r0‖.(2.1)

Therefore, if Ak is positive definite, the minimal residual method does not stagnate for
more than k iterations, and after k iterations, the residual norm decreases by at least
a factor ρk. The same argument can be used to show that if Ak is positive definite,
then, the restarted version of a minimal residual vector with restart parameter k does
not stagnate; this goes back to [11]. In summary, we have the following result.

Proposition 2.1. Let Ak be positive or negative definite for some k ≥ 1. Then, a
minimal residual method to solve Ax = b does not stagnate for more than k iterations,
and its residual satisfies (2.1).

This result is in fact a special case of [17, Theorem 1], stated in the next sec-
tion, where it holds using any polynomial of degree k, and also a special case of [39,
Theorem 2.2] where it is shown for complex matrices.

If A is normal, one can characterize σ(A) for which σ(Ak) ⊂ C+, and thus its
convex hull is also contained in C+. It can be shown that if

σ(A) ⊂

ω ∈ C / ω = |ω|eiθ, θ ∈
k−1⋃
j=0

[(−π + 4j)/2k, (π + 4j)/2k]

 ,

then σ(Ak) ⊂ C+, see, e.g., [39]. For the special case of k = 2, this is [18, Exercise 2.8]
where it is shown that for A normal, A2 is positive definite if |Re(λ)| > |Im(λ)| for
all λ ∈ σ(A). In particular, if the matrix is symmetric indefinite, then A2 is always
positive definite and thus stagnation of minimal residual methods can only take place
in not more than two consecutive iterations.

Finally, we refer to [2], [3], [22] and to [28], for convergence results that also
require H(A) to be positive definite.

3. The new conditions. We begin by stating the already mentioned result of
Grcar [17].

Theorem 3.1. Let q be a polynomial of degree at most k, with q(0) = 0, and
such that H(q(A)) is positive or negative definite. Then for every x0, the affine space
x0 +span{r0, Ar0, . . . , A

k−1r0} contains a vector x for which ‖b−Ax‖ ≤ ρ‖r0‖, where

ρ =
(

1− ĉ2

Ĉ2

)1/2

< 1,

with ĉ = min{|λ| , λ ∈ σ (H(q(A)))} and Ĉ = ‖q(A)‖.
We observe that for the special case of q(A) = A, the hypothesis is that H(A) is

definite, and one recovers the result (1.2). Similarly for q(A) = Ak one has Proposi-
tion 2.1.

Our first result gives conditions so that H(q(A)) is either positive or negative
definite for the case q(η) = η2. Thus, using Theorem 3.1 we then conclude that the
GMRES residual does not stagnate for more than two iterations, and that GMRES(2),
the restarted GMRES method with restarting parameter k = 2, does not stagnate.
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Theorem 3.2. Let H = H(A) and S = S(A). Then, the following holds:
1. For all real vectors x,

xT A2x = ‖Hx‖2 − ‖Sx‖2.(3.1)

2. If H is nonsingular, then H(A2) is positive definite if and only if

‖SH−1‖ < 1.(3.2)

3. If S is nonsingular, then H(A2) is negative definite if and only if

‖HS−1‖ < 1.(3.3)

Proof. We have A = H +S, so that A2 = H2+HS+SH +S2. Observe that since
ST = −S, then, HS + SH is skew-symmetric. We then have for all real vectors x,

xT A2x = xT (H2 + S2)x = xT HT Hx− xT ST Sx = ‖Hx‖2 − ‖Sx‖2,

which is (3.1). To show the second statement, let

H−T ST SH−1 = QΛQT , with QT Q = I, and Λ ≥ O diagonal;(3.4)

let y = Hx, and y = Qz for some z. We have then that for all real vectors x

xT A2x = xT HT Hx− xT ST Sx = yT y − yT H−T ST SH−1y

= zT z − zT Λz = zT (I − Λ)z.(3.5)

It follows from (3.4) that the diagonal entries of Λ are the squares of the singular
values of SH−1, that is λi = σ2

i , i = 1, . . . , n. Thus, from (3.5) we have that for
all real vectors x, xT A2x = zT (I − Λ)z > 0 if and only if λi < 1, which in turn is
equivalent to requiring that σi < 1 for all i, that is ‖SH−1‖ < 1.

The third statement is shown in a similar manner.
We note that in the conditions (3.2) or (3.3) one can interchange the order of the

factors. This is because for any symmetric matrix H and any skew-symmetric matrix
S, it holds that ‖HS‖ = ‖(HS)T ‖ = ‖ST HT ‖ = ‖ − SH‖ = ‖SH‖.

It is very easy to construct examples where (3.2) or (3.3) hold, but (1.1) does not.
Two such cases follow.

Example 3.3. Any matrix A = H + S with H indefinite and nonsingular, and
S skew-symmetric and orthogonal, cannot be used in the context of (1.1), but satisfy,
say, (3.2), if the eigenvalues of H are greater than one in modulus. Indeed, in this
case, ‖SH−1‖ = ‖H−1‖ < 1.

Example 3.4. We next consider the following non-diagonalizable matrix

A =

 −1 0 0
0 4 1
0 0 4

 =

 −1 0 0
0 4 1/2
0 1/2 4

+
1
2

 0 0 0
0 0 1
0 −1 0

 = H + S

Here H is indefinite with eigenvalues {−1, 7/2, 9/2}, while ‖SH−1‖ = 1/7 < 1 and
thus Theorem 3.2 applies.

Intuitively, the second result of Theorem 3.2 says that if H is nonsingular and if
it “dominates” S, then A2 is positive definite. This fact is made more explicit in the
following result, which gives a simple sufficient condition for ‖SH−1‖ < 1 to hold.
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Corollary 3.5. Let λi(M) be the ith eigenvalue of the matrix M .
If |λi(H)| > |λj(S)| for i, j = 1, . . . , n, then H(A2) is positive definite.

Proof. For any real vector x, we have

‖Hx‖2 ≥ λmin(H)2‖x‖2 > λmax(S)2‖x‖2 ≥ ‖Sx‖2.

In view of (3.1) the result follows.
A corresponding result holds when |λi(H)| < |λj(S)| for i, j = 1, . . . , n. Thus, if

S is nonsingular and if it “dominates” H, then A2 is negative definite.
We now obtain conditions for H(A4) to be either positive or negative definite,

and this would imply that the GMRES residual does not stagnate for more than four
iterations.

Theorem 3.6. Let H = H(A) and S = S(A). Then, the following holds:
1. If H2 + S2 is nonsingular, then H(A4) is positive definite if and only if

‖(HS + SH)(H2 + S2)−1‖ < 1.
2. If HS + SH is nonsingular, then H(A4) is negative definite if and only if

‖(H2 + S2)(HS + SH)−1‖ < 1.
Proof. As we have seen, A2 = (H2 + S2) + (HS + SH) = H(A2) + S(A2). Thus,

the result follows applying Theorem 3.2 to A2.
Example 3.7. Let

A =

 2 0 0
0 3 −10
0 10 0

 .

It is easy to see that both H = H(A) and S = S(A) are singular, and thus, neither
condition in Theorem 3.2 is satisfied. On the other hand, we have that (H2 + S2) is
nonsingular, and ‖(HS + SH)(H2 + S2)−1‖ ≈ 0.329. Thus Theorem 3.6 applies.

Remark 3.8. We can continue in the same manner, and apply Theorem 3.2 to
other powers of A, but then, the conditions obtained are not easy or practical to check.
For example one has that

A3 =
[
H(H2 + S2) + S(HS + SH)

]
+
[
S(H2 + S2) + H(HS + SH)

]
= H(A3) + S(A3).

Theorem 3.1 says that positive definiteness may be obtained by means of a poly-
nomial q of degree k such that q(0) = 0, and we have shown that under suitable
conditions this may be obtained for q(η) = ηk, k = 2, 4. Although they seem hard
to find explicitly, more general polynomials of the same degree k may satisfy the
definiteness condition. In the following example, we show that this is indeed the case.

Example 3.9. Let q(η) = η2 + αη with α > 0, and notice that

η2 + αη − 1 < 0 iff η ∈

(
−α

2
−
√

α2

4
+ 1,−α

2
+

√
α2

4
+ 1

)
:= (`1, `2),

with `1 < 0 and `2 > 0. Let A = H + S with S skew-symmetric and orthogonal,
and H symmetric with both positive and negative eigenvalues in (`1, `2). Using the
eigenvalue decomposition H = UΛUT , Λ = diag(λ1, . . . , λn) and the orthogonality of
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S, for any x 6= 0 it follows

xT q(A)x = xT (H2 + S2 + αH)x
= xT H2x− xT x + αxT Hx

= zT Λ2z − zT z + αzT Λz = zT (Λ2 + αΛ− I)z < 0.

Here we used z = UT x. The final inequality follows from the fact that the matrix in
parenthesis is diagonal, and that λi ∈ (`1, `2) for all i’s, so that the matrix is negative
definite. Note that for |λ1| ≤ . . . ≤ 1 ≤ . . . ≤ |λn|, the quantity xT A2x = zT (Λ2− I)z
remains indefinite. As a numerical example, we take α = 10 so that `1 ≈ −10.099
and `2 ≈ 0.09902. For

A = H + S, H =
[
−8 0
0 0.01

]
, S =

[
0 −1
1 0

]
,

we obtain σ(H) = {−8, 0.01} and σ(H(A2)) = {−0.9999, 63}, whereas
σ(H(A2 + αA)) = {−17,−0.8999}.

A completely analogous example showing that xT q(A)x > 0 for all x 6= 0 may be
obtained for σ(H) contained in R \ [`1, `2]. We have thus derived a class of matrices
A for which q(A) is definite, and A2 may not be.

4. Discussion and additional examples. We begin by discussing the con-
ditions of Theorem 3.2. Observe that having ‖H−1S‖ < 1 implies that the matrix
H−1A = I + H−1S has its spectrum in the right half plane. This fact was used to
consider H as a precondtioner; see [7], [37], and also [2].

The splitting A = H − (−S) was used to generate convergent classical station-
ary iterative methods, often with some relaxation parameters or acceleration so that
‖H−1S‖ < 1; see, [5], [9], [25].

We mention that in [21] a result is given for the case H = 0, i.e., for nonsingular
skew-symmetric matrices, showing non-stagnation of GMRES(k) for k ≥ 2. This
result follows from the normality of S and also from Theorem 3.2 since in this case
‖HS−1‖ = 0 < 1.

Example 3.7 has the 2 × 2 block structure typical of matrices stemming from
saddle point problems. Indeed, other examples of this type may be constructed all
taking the form

M =
[

A B
−BT 0

]
,

where A is n × n and symmetric, while B is a full rank n × m matrix; see, e.g., [4].
Note that both H = H(M) and S = S(M) are singular for n > m. For the case
where A = µI, µ > 0 as in [14], and assuming µ2I − BT B is nonsingular, algebraic
calculations show that

‖(HS + SH)(H2 + S2)−1‖ = max
σi

{
µσi

|µ2 − σ2
i |

,
µ

σi

}
,

where σi, i = 1, . . . ,m are the (nonzero) singular values of B. Therefore, for µ such
that ‖(HS + SH)(H2 + S2)−1‖ < 1, Theorem 3.6 applies. An explicit discussion of
stagnation for this saddle point matrix when A = µI can be found in [14].

We conclude with some examples with elliptic operators.
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Example 4.1. We consider the class of matrices stemming from the centered
finite difference discretization with mesh size 1/41 of the differential operator

L(u) = (αux)x + (βuy)y + γux + δuy + ηu(4.1)

on the unit square, with Dirichlet boundary conditions, giving rise to a matrix of
dimension n = 1600. In Table 4.1 we report the minimum eigenvalue of H, and also
‖SH−1‖, for some choices of the coefficients. In all cases, H is indefinite but the
condition (3.2) of Theorem 3.2 holds.

α β γ δ η λmin(H) ‖SH−1‖
− exp(−xy) − exp(xy) 1 1 −100 -0.04719 0.6194

−1 −1 1/(.1x + 100y) 0 −100 -0.04775 0.1577
−1 −1 −1/10(x− y) 0 −100 -0.04772 0.1838
−1 −1 −1/10(x + y) 0 −100 -0.04772 0.5819
−1 −1 −0.2 0 −100 -0.04781 0.5811

Table 4.1
Coefficients and corresponding values of λmin(H) and ‖SH−1‖ for the matrix associated with

the operator in (4.1).

Example 4.1 shows that for the condition (3.2) to hold it is sufficient that the sym-
metric part of the operator “dominates” the skew-symmetric one, as discussed in the
previous section. Therefore, further test matrices may be obtained by appropriately
choosing the coefficients γ and δ in (4.1).

As a final remark, we note that the new results may be used in the solution of (pre-
conditioned) linear systems stemming from discretized partial differential equations.
If for those problems it could be shown that ĉ and Ĉ in Theorem 3.1 are independent
of the underlying mesh size then the worst-case convergence rate bound of GMRES
applied to these problems would be valid for all possible mesh refinements.

Acknowledgement. Work on this paper was supported in part by the U.S.
Department of Energy under grant DE-FG02-05ER25672.
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[39] Jan Źıtko. Generalization of convergence conditions for a restarted GMRES. Numerical Linear
Algebra with Applications, 7:117–131, 2000.


