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Abstract

Flexible Krylov methods refers to a class of methods which accept variable (or
flexible) preconditioning, i.e., preconditioning that can change from one step to
the next. In other words, given a Krylov subspace method, such as CG, GMRES,
QMR, etc. for the solution of a linear system Ax = b, instead of having a fixed
preconditioner M and the (right) preconditioned equation AM−1y = b (Mx = y),
one may have a different matrix, say Mi at each step. In this presentation, we study
the case where the preconditioner itself is a Krylov subspace method.

There are several papers in the literature where such situation is presented and
numerical examples given. For example, GMRES is used as a preconditioner for
FGMRES [Saad, Chapman and Saad], or QMR as the preconditioner for FQMR
[Szyld and Vogel]. A general theory is presented encompassing these two cases, and
many others. In fact, our general theory applies to any outer Krylov method with
any inner one. Truncated methods are included in our theory as well.

The overall space where the minimization or Galerkin condition is imposed is no
longer a Krylov subspace, but instead a subspace of a larger Krylov space. We show
how this subspace keeps growing as the outer iteration progresses, thus providing
a convergence theory for these inner-outer methods. One of our goals is to show
that these inner-outer methods are very competitive. Experiments with Flexible
truncated GMRES, in which the same amount of storage is used as GMRES(m)
illustrate the advantage of the inner-outer methods.

Inexact Krylov subspace methods refer to the case where the matrix–vector product
is not performed exactly. At the kth step of a Krylov subspace method the action
Av is replaced with (A + Ek)v where Ek is some error. In a series of CERFACS
reports in 2000, Bouras, Frayssé and Giraud demonstrate experimentally that as the
iteration progresses, i.e, as k increases, ‖Ek‖ may be allowed to grow. In the second
part of our presentation we provide a general framework for the understanding of
these Inexact Krylov subspace methods, and in particular explain the theory behind
the experiments reported in the literature. Furthermore, assuming exact arithmetic,
our analysis produces computable criteria to bound the inexactness of the matrix–
vector multiplication, i.e., ‖Ek‖, in such a way as to maintain the convergence of
the Krylov subspace method. The theory developed is applied to several problems
including the solution of Schur complement systems, linear systems which depend
on a parameter, and eigenvalue problems. Numerical experiments for some of these
scientific applications are reported, where the computable criteria are successfully
applied.


