INEXACT BLOCK PRECONDITIONERS FOR SADDLE-POINT PROBLEMS

Valeria Simoncini

Dipartimento di Matematica, Università di Bologna, Italy, and IAN-CNR, Pavia, Italy, e-mail: val@dragon.ian.pv.cnr.it

Miroslav Rozložník

Institute of Computer Science, Academy of Sciences of the Czech Republic, Pod vodárenskou věží 2, CZ-182 07 Prague 8, Czech Republic, e-mail: miro@cs.cas.cz

Keywords: Saddle-Point problems, Preconditioner, inexact iterative methods

Abstract

Several numerical application problems require the solution of the large system

$$\mathcal{M}x = b$$
, where $\mathcal{M} = \begin{bmatrix} A & B \\ B^T & 0 \end{bmatrix}$, $A = A^T$

with B full column rank. The problem size makes the use of preconditioned iterative methods mandatory, where the preconditioner efficiently exploits the block structure of \mathcal{M} . In this context, the preconditioners

$$P_1 = \begin{bmatrix} I & B \\ B^T & 0 \end{bmatrix}, \quad P_2 = \begin{bmatrix} A & B \\ 0 & -B^T A^{-1} B \end{bmatrix}$$

are particularly well suited; see e.g. [2,3,4]. However, their application involves solving with $B^T B$ and/or A at each iteration. On large problems this is infeasible, thus these solves are replaced by cheaper operators [1], leading to inexact preconditioners. In this talk we describe some spectral properties of the inexactly preconditioned system matrix, and their effect on the convergence of minimum residual Krylov subspace solvers.

References

[1] H. C. Elman, D. J. Silvester, A. J. Wathen. Performance and analysis of saddle point preconditioners for the discrete steady-state Navier-Stokes equations, Tech. Rep. UMCP-CSD:CS-TR-4164, 2000. To appear in Num. Math.

[2] A. Klawonn. Block-Triangular preconditioners for saddle point problems with a penalty term, SIAM J. Sci. Comput., v. 19 (1) (1998), pp. 172-184.

[3] L. Lukšan and J. Vlček. Indefinitely preconditioned inexact Newton method for large sparse equality constrained non-linear programming problems, Num. Linear Algebra and Appl., 5 (1998), pp. 219–247.

[4] I. Perugia, V. Simoncini, and M. Arioli. Linear algebra methods in a mixed approximation of magnetostatic problems, SIAM J. Sci. Comput., 21 (1999), pp. 1085–1101.