ON THE CONVERGENCE OF KRYLOV SUBSPACE METHODS FOR SINGULAR SYSTEMS

Ken Hayami

National Institute of Informatics, Tokyo e-mail: hayami@nii.ac.jp

Keywords: Krylov subspace methods, GCR(k), GMRES(k), singular systems

Abstract

Consider applying the Generalized Conjugate Residual (GCR(k)) method to the system of linear equations $A\boldsymbol{x} = \boldsymbol{b}$, or the least squares problem $\min_{\boldsymbol{x}\in\mathbf{R}^n} \|\boldsymbol{b} - A\boldsymbol{x}\|_2$,

where $A \in \mathbf{R}^{n \times n}$ is a nonsymmetric and singular matrix, and $\mathbf{x}, \mathbf{b} \in \mathbf{R}^n$. Let \mathbf{x}_i be the approximate solution at the *i*-th step, and \mathbf{x}_0 be the initial approximate solution.

Following [1,2], let R(A) be the range space of A, $r = \operatorname{rank} A$, $R(A)^{\perp}$ the orthogonal complement of R(A), $\boldsymbol{q}_1, \dots, \boldsymbol{q}_r$: the orthonormal basis of R(A), $\boldsymbol{q}_{r+1}, \dots, \boldsymbol{q}_n$: the orthonormal basis of $R(A)^{\perp}$, $Q_1 := [\boldsymbol{q}_1, \dots, \boldsymbol{q}_r]$, $Q_2 := [\boldsymbol{q}_{r+1}, \dots, \boldsymbol{q}_n]$, $A_{11} := Q_1^{\mathrm{T}} A Q_1$, and denote the symmetric part of a matrix A by M(A). Then, we will show the following.

Theorem 1 The following (1)-(4) are equivalent.

- (1) The GCR(k) method converges without break-down for arbitrary \boldsymbol{b} and \boldsymbol{x}_0 .
- (2) $M(A_{11})$ is definite and $R(A)^{\perp} = \ker A$.
- (3) M(A) of A is definite in R(A), and $R(A)^{\perp} = \ker A$.
- (4) M(A) is semi-definite, rank $M(A) = \operatorname{rank} A$, and $R(A)^{\perp} = \ker A$. \Box

Theorem 2 If $b \in R(A)$, the following (1)–(3) are equivalent.

- (1) For arbitrary \boldsymbol{x}_0 , the GCR(k) method does not break down and the residual converges to **0**.
- (2) $M(A_{11})$ is definite.
- (3) M(A) is definite in R(A). \Box

We can further show that when the GCR method does not break down, the method converges in at most $r = \operatorname{rank} A$ iterations.

In the talk, we intend to present similar analysis for the GMRES(k) method.

References

[1] Abe, K., Ogata, H., Sugihara, M., Zhang, S.-L. and Mitsui, T., *Trans. Japan Soc. Ind. Appl. Maths.*, Vol. 9, No. 1, pp. 1–13, 1999, (in Japanese).

[2] Hayami, K., Proc. of the Fifth China-Japan Joint Seminar on Numerical Mathematics, Shanghai, 2000, Science Press in Beijing, (submitted).