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MINIMIZATION OF ERROR FUNCTIONALS OVER
VARIABLE-BASIS FUNCTIONS ∗

PAUL C. KAINEN† , VĚRA KŮRKOVÁ‡ , AND MARCELLO SANGUINETI§

Abstract. There is investigated generalized Tychonov well-posedness of the problem of mini-
mization of error functionals over admissible sets formed by variable-basis functions, which include
neural networks. For admissible sets formed by variable-basis functions of increasing complexity,
rates of decrease of infima of error functionals are estimated. There are derived upper bounds on
such rates that do not exibit the curse of dimensionality with respect to the number of variables of
admissible functions.

Key words. generalized Tychonov well-posedness, error functionals, approximate optimization,
rate of decrease of infima, complexity of admissible functions, curse of dimensionality.

AMS subject classifications. 49K40, 41A46, 41A25

1. Introduction. Functionals defined as distances from (target) sets are called
error functionals. Minimization of such functionals occurs in optimization tasks aris-
ing in various areas, such as system identification, machine learning, pattern recogni-
tion, etc.

In various applications, admissible solutions over which error functionals are min-
imized are functions depending on a large number of variables: for example, when
routing strategies have to be devised for large-scale communication and transportation
networks, when an optimal closed-loop control law has to be devised for a dynamical
system with high-dimensional state, etc. In the last decades, complex optimization
problems of this kind have been approximately solved by searching suboptimal so-
lutions over admissible sets of functions computable by neural networks [4], [20],
[21], [25], [28], [29]. Neural networks can be studied in a more general context of
variable-basis functions, which also includes other nonlinear families of functions such
as free-nodes splines or trigonometric polynomials with free frequencies [17]. Fami-
lies of variable-basis functions are formed by linear combinations of fixed number of
elements chosen from a given basis without a prespecified ordering [16], [17].

When admissible functions depend on a large number of variables, implemen-
tation of some procedures of approximate optimization may be infeasible due to the
“curse of dimensionality” [3]. For example, when optimization is performed over linear
combinations of fixed basis functions, the number of functions in linear combinations
required to guarantee a desired optimization accuracy may grow exponentially fast
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with the number of variables of admissible solutions [22, pp. 232-233], [29]. However,
experience has shown that some neural networks with a small number of computa-
tional units, which can be modeled as variable-basis functions with a small number of
functions from the basis, often perform quite well in some optimization tasks where
admissible solutions depend on a large number of variables [4], [20], [21], [25], [28],
[29].

In this paper, we investigate generalized Tychonov well-posedness of the prob-
lems of minimization of error functionals over admissible sets formed by variable-basis
functions and we estimate rates of decrease of infima of such problems with increasing
complexity of admissible sets. As tools for such an investigation, we derive various
conditions on target and admissible sets guaranteeing convergence of minimizing se-
quences. We show that these conditions are satisfied by target sets defined by suitable
interpolation and smoothness conditions and admissible sets formed by functions com-
putable by families of variable-basis functions that include commonly used classes of
neural networks. We estimate rates of decrease of infima of error functionals over
neural networks with increasing number of computational units. We derive upper
bounds on such rates that do not exhibit the curse of dimensionality.

The paper is organized as follows. In Section 2, we introduce basic concepts
and definitions used throughout the paper. Section 3 states conditions on sets of
target functions and admissible solutions that guarantee convergence of minimizing
sequences. Section 4 applies the tools developed in Section 3 to minimization of
error functionals over neural networks and variable-basis functions and Section 5 gives
estimates of rates of decrease of infima of such functionals with increasing number of
computational units.

2. Preliminaries. In this paper, by a normed linear space (X, ‖.‖) we mean a
real normed linear space. We write only X when it is clear which norm is used. For
a positive integer d, a set Ω ⊆ <d, where < denotes the set of real numbers, and
p ∈ [1,∞), by (Lp(Ω), ‖.‖p) is denoted the space of measurable, real-valued functions
on Ω such that

∫
Ω
|f(x)|p dx < ∞ endowed with the Lp norm. (C(Ω), ‖.‖C) denotes

the space of real-valued continuous functions on Ω with the supremum norm.
For a multi-index α, i.e, a d-tuple (α1, . . . , αd) of nonnegative integers, by Dα =

Dα1
1 . . . Dαd

d is denoted a distributional derivative of order ‖α‖l1 =
∑n

i=1 αi [1, 1.57].
For p ∈ [1,∞) and an open set Ω ⊆ <d, the Sobolev space (Wm

p (Ω), ‖.‖m,p) is the set
of all functions f : Ω → < such that f ∈ (Lp(Ω), ‖.‖p) and Dαf ∈ (Lp(Ω), ‖.‖p) for

0 ≤ ‖α‖l1 ≤ m, with the norm ‖f‖m,p =
{∑

0≤‖α‖l1≤m ‖Dαf‖p
p

}1/p

[1, 3.1].

By B({0, 1}d) is denoted the space of real-valued Boolean functions, i.e., functions
from {0, 1}d to <. This space is endowed with the standard inner product defined for
f, g ∈ B({0, 1}d) as f · g =

∑
x∈{0,1}d f(x)g(x), which induces the l2-norm ‖f‖l2 =√

f · f . The space (B({0, 1}d), ‖.‖l2) is isomorphic to the 2d-dimensional Euclidean
space <2d

with the l2-norm.
For M ⊆ (X, ‖.‖), cl(M) denotes the closure of M in the topology induced by

the norm ‖.‖. For f ∈ X, we write ‖f −M‖ = infg∈M ‖f − g‖. A ball of radius r
centered at h ∈ (X, ‖.‖) is denoted by Br(h, ‖.‖) = {f ∈ X : ‖f − h‖ ≤ r}. We write
Br(‖.‖) for Br(0, ‖.‖) and merely Br when it is clear which norm is used.

For brevity, sequences are denoted by {hi} instead of {hi : i ∈ N+}, where N+

is the set of positive integers. When there is no ambiguity, the same notation is used
for a sequence and its subsequences. A sequence converges subsequentially if it has a
convergent subsequence.
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Following [8], we denote by (M, Φ) the problem of infimizing a functional Φ :
M → < over a subset M of X. M is called the set of admissible solutions or the
admissible set. A sequence {gi} of elements of M is called Φ-minimizing over M
if limi→∞ Φ(gi) = infg∈M Φ(g). The set of argminima of the problem (M, Φ) is
denoted by argmin(M, Φ) = {h ∈ M : Φ(h) = infg∈M Φ(g)}. The problem (M, Φ) is
Tychonov well-posed in the generalized sense [8, p. 24] if argmin(M, Φ) is not empty
and each Φ-minimizing sequence over M converges subsequentially to an element of
argmin(M, Φ).

For C a nonempty subset of X, the error functional measuring the distance from
C is denoted by eC and defined for any h ∈ X, as eC(h) = ‖h−C‖, where ‖h−C‖ =
inff∈C = ‖h − f‖. We call C the target set or the set of target functions. By the
triangle inequality, eC = ecl(C). For a singleton C = {h} ⊂ X, we write eh instead of
e{h}.

For error functionals, the definition of generalized Tychonov well-posedness can
be simplified as stated in the following proposition.

Proposition 2.1. Let M,C be nonempty subsets of a normed linear space
(X, ‖.‖). Then (M, eC) is Tychonov well-posed in the generalized sense if and only if
every sequence in M which minimizes eC converges subsequentially to an element of
M .

Proof. Let {gi} be a subsequence of an eC-minimizing sequence converging to
go ∈ M . By continuity of eC [26, p. 391], infg∈M eC(g) = limi→∞ eC(gi) =
eC(limi→∞ gi) = eC(g0). Thus, go ∈ argmin(M, eC) and so (M, eC) is Tychonov
well-posed in the generalized sense. The “only if ” statement follows directly from the
definition of generalized Tychonov well-posedness.

Recall that a nonempty subset M of a normed linear space is compact if every
sequence has a convergent subsequence, is precompact if cl(M) is compact, and is
boundedly compact if its intersection with any ball is precompact (equivalently, every
bounded sequence in M is subsequentially convergent). Note that this definition of
boundedly compact set does not require M to be closed. M is approximatively compact
[26, p. 382] if, for all h ∈ X, every sequence in M that minimizes the distance to h
converges subsequentially to an element of M .

By Proposition 2.1, the notion of approximatively compact set can be reformu-
lated in terms of optimization theory as a set M such that, for every h ∈ X, the
problem (M, eh) is Tychonov well-posed in the generalized sense. A subset M of a
normed linear space X is proximinal (or an existence set) if for any h ∈ X there exists
g ∈ M such that ‖h−M‖ = ‖h− g‖. In decreasing degree of strength, a subset of a
normed linear space may be compact, boundedly compact, approximatively compact,
and proximinal [26, pp. 368, 382-383]. Each implies the next with the exception
that bounded compactness only implies approximative compactness for closed sets;
proximinal implies closed [26, p. 382].

3. Minimization of error functionals under weakened compactness. Gen-
eralized Tychonov well-posedness can be interpreted as a type of weakened compact-
ness of admissible sets. The following theorem shows that for error functionals it is
closely related to the concept of approximative compactness studied in approximation
theory [26, p. 382].

Theorem 3.1. Let M, C be nonempty subsets of a normed linear space (X, ‖.‖).
Each of the following conditions guarantees that (M, eC) is Tychonov well-posed in
the generalized sense:
(i) M is approximatively compact and C is precompact;
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(ii) M is approximatively compact and bounded and C is boundedly compact;
(iii) M is boundedly compact and closed and C is bounded.

Proof. Let {gi} be an eC-minimizing sequence over M . By Proposition 2.1 it is
sufficient to show that {gi} converges subsequentially to go ∈ M .

(i) Since eC = ecl(C), it is sufficient to consider cl(C). As cl(C) is compact,
it is proximinal and so there exists a sequence {fi} ⊆ cl(C) such that for every i,
eC(gi) = ‖fi−gi‖. Again by compactness, the sequence {fi} converges subsequentially
to f0 ∈ cl(C). Replacing {fi} and {gi} with the corresponding subsequences, for
every ε > 0 we get i0 ∈ N+ such that for all i ≥ i0, ‖fi − f0‖ < ε/2. As {gi}
is eC-minimizing over M , there exists i1 ≥ i0 such that for all i ≥ i1, eC(gi) ≤
infg∈M eC(g) + ε/2. So, for all i ≥ i1, ef0(gi) ≤ ‖gi − fi‖ + ‖fi − f0‖ = eC(gi) +
‖fi − f0‖ < infg∈M eC(g) + ε ≤ infg∈M ef0(g) + ε. Hence, {gi} is an ef0 -minimizing
sequence over M . By approximative compactness of M , there exists go ∈ M such
that {gi} converges subsequentially to go.

(ii) As cl(C) is boundedly compact and closed, it is proximinal and so there exists
a sequence {fi} ⊆ cl(C) such that for every i, eC(gi) = ‖fi − gi‖. By the triangle
inequality, ‖fi‖ ≤ ‖fi − gi‖ + ‖gi‖. Both sequences, {‖gi‖} and {‖fi − gi‖}, are
bounded: the first one by boundedness of M and the second one as {‖fi − gi‖} is
convergent (since limi→∞ ‖gi − fi‖ = limi→∞ eC(gi) = infg∈M eC(g)). By closedness
and bounded compactness of cl(C), there exists f0 ∈ cl(C) to which {fi} converges
subsequentially and so we can proceed as in the second part of the proof of (i).

(iii) As C is bounded, there exists r > 0 such that C ⊆ Br. Let a = inf{‖f − g‖ :
f ∈ C, g ∈ M}. Then there exist i0 ∈ N+ and b > 0 such that for all i ≥ i0,
eC(gi) < a + b and so there exist i1 ≥ i0, fi ∈ C, and b′ ≥ b such that for all i ≥ i1,
‖gi − fi‖ < a + b′. By the triangle inequality, ‖gi‖ ≤ ‖gi − fi‖ + ‖fi‖ < a + b′ + r.
Thus for all i ≥ i1, {gi} ⊆ Ba+b′+r ∩M and so {gi} has a bounded subsequence. As
M is boundedly compact and closed, this subsequence converges subsequentially to
go ∈ M .

The following table summarizes the conditions on M and C assumed in Theorem
3.1, which guarantee that (M, eC) is Tychonov well-posed in the generalized sense.

Table 3.1
Conditions on M and C guaranteeing Tychonov well-posedness in the generalized sense of

(M, eC). Y = yes, N = no (by “no” we mean “there exists a counterexample”).

C precompact C boundedly C bounded
compact

M approximatively compact Y N N

M boundedly compact Y N Y
and closed

M approximatively compact Y Y N
and bounded

The first entry in the first column holds by Theorem 3.1 (i), while the other two
entries in the same column hold since there the conditions on M are stronger than
those required in the first entry. In the second column, Theorem 3.1 (ii) justifies
the “yes” entry, while “yes” in the third column holds by Theorem 3.1 (iii). Both
“no” entries in the second column are shown by the following counterexample. In the
Euclidean space <2, let C be the the x-axis and M the graph of the exponential func-
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tion. Then M and C are boundedly compact and closed and hence approximatively
compact. But no eC-minimizing sequence in M has a convergent subsequence.

The “no” entries in the third column are demonstrated by the following example.
Let (l2, ‖.‖l2) be the Hilbert space of square-summable sequences and {ei} be its
orthonormal basis. Let L denote the orthogonal complement of the unit vector (say,
e1) and let M = L ∩ B1(‖.‖l2). As every closed convex subset of a uniformly convex
Banach space is approximatively compact [5, p. 25], M is a bounded approximatively
compact set. Let C = w e1+M , where w is any nonzero real number. Then C is closed
and bounded. The sequence {e2, e3, ...} in M satisfies for all j ≥ 2, ‖ej − C‖ = |w|
and so it is eC-minimizing over M but it has no convergent subsequence.

Theorem 3.1 will be used in the next section to investigate generalized Tychonov
well-posedness of (M, eC), for admissible sets M computable by variable-basis func-
tions and, as a particular case, by neural networks.

4. Convergence of minimizing sequences formed by variable-basis func-
tions. Sets of functions of the form spann G = {∑n

i=1 wigi : wi ∈ <, gi ∈ G} and
convn G = {∑n

i=1 wigi : wi ∈ [0, 1],
∑n

i=1 wi = 1, gi ∈ G} are called variable-basis
functions [16], [17]. Sets spann G model situations in which admissible functions are
represented as linear combinations of any n-tuple of functions from G, with uncon-
strained coefficients in the linear combinations. In many applications such coeffi-
cients are constrained by a bound on a norm of the coefficients vector (w1, . . . , wn).
When such a norm is the l1-norm, the corresponding functions belong to the set
{∑n

i=1 wigi : wi ∈ <, gi ∈ G,
∑n

i=1 |wi| ≤ c}, where c > 0 is a given bound
on the l1-norm. It is easy to see that this set is contained in convnG′, where
G′ = {rg : |r| ≤ c , g ∈ G}. As any two norms on <n are equivalent, every norm-based
constraint on the coefficients of linear combinations defines a set contained in a set of
the form convn G′.

Depending on the choice of the set G, one can obtain a variety of admissible
sets that include functions computable by neural networks, splines with free nodes,
trigonometric polynomials with free frequencies, etc. For simplicity, we shall consider
functions defined on [0, 1]d. Let A ⊆ <q, φ : A × [0, 1]d → < be a function of two
vector variables, and Gφ = {φ(a, ·) : a ∈ A}.

By suitable choices of A and φ, one can represent by Gφ sets of functions com-
putable by various types of so-called neural networks with computational unit φ. If
A = Sd−1 × <, where Sd−1 = {e ∈ <d : ‖e‖ = 1} is the set of unit vectors in <d,
and φ((e, b), x) = ϑ(e · x + b), where ϑ denotes the Heaviside function, defined as
ϑ(t) = 0 for t < 0 and ϑ(t) = 1 for t ≥ 0, then we shall denote such a set Gφ by
Hd, as it is the set of characteristic functions of closed half-spaces of <d, restricted to
[0, 1]d. Functions in Hd are called Heaviside perceptrons ; functions in spann Hd and
convn Hd are called Heaviside perceptron networks.

If A = [−c, c]d × [−c, c] and φ((v, b), x) = ψ(v · x + b), where ψ : < → < is called
activation function, b is called bias and the components of v are called weights, then
Gφ, denoted by Pd(ψ, c), is the set of functions on [0, 1]d computable by ψ-perceptrons
with both biases and weights bounded by c. Pd(ψ) denotes the corresponding set with
no bounds on the parameters values. Functions in spann Pd(ψ, c), convn Pd(ψ, c),
spann Pd(ψ), and convn Pd(ψ) are called ψ-perceptron networks. The most common
activation functions in perceptrons are sigmoidals, i.e., bounded measurable functions
σ : < → < such that limt→−∞ σ(t) = 0 and limt→+∞ σ(t) = 1 (e.g., the logistic
sigmoid σ(t) = 1/(1 + exp(−t)) and the hyperbolic tangent). If the activation function
ψ is positive and even, A = [−c, c]d×[−c, c], and φ((v, b), x) = ψ(b‖x−v‖), where ‖.‖ is
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a norm on <d, b is called width and v is called centroid, then Gφ, denoted by Fd(ψ, c),
is the set of functions on [0, 1]d computable by ψ-radial-basis-functions with both
widths and centroids bounded by c (a typical activation function for RBF units is the
Gaussian function ψ(t) = e−t2). Fd(ψ) denotes the corresponding set with no bounds
on the parameters values. Functions in spann Fd(ψ, c), convn Fd(ψ, c), spann Fd(ψ),
and convn Fd(ψ) are called ψ-radial-basis-functions (RBF) networks. The number n
of hidden units in ψ-perceptron networks and ψ-RBF networks can be considered as
a measure of the network complexity, as the number of network parameters depends
on n linearly.

The following proposition applies Theorem 3.1 to admissible sets computable by
neural networks.

Proposition 4.1. Let (X, ‖.‖) be a normed linear space and C, M its subsets.
The problem (M, eC) is Tychonov well-posed in the generalized sense if any of the
following conditions holds:
(i) C is bounded and M = convn Gφ or M = spann Gφ where n is a positive integer
and Gφ is finite-dimensional;
(ii) (X, ‖.‖) = (C([0, 1]d), ‖.‖C), C is bounded and M = convnPd(ψ, c) or M =
convnFd(ψ, c) where c > 0, ψ is bounded and continuous, and d, n are positive in-
tegers;
(iii) (X, ‖.‖) = (Lp([0, 1]d), ‖.‖p), p ∈ [1,∞), C is precompact and M = spann Hd, or
else C is bounded, M = convn Hd and d, n are positive integers.

Proof. (i) If Gφ is finite-dimensional (e.g., if the set A of parameters of φ is
finite), then it is straightforward that spann Gφ is boundedly compact and closed. So
we conclude by Theorem 3.1 (iii).

(ii) By Theorem 3.1 (iii), it is sufficient to check that in all these cases M is
boundedly compact and closed. Since the convex hull of a compact set G is compact
and convn G is closed

in conv G, compactness of M = convn G follows from compactness of G. For G =
Pd(ψ, c) and G = Fd(ψ, c) with c > 0 and ψ bounded and continuous, compactness of
convn G in (C([0, 1]d), ‖.‖C) has been proved in [12].

(iii) If C is precompact and M = spann Hd, then by Theorem 3.1 (i) it is sufficient
to check that M is approximatively compact. Approximative compactness of M =
spann Hd in (Lp([0, 1]d), ‖.‖p), p ∈ [1,∞), was shown in [11]. If C is bounded and
M = convn Hd, then by Theorem 3.1 (iii) it is sufficient to prove that M is boundedly
compact and closed. Compactness of G = Hd in (L2([0, 1]d), ‖.‖2) was proved in [9]
and inspection of the argument shows that it also holds for Lp-spaces with p ∈ [1,∞).
Since the convex hull of a compact set G is compact and convn G is closed in conv G,
compactness of convn Hd follows from compactness of Hd.

Note that for neural networks with differentiable hidden unit functions (e.g., per-
ceptrons with logistic sigmoid or RBF with the Gaussian activation function) the sets
spannGφ are not approximatively compact in (C([0, 1]d), ‖.‖C) or in (Lp([0, 1]d), ‖.‖p),
because they are not even closed (it was shown in [23] for perceptron networks and
the arguments used there can be extended to Gaussian RBF networks).

Theorem 3.1 can be combined with various conditions guaranteeing precompact-
ness of the target set C, such as interpolation and smoothness conditions, which model
neural network learning from data described by input/output pairs and constraints
given by physical considerations or feasibility of implementation. The following propo-
sition establishes precompactness of such target sets.

Proposition 4.2. Let d, n, k be positive integers and C be a set of continuous
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functions defined on [0, 1]d, satisfying the following two conditions:
1) (smoothness) there exists b > 0 such that on (0, 1)d all first order partial derivatives
of all elements of C are continuous and bounded by b in absolute value;
2) (interpolation) there exist closed intervals Xj ⊂ [0, 1]d and Yj ⊂ <, j = 1, . . . , k
such that some Yj is bounded and for all j = 1, . . . , k, f(Xj) ⊆ Yj.
Then for every c > 0 and ψ bounded and continuous, (convnPd(ψ, c), eC) and
(convnFd(ψ, c), eC) are Tychonov well-posed in the generalized sense in (C([0, 1]d), ‖.‖C)
and (convn Hd, eC) and (spann Hd, eC) are Tychonov well-posed in the generalized
sense in (Lp([0, 1]d), ‖.‖p), p ∈ [1,∞).

Proof. Since precompactness in the space (C([0, 1]d), ‖.‖C) implies precompactness
in (Lp([0, 1]d), ‖.‖p), p ∈ [1,∞), it is sufficient to check that C satisfies the assumptions
of the Ascoli-Arzelá Theorem [1, Theorem 1.30], i.e., elements of C are equibounded
and equicontinuous on (0, 1)d. Equicontinuity follows from the Mean Value Theorem
[6, p. 79] and Cauchy-Schwarz inequality, which imply that for all f ∈ C, all x ∈
(0, 1)d, and all h such that for every t ∈ [0, 1], x + th ∈ (0, 1)d, there exists τ ∈ (0, 1)
such that |f(x+th)−f(x)| = |∇f(x+τh) ·h| ≤ ‖∇f(x+τh)‖ ‖h‖ ≤ b

√
d ‖h‖. Taking

j such that Yj is bounded and a > 0 such that Yj ⊆ [−a, a], and choosing xj ∈ Xj

we apply the inequality just derived. Thus for every f ∈ C and every x ∈ (0, 1)d we
have |f(x) − f(xj)| ≤ b

√
d ‖x − xj‖ ≤ b d. Hence, f(x) ∈ [−a − b d, a + b d] and so

functions in C are equibounded on (0, 1)d. Thus C is precompact in (C([0, 1]d), ‖.‖C)
and the statements follow from Proposition 4.1 (ii) and (iii).

Note that precompactness in (Lp([0, 1]d), ‖.‖p) can also be derived using Lp ver-
sions of Ascoli-Arzelá theorem (see, e.g., [1, Th. 2.21]). Note that the conditions of
smoothness and interpolation required by Proposition 4.2 may be incompatible, i.e.,
C could be empty. In this case, one must either increase the size of the intervals Yj or
increase the bound on the derivatives. Alternatively, some interval constraints should
be discarded.

5. Rates of decrease of infima with increasing complexity of admissible
sets of variable-basis functions. In applications, the rate of decrease of infima
of an error functional over convn G and spann G should be fast enough to achieve
a desirable accuracy for small values of n, such that admissible functions have a
moderate complexity. We shall derive estimates of such rates using a result from
approximation theory by Maurey [24], Jones [10], and Barron [2]. Here we shall
use its reformulation in terms of a norm tailored to a given basis G. Such a norm,
called G-variation and denoted by ‖.‖G, was introduced in [13] for a subset G of a
normed linear space (X, ‖.‖) as the Minkowski functional of the set cl conv (G∪−G).
Thus, ‖f‖G = inf

{
c > 0 : c−1f ∈ cl conv (G ∪ −G)

}
. G-variation is a norm on the

subspace {f ∈ X : ‖f‖G < ∞} ⊆ X; for its properties see [15], [17] and [18]. In
[16] and [18] it has been shown that when G is an orthonormal basis of a separable
Hilbert space, G-variation is equal to the l1-norm with respect to G, defined for f ∈ X
as ‖f‖1,G =

∑
g∈G |f · g|. For t > 0, we define G(t) = {wg : g ∈ G, w ∈ <, |w| ≤ t}.

The following theorem reformulates in terms of G-variation Maurey-Jones-Barron’s
theorem [24], [10], [2] and its extension to Lp-spaces [7].

Theorem 5.1. Let (X, ‖.‖) be a normed linear space, G its bounded subset and
sG = supg∈G ‖g‖. For every f ∈ X and every positive integer n, the following hold:
(i) if (X, ‖.‖) is a Hilbert space, then

‖f − spannG‖ ≤ ‖f − convn G(‖f‖G)‖ ≤ ‖f‖G
sG√

n
;
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(ii) if (X, ‖.‖) = (Lp([0, 1]d), ‖.‖p), p ∈ (1,∞), then

‖f − spann G‖ ≤ ‖f − convn G(‖f‖G)‖ ≤ 21/p̄+1sG ‖f‖G

n1/q̄
,

where q = p/(p− 1), p̄ = min(p, q), and q̄ = max(p, q);
(iii) if (X, ‖.‖) is a separable Hilbert space and G its orthonormal basis, then

‖f − spann G‖ ≤ ‖f − convn G(‖f‖G)‖ ≤ sG

2
√

n
.

For the proof of Theorem 5.1 (i) and (ii) see [13] and [14], resp.; for the proof of
Theorem 5.1 (iii) see [18, Theorem 2.7] and [16, Theorem 3].

As a corollary of Theorem 5.1, we obtain the following upper bounds on rates of
decrease of infima of error functionals over spann G, with n increasing.

Corollary 5.2. Let (X, ‖.‖) be a normed linear space and G, C its subsets such
that r = inff∈C ‖f‖G and sG = supg∈G ‖g‖ are finite. For every f ∈ X and every
positive integer n, the following hold:
(i) if (X, ‖.‖) is a Hilbert space, then

inf
g∈spannG

eC(g) ≤ inf
g∈convn G(r)

eC(g) ≤ r√
n

sG;

(ii) if (X, ‖.‖) = (Lp([0, 1]d), ‖.‖p), p ∈ (1,∞), then

inf
g∈spannG

eC(g) ≤ inf
g∈convn G(r)

eC(g) ≤ r 21/p̄+1

n1/q̄
sG.

(iii) if (X, ‖.‖) is a separable Hilbert space and G is its orthonormal basis, then

inf
g∈spannG

eC(g) ≤ inf
g∈convn G(r)

eC(g) ≤ r

2
√

n
sG.

Proof. Shortened proof to be checked (i) For each t > r, choose ft ∈ C such
that r ≤ ‖ft‖G < t. By Theorem 5.1 (i), for every n we have ‖ft − convn G(t)‖ ≤
t sG/

√
n. Thus, infg∈convnG(t) eC(g) = infg∈convnG(t) inff∈C ‖g−f‖ ≤ infg∈convn G(t) ‖g−

ft‖ = ‖ft − convn G(t)‖ ≤ t sG/
√

n. Since convnG(r) =
⋂ {convnG(t) : t > r} , we

obtain infg ∈ spannG eC(g) ≤ infg∈convn G(r) eC(g) ≤ r sG/
√

n.
(ii) and (iii) are proved analogously to (i) using Theorem 5.1 (ii) and (iii), resp.
When applied to spaces of functions of d variables, the bounds from Theorem 5.1

and Corollary 5.2 show that for functions in balls of fixed radii in G-variation the
curse of dimensionality does not occur. However, the shape of such balls may depend
on the number of variables [14], [17], [18].

The following proposition applies Corollary 5.2 to admissible functions com-
putable by Heaviside perceptron networks and target sets containing a sufficiently
smooth function. The proof exploits the possibility of embedding balls in certain
Sobolev norms into balls of proper radii in Hd-variation. For a set S of functions
f : D → <, D ⊆ <d, and a set Ω ⊆ <d, S|Ω denotes the set of functions whose ele-
ments are restrictions to Ω of functions in S. For the sake of clarity, in the following
we shall write the norm in the Sobolev spaces W s

2 (<d) and W s
2 (Ω) specifying also the

domain of their functions, i.e., we shall write ‖.‖2,s,<d and ‖.‖2,s,Ω.
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Proposition 5.3. Let d, s be positive integers, s ≥ bd/2c + 2, Ω ⊂ [0, 1]d be an
open ball in l2(<d), C ⊂ (L2([0, 1]d), ‖.‖2), a = inf{a′ > 0 : C|Ω ∩Ba′(‖.‖2,s,Ω) 6= ∅},
and b =

(∫
<d(1 + ‖ω‖2(s−1))−1 dω

)1/2. Then there exists c > 0 depending on s and Ω
such that in (L2(Ω), ‖.‖2), for r = 2 a b c and every positive integer n,
(i) inf

g∈spannHd

eC(g) ≤ inf
g∈convn Hd(r)

eC(g) ≤ r√
n

;

(ii) if C is precompact, then (spann Hd, eC) is Tychonov well-posed in the generalized
sense and min

g∈spann Hd

eC(g) ≤ min
g∈convn Hd(r)

eC(g) ≤ r√
n

.

Proof. (i) Let Br(‖.‖2,s,<d)|Ω and Br(‖.‖Hd
)|Ω denote the balls of radii r in the

Sobolev norm ‖.‖2,s,<d and in Hd-variation, whose functions are the restrictions to Ω
of functions in Br(‖.‖2,s,<d) and Br(‖.‖Hd

), resp.
Using the technique exploited in [2, pp. 935, 941], one obtains for every ρ > 0,

Bρ(‖.‖2,s,<d)|Ω ⊆ B2 ρ b(‖.‖Hd
)|Ω, where b =

(∫
<d(1 + ‖ω‖2(s−1))−1 dω

)1/2 is finite as
2(s− 1) > d.

By [1, 4.24-4.29] there exists an extension operator P : (W s
2 (Ω), ‖.‖2,s,Ω) →

(W s
2 (<d), ‖.‖2,s,<d) such that for all f ∈ (W s

2 (Ω), ‖.‖2,s,Ω), (P f)|Ω = f a.e. in Ω and
‖P f‖2,s,<d ≤ c ‖f‖2,s,Ω, where c is a constant depending on s and Ω. Since by hy-
pothesis C|Ω

⋂
Ba(‖.‖2,s,Ω) 6= ∅, there exists f ∈ C|Ω such that Pf ∈ Ba c(‖.‖2,s,<d).

As for every ρ > 0, Bρ(‖.‖2,s,<d)|Ω ⊆ B2 ρ b(‖.‖Hd
)|Ω, taking ρ = ac we have

f ∈ B2 a b c(‖.‖Hd
)|Ω. Since in (L2(Ω), ‖.‖2) we have sHd

≤ 1, the statement follows
from by Corollary 5.2 (i) with r = 2abc.

(ii) follows from (i) and Proposition 4.1 (iii).
Proposition 5.3 extends the existential statement from Proposition 4.1 (iii) to a

quantitative result: it gives an upper bound on ming∈spann Hd
eC(g) formulated in

terms of the smallest Sobolev norm of elements of the target set C. As for any contin-
uous non-decreasing sigmoidal function σ Pd(σ)-variation is equal to Hd-variation
[15], the same estimate as in Proposition 5.3 (i) holds for (spann Pd(σ), eC) and
(convn Pd(σ)(r), eC) for any such sigmoidal function.

In the following we apply Corollary 5.2 to admissible sets of Boolean functions
in (B({0, 1}d), ‖.‖l2). We shall give conditions on target sets C, which guarantee
rates of minimization of eC of order O(1/

√
n) for any number of variables d, for

admissible sets of functions in (B({0, 1}d), ‖.‖l2) computable by perceptron neural
networks with the signum activation function, defined as sgn(t) = −1 for t < 0 and
sgn(t) = 1 for t ≥ 0. H̄d denotes the set of functions on {0, 1}d computable by
signum perceptrons, i.e., H̄d = {f : {0, 1}d → < : f(x) = sgn(v · x + b), v ∈ <d, b ∈
<}. We estimate variation with respect to signum perceptrons using variation with
respect to the Fourier orthonormal basis defined as Fd =

{
fu : u ∈ {0, 1}d, fu(x) =

1√
2d

(−1)u·x}
[27]. Every real-valued Boolean function can be represented as f(x) =

1√
2d

∑
u∈{0,1}d f̂(u)(−1)u·x, where the Fourier coefficients f̂(u) are given by f̂(u) =

1√
2d

∑
x∈{0,1}d f(x)(−1)u·x. If we interpret the output 1 as −1 and 0 as 1, then the

elements of the Fourier basis Fd correspond to the generalized parity functions. The l1-
norm with respect to the Fourier basis, defined as ‖f‖1,Fd

= ‖f̂‖l1 =
∑

u∈{0,1}d |f̂(u)|,
is called the spectral norm.

Next proposition gives an upper bound on the rate of decrease of infima of error
functionals over perceptron neural networks, in terms of the smallest spectral norm
of elements of the target set C.

Proposition 5.4. Let d be a positive integer, r > 0, and C be a bounded subset of
(B({0, 1}d), ‖.‖l2), a = inf{a′ > 0 : C ∩ Ba′(‖.‖1,Fd

) 6= ∅}. For every positive integer
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n, the problems (spandn+1 H̄d, eC) and (convdn+1 H̄d(r), eC) are Tychonov well-posed
in the generalized sense and ming∈spandn+1 H̄d

eC(g) ≤ ming∈convdn+1 H̄d(a) eC(g) ≤
a

2
√

n
.

Proof. It is easy to verify that every function of the Fourier basis Fd can be
expressed as a linear combination of at most d + 1 signum perceptrons [18]. Indeed,
for every u, x ∈ {0, 1}d one has (−1)u·x = 1+(−1)d

2 +
∑d

j=1(−1)jsgn(u · x − j + 1
2 ).

Moreover, any linear combination of n elements of Fd belongs to spandn+1H̄d, since all
of the n occurrences of the constant function can be expressed by a single perceptron.
As for any orthonormal basis of a separable Hilbert space G-variation is equal to l1-
norm with respect to G [16], [18], we have ‖f‖Fd

= ‖f‖1,Fd
and the statement follows

from Proposition 4.1 (i) and Corollary 5.2 (ii).
According to Proposition 5.4, rates of minimization of order O(1/

√
n) indepen-

dent on the number d of variables, are guaranteed when target sets contain a function
with “small” spectral norm. Next two propositions describe target sets for which
minimization of error functionals over admissible sets computable by Boolean signum
perceptron networks does not exhibit the curse of dimensionality. The first result
considers target sets whose elements can be expressed as linear combinations of a
“small” number of generalized parities.

Proposition 5.5. Let d, n, and m be positive integers, m ≤ 2d, c > 0, and
C be a subset of (B({0, 1}d), ‖.‖l2) such that C contains a function f with at most
m Fourier coefficients nonzero and with ‖f‖l2 ≤ c. The problems (spandn+1 H̄d, eC)
and (convdn+1 H̄d(

√
m), eC) are Tychonov well-posed in the generalized sense and

ming∈spandn+1 H̄d
eC(g) ≤ ming∈convdn+1 H̄d(

√
m) eC(g) ≤ c

2

√
m
n .

Proof. Let f ∈ C be such that f =
∑m

i=1 wigi, where gi ∈ Fd are the Fourier
coefficients. Then ‖f‖Fd

= ‖f‖1,Fd
= ‖f̂‖l1 =

∑m
i=1 |wi|. By the Cauchy-Schwarz

inequality
∑m

i=1 |wi| ≤ ‖w‖2‖u‖2, where w = (w1, . . . , wm) and u = (u1, . . . , um),
with ui = sgn(wi). As ‖w‖2 = ‖f‖l2 ≤ c and ‖u‖2 ≤ √

m, we have ‖f‖1,Fd
≤

c
√

m. Thus C contains a function f with ‖f‖1,Fd
≤ c

√
m, so a = inf{a′ > 0 :

C ∩Ba′(‖.‖1,Fd
) 6= ∅} ≤ c

√
m and the statement follows by Proposition 5.4.

For C satisfying the assumptions of Proposition 5.5, if eC is minimized over
the set of d-variable Boolean functions computable by networks with dn + 1 signum
perceptrons, where n ≥ c2m

4ε2 , then the minimum is bounded from above by ε. As the
number d c2m

4ε2 + 1 of perceptrons needed for an accuracy ε grows with d linearly, the
curse of dimensionality is avoided.

An interesting class of target sets, for which minimization of error functionals can
be efficiently performed over sets of functions computable by a “moderate” number
of Boolean signum perceptrons, are functions representable by “small” decision trees.
Such trees play an important role in machine learning [19].

A decision tree is a binary tree with labeled nodes and edges. The size of a
decision tree is the number of its leaves. A function f : {0, 1}d → < is representable
by a decision tree if there exists such a tree with internal nodes labeled by variables
x1, . . . , xd, all pairs of edges outgoing from a node are labeled by 0s and 1s, and
all leaves are labeled by real numbers, so that f can be computed as follows. The
computation starts at the root and after reaching an internal node labeled by xi,
continues along the edge whose label coincides with the actual value of the variable
xi; finally a leaf is reached and its label is equal to f(x1, . . . , xd).

Proposition 5.6. Let d, s be positive integers, b ≥ 0, and C be a subset of
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(B({0, 1}d), ‖.‖l2) containing a function f such that, for all x ∈ {0, 1}d, f(x) 6= 0, f

is representable by a decision tree of size s, and
max

x∈{0,1}d |f(x)|
min

x∈{0,1}d |f(x)| ‖f‖l2 ≤ b. Then the

problems (spandn+1 H̄d, eC) and (convdn+1 H̄d(sb), eC) are Tychonov well-posed in the
generalized sense and ming∈spandn+1 H̄d

eC(g) ≤ ming∈convdn+1 H̄d(sb) eC(g) ≤ sb
2
√

n
.

Proof. By [18, Theorem 3.4] (which extends [19, Lemma 5.1]), the hypotheses

imply that ‖f̂‖l1
‖f‖l2

≤ s
max

x∈{0,1}d |f(x)|
min

x∈{0,1}d |f(x)| , so we get ‖f‖1,Fd
= ‖f̂‖l1 ≤ sb. Thus C contains

a function f with ‖f‖1,Fd
≤ sb, so a = inf{a′ > 0 : C ∩ Ba′(‖.‖1,Fd

) 6= ∅} ≤ sb and
the statement follows from Proposition 5.4.

For C satisfying the assumptions of Proposition 5.6, if eC is minimized over
the set of d-variable Boolean functions computable by networks with dn + 1 signum
perceptrons, where n ≥ (

sb
2ε

)2
, then the minimum is bounded from above by ε. As

the number d
(

sb
2ε

)2
+1 of perceptrons needed for an accuracy ε grows with d linearly,

the curse of dimensionality is avoided.
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[18] V. Kůrková, P. Savický, and K. Hlaváčková, Representations and rates of approximation
of real–valued Boolean functions by neural networks, Neural Networks, 11 (1998), pp. 651-
659.

[19] E. Kushilevicz and Y. Mansour, Learning decision trees using the Fourier spectrum, SIAM
J. Comput., 22 (1993), pp. 1331-1348.
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