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P. C. KAINEN1, V. KŮRKOVÁ2,�� , and M. SANGUINETI3,†
1Department of Mathematics, Georgetown University, Washington, DC 20057-1233, USA.
e-mail: kainen@georgetown.edu
2Institute of Computer Science, Academy of Sciences of the Czech Republic,
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Abstract. Approximate solution of optimization tasks that can be formalized as minimization of er-
ror functionals over admissible sets computable by variable-basis functions (i.e., linear combinations
of n-tuples of functions from a given basis) is investigated. Estimates of rates of decrease of infima
of such functionals over sets formed by linear combinations of increasing number n of elements of
the bases are derived, for the case in which such admissible sets consist of Boolean functions. The
results are applied to target sets of various types (e.g., sets containing functions representable either
by linear combinations of a “small” number of generalized parities or by “small” decision trees and
sets satisfying smoothness conditions defined in terms of Sobolev norms).
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1. Introduction

Many tasks in operations research, control theory, statistics, management and eco-
nomic sciences, etc., can be modelled as minimization of functionals satisfying
certain conditions given by measured and conceptual data. Conditions defined
by measured data can be formalized as minimization of distances from sets of
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functions interpolating the data, whereas conditions defined by conceptual data cor-
respond to a-priori assumptions on the smoothness properties of functions in these
sets. A functional defined as a distance in a suitable metric from a given “target”
set is called error functional. For example, in machine learning suitable target sets
can be represented as decision trees [22]; in modelling tasks, target sets are classes
of allowed models [28]; in pattern recognition and classification, elements of the
target sets are patterns according to which classification and recognition have to be
done. Recently, the need for minimizing error functionals has emerged in learning
from data. In particular, the error functional equal to the distance of an element in
a normed space to the ball of a certain radius in a dense subspace plays a central
role in the Cucker–Smale learning theory (see, e.g., [5], [27, Chapter 3], [31]).

Approximation theory investigates rates of convergence of the simplest type of
error functional, defined as a distance from a singleton. Minimization of such func-
tionals over admissible sets formed by functions computable by neural networks
have been studied using a theorem attributed to Maurey by Pisier [29] and later
improved by Jones [12] and Barron [3]. Such a theorem allows one to describe
sets of multivariable functions that can be approximated by nonlinear approxi-
mators belonging to a class called “variable-basis functions” without incurring
the “curse of dimensionality” (i.e., an exponential growth of the number of com-
putational units with respect to the number d of variables of admissible func-
tions) [4].

In recent years, approximation schemes of the variable-basis type have become
quite well understood theoretically (see, e.g., [8, 10, 11, 14, 17, 18, 21, 25, 26]) and
widely used in applications; they include feedforward neural networks, free-nodes
splines, and many other commonly used nonlinear schemes [18]. All such schemes
implement input/output mappings dependent on certain parameters to be tuned. In
particular, feedforward neural networks have become a widespread computational
paradigm since they enjoy powerful approximating capabilities, are well-suited to
distributed computing, and offer the possibility of adjusting parameters by simple
and efficient nonlinear programming algorithms suitable for parallel implementa-
tion. In the last decades they have been extensively used in a variety of optimization
tasks representable as approximation of nonlinear mappings between subsets of
spaces of functions, possibly dependent on a very large number of variables (see,
e.g., [19, 20, 28, 33] and the references therein).

In this paper, we apply the properties of variable-basis schemes to the approx-
imate minimization of error functionals and we estimate the rates of decrease
of infima over admissible sets of Boolean functions computable by certain feed-
forward networks. The paper is written with three objectives. First, to put into
evidence some general properties of approximate optimization over variable-basis
functions, which play an important role in a variety of applications (learning from
data, modelling, pattern recognition and classification, etc.). Second, by exploit-
ing such properties in the finite-dimensional context, to investigate accuracy in
solving optimization tasks that can be formalized as approximate minimization
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of error functionals on the space of real-valued Boolean functions of d variables
(i.e., functions f : {0, 1}d → R). Third, to derive upper bounds on accuracy
of minimization over admissible sets of functions computable by networks with a
single linear output unit and computational units corresponding to perceptrons with
signum (i.e., bipolar) activation function. We give conditions that guarantee well-
posedness in the generalized sense of this optimization problem. We derive upper
bounds on rates of decrease of infima of error functionals over admissible sets
computable by networks with increasing number of computational units. We also
describe various verifiable conditions that guarantee the applicability of our results.

The upper bounds are formulated in terms of various norms (l1, l2, spectral
norm, and a certain generalization of the concept of total variation) of elements of
the target sets defining error functionals. We describe target sets for which such
rates do not exhibit the curse of dimensionality and we illustrate our results by
examples of target sets containing various classes of functions used in applications
(e.g., functions representable by “small” decision trees, functions expressible as
linear combinations of a “small” number of generalized parities, functions with
bounds on their Sobolev norms).

The paper is organized as follows. In Section 2, we introduce notations and
state conditions that guarantee well-posedness in the generalized sense for the
problem of minimization of error functionals. Section 3 contains a short survey on
approximate optimization over variable-basis functions and gives estimates of rates
of decrease of infima with increasing complexity of admissible sets. In Section 4,
we derive estimates of rates of decrease of such infima in the space of multivariable
real-valued Boolean functions for admissible sets computable by perceptron neural
networks. In Section 5, we discuss various verifiable sufficient conditions for our
estimates.

2. Preliminaries

Let (X, ‖ · ‖) be a normed linear space. The ball of radius r centered at h ∈ X

is denoted by Br(h, ‖ · ‖); we let Br(‖ · ‖) = Br(0, ‖ · ‖) and when it is clear
from the context which norm is used, we write Br(h) = Br(h, ‖ · ‖) and Br =
Br(0). A sequence is denoted by {xn} = {xn : n ∈ N+}, where N+ is the set
of positive integers. We say that a sequence in a normed linear space converges
subsequentially if it has a convergent subsequence.

For a multi-index α, i.e., a d-tuple (α1, . . . , αd) of nonnegative integers, let
Dα = D

α1
1 . . . D

αd

d denote a distributional partial derivative of order |α| = ∑d
i=1 αi

[1, 1.57]. For p ∈ [1, ∞) and an open set � ⊆ Rd , the Sobolev space (Wm
p (�),

‖ · ‖m,p,�) is the set of all functions f : � → R such that Dαf ∈ Lp(�) for
|α| � m, with the norm ‖f ‖m,p,� = {∑|α|�m ‖Dαf ‖p

p}1/p [1, 3.1].
Let R denote the set of real numbers. A mapping � : X → R ∪ {+∞} is

called a proper extended-real-valued functional if � is not a constant equal to
+∞. Following [7], we denote by (M, �) the problem of infimizing a functional
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� : M → R over M ⊆ X. M is called the set of admissible solutions or the
admissible set. A sequence {gi} of elements of M is called �-minimizing over M
if limi→∞ �(gi) = infg∈M�(g). The set of argminima of the problem (M, �)

is denoted by argmin(M, �) = {h ∈ M : �(h) = infg∈M�(g)}. The problem
(M, �) is Tikhonov well-posed in the generalized sense [7, p. 24] if argmin(M, �)

is not empty and each �-minimizing sequence over M converges subsequentially
to an element of argmin(M, �).

For C a nonempty subset of X, the error functional measuring the distance from
C is denoted by eC and defined for any h ∈ X as eC(h) = ‖h − C‖. We call C the
target set or the set of target functions. By the triangle inequality, eC = ecl(C).

For a singleton C = {h} ⊂ X, we write merely eh instead of e{h}. Approxima-
tion theory has studied minimization of these functionals over many types of sets
of functions. Properties of minimizing sequences and their rates of convergence
have been described (see, e.g., [24, 30] and the references therein).

Recall that a nonempty subset M of a normed linear space is compact if every
sequence has a convergent subsequence, is precompact if cl(M) is compact, and
is boundedly compact if its intersection with any ball is precompact (equivalently,
every bounded sequence in M is subsequentially convergent). Note that this def-
inition of boundedly compact set does not require M to be closed. M is approx-
imatively compact [30, pp. 368, 382] if for all h ∈ X, every sequence in M that
minimizes the distance to h converges subsequentially to an element of M .

In [13, Proposition 2.1], the notion of approximatively compact set has been
reformulated in terms of optimization theory as a set M such that, for every h ∈ X,
the problem (M, eh) is Tikhonov well-posed in the generalized sense. It has also
been pointed out that generalized Tikhonov well-posedness can be interpreted as
a type of weakened compactness of admissible sets. The following theorem from
[13], which will be used to derive some of the results of this paper, shows that
for error functionals generalized Tikhonov well-posedness is closely related to the
concept of approximative compactness.

THEOREM 2.1 ([13, Theorem 3.1]). Let M and C be nonempty subsets of a
normed linear space (X, ‖ · ‖). Each of the following conditions guarantees that
(M, eC) is Tikhonov well-posed in the generalized sense:

(i) M is approximatively compact and C is precompact;
(ii) M is approximatively compact and bounded and C is boundedly compact;

(iii) M is boundedly compact and closed and C is bounded.

3. Approximate Optimization over Variable-Basis Functions

An approximate solution of an optimization problem (M, �) by an iterative method
entails the construction of a minimizing sequence converging to an element of the
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admissible set M . The classical Ritz method [9] constructs a minimizing sequence
for (M, �) as a sequence of argminima of problems

{(M ∩ Xn, �)},
where, for each n, Xn is an n-dimensional subspace of the space X and Xn ⊆ Xn+1.
For conditions guaranteeing convergence of minimizing sequences in the classical
Ritz method and estimates of their rates see, e.g., [6, Chapters 1 and 3], [7], and [9,
Chapter 8].

We define a generalized Ritz method as an iterative method of approximate
solution of a problem (M, �) by a sequence of problems

{(M ∩ An, �)},
where {An} is a nested sequence of subsets of X. In unconstrained optimization,
one has M = X (i.e., the set of admissible solutions is the whole space). In such
a case, the Ritz method and the generalized Ritz method are iterative methods of
approximate solution of problem (X, �) by a sequence of problems

{(Xn, �)} and {(An, �)},
resp.

Here, we shall consider two types of nested sequences of subsets for the gen-
eralized Ritz method. The first one is formed by linear combinations of at most n

elements of a given set G,

spann G =
{

n∑

i=1

wigi : wi ∈ R, gi ∈ G

}

,

while the second one is formed by convex combinations of at most n elements
of G,

convn G =
{

n∑

i=1

wigi : wi ∈ [0, 1],
n∑

i=1

wi = 1 gi ∈ G

}

.

Approximation schemes of the form spann G and convn G are called variable-
basis approximation [17, 18]. Approximate minimization over M ∩ spann G was
introduced in [33] and called extended Ritz method (see also [19]).

Sets of the form spann G model situations in which admissible sets are formed
by linear combinations of functions from a fixed basis set with unconstrained co-
efficients in the linear combinations. Typically, in applications such coefficients
are constrained; for example, by a bound on some norm of the coefficients vector
(w1, . . . , wn). When the norm is the l1-norm, the corresponding functions belong
to the set {

∑n
i=1 wigi : wi ∈ R, gi ∈ G,

∑n
i=1 |wi | � c}, where c > 0 is the

bound on the l1-norm. It is easy to see that this set is contained in convn G′, where
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G′ = {rg : |r| � c, g ∈ G}. As any two norms on Rn are equivalent, any norm-
based constraint on the coefficients of linear combinations defines a set contained
in a set of the form convn G′.

Depending on the choice of the set G, one can obtain a variety of admissible
sets that include functions computable by feedforward neural networks, splines
with free nodes, trigonometric polynomials with free frequencies, etc. [18].

For example, let A ⊆ Rq , K ⊆ Rd and φ : A × K → R be a function
of two vector variables and let Gφ = {φ(a, ·) : a ∈ A}. By suitable choices
of A and φ, one can represent as sets Gφ sets of functions computable by various
computational units in neural networks. If A = Sd−1×R, where Sd−1 = {e ∈ Rd :
‖e‖ = 1} is the set of unit vectors in Rd , and φ((e, b), x) = ϑ(e · x + b), where
ϑ denotes the Heaviside function, defined as ϑ(t) = 0 for t < 0 and ϑ(t) = 1
for t � 0, then Gφ is the set of characteristic functions of closed half-spaces of
Rd , restricted to K . If A = [−c, c]d × [−c, c] and φ((v, b), x) = ψ(v · x + b),
where ψ : R → R is called activation function, then Gφ is the set of functions
on K computable by ψ-perceptrons with both weights v and biases b bounded
by c (a typical activation function for perceptrons is the logistic sigmoid ψ(t) =
1/(1+e−t )). If the activation function is positive and even, A = [−c, c]d ×[−c, c],
and φ((v, b), x) = ψ(b‖x − v‖), where ‖ · ‖ is a norm on Rd , then Gφ is the set
of functions on K computable by ψ-radial-basis-functions (RBF) networks with
widths b and coordinates v of centroids bounded by c (a typical activation function
for RBF units is the Gaussian function ψ(t) = e−t2

).
Hence, admissible sets computable by feedforward neural networks with n com-

putational units have the form spann Gφ or convn Gφ , depending whether the co-
efficients of the linear combinations are arbitrary or bounded. For many types of
computational units φ, sets

⋃
n∈N+ spann Gφ are dense in the spaces of continuous

or Lp functions on compacta (see [23] and the references therein).
In applications, the rate of decrease of the sequences of infima

{
inf

g∈M∩ spann G
�(g)

}
and

{
inf

g∈M∩ convn G
�(g)

}

has to be fast enough so that functions from spann G and convn G, resp., are imple-
mentable. Since the union of all linear subspaces spanned by n-tuples of elements
of a given set G is “much larger” than any single n-dimensional subspace, min-
imization of functionals over variable-basis-functions might lead to considerably
faster rates than those achievable using the classical Ritz method.

We shall derive estimates of the rate of approximate infimization by variable-
basis functions using a result from nonlinear approximation theory, called Maurey–
Jones–Barron theorem (see [3, 12, 29]). Let G be a bounded subset of a Hilbert
space and sG = supg∈G ‖g‖. Such a theorem states that for any f ∈ cl conv G

and any positive integer n, one has ‖f − convn G‖ �
√

s2
G−‖f ‖2

n
. We refer to this

theorem as MJB theorem and to its estimate as MJB bound.
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Here we use reformulation of MJB theorem in terms of a norm, called G-
variation and denoted by ‖ · ‖G, which has been defined in [15] for a subset G of a
normed linear space (X, ‖ · ‖), as the Minkowski functional of the set
cl conv(G ∪ −G), where conv G = {∑n

i=1 wigi : wi ∈ [0, 1], ∑n
i=1 wi = 1,

gi ∈ G, n ∈ N+} denotes the convex hull of G. Thus,

‖f ‖G = inf
{
c ∈ R+ : c−1f ∈ cl conv(G ∪ −G)

}
.

G-variation is a norm on the subspace {f ∈ X : ‖f ‖G < ∞} ⊆ X; for its
properties see [15, 17] and [18]. Roughly speaking, G-variation of f represents
how much the set G should be “dilated” so that f is contained in the closure of the
symmetric convex hull of G.

When G is an orthonormal basis of a separable Hilbert space (i.e., a Hilbert
space with a countable dense subset), then G-variation can be expressed using l1-
norm with respect to G defined, for f ∈ X, as ‖f ‖1,G = ∑

g∈G |f · g|. It has been
shown in [21] and [17] that for any orthonormal basis G of a separable Hilbert
space, G-variation is equal to l1-norm with respect to G. Thus the notion of G-
variation is a generalization of the notion of l1-norm. It is also generalization of the
concept of total variation studied in integration theory, since for functions of one
variable variation with respect to perceptrons coincides, up to a constant, with the
notion of total variation [2].

MJB bound reformulated in terms of G-variation states that for any bounded
subset G of a Hilbert space (X, ‖ · ‖), any f ∈ X and any positive integer n, one
has

‖f − spann G‖ � ‖f − convn G(r)‖ � rsG√
n

, (1)

where r = ‖f ‖G and G(r) = {wg : g ∈ G, w ∈ R, |w| � r}.
The following theorem gives upper bounds on the speed of decrease of infima

of an error functional eC over spann G with n increasing, in terms of the infimum
of G-variations of the functions in the target set C.

THEOREM 3.2. Let C, G and M be nonempty subsets of a Hilbert space (X, ‖·‖)
such that both r = inff ∈C‖f ‖G and sG = supg∈G ‖g‖ are finite. Then the following
hold:

(i) For every positive integer n,

inf
g∈ spann G

eC(g) � inf
g∈ convn G(r)

eC(g) � rsG√
n

.

(ii) If for some positive integer n0, convn0 G(r) ⊆ M , then for every n � n0,

inf
g∈M∩ spann G

eC(g) � inf
g∈M∩ convn G(r)

eC(g) � rsG√
n

.
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(iii) If (X, ‖·‖) is separable and G is its orthonormal basis, then for every positive
integer n,

inf
g∈ spann G

eC(g) � inf
g∈ convn G(r)

eC(g) � rsG

2
√

n
.

Proof. (i) For each t > r , choose ft ∈ C such that r � ‖ft‖G < t . By MJB
bound (1) for every n, ‖ft − convn G(t)‖ � tsG/

√
n and so there exists a sequence

{gt,i} ⊂ convn G(t) such that ‖ft −spann G‖ = limi→∞ ‖ft −gt,i‖ � tsG/
√

n. As
ft ∈ C, we have eC(gt,i) � eft

(gt,i) = ‖ft −gt,i‖ and hence infg∈ convn G(t)eC(g) �
tsG/

√
n. Since convn G(r) = ∩{convn G(t) : t > r}, we have

inf
g∈ spann G

eC(g) � inf
g∈ convn G(r)

eC(g) � rsG√
n

.

Part (ii) follows directly from (i) as for all n � n0, M ∩ convn G(r) =
convn G(r).

Part (iii) is proven analogously to part (i) with MJB bound replaced by the
bound rsG/(2

√
n), which holds when G is an orthonormal basis of a separable

space (see [21, Theorem 2.7] and [17, Theorem 3]). �
Note that when C and spann G or convn G(r) satisfy the assumptions of The-

orem 2.1 (see [13] for examples of such cases), the problems (spann G, eC) and
(convn G(r), eC) are Tikhonov well-posed in the generalized sense, so the infima
considered in Theorem 3.2 are achieved.

4. Rates of Approximate Optimization by Real-Valued Boolean
Variable-Basis Functions

In this section, we apply the results from the previous section to approximate min-
imization in the space B({0, 1}d) of real-valued Boolean functions. This space
is endowed with the standard inner product defined for f, g ∈ B({0, 1}d), as
f · g = ∑

x∈{0,1}d f (x)g(x), which induces the norm ‖f ‖ = ‖f ‖l2 = √
f · f .

The space (B({0, 1}d, ‖ · ‖) is isomorphic to the 2d-dimensional Euclidean space
R2d

with the l2-norm.
The following corollary gives conditions on the subsets C, M , and G of

B({0, 1}d) guaranteeing that the problems (M∩ convn G, ec) and (M∩ spann G, ec)

are Tikhonov well-posed in the generalized sense.

COROLLARY 4.3. Let d be a positive integer and C, M, G be subsets of
B({0, 1}d) such that C is bounded, M compact, and G finite. Then for every
positive integer n, the problems (M ∩ convn G, eC) and (M ∩ spann G, eC) are
Tikhonov well-posed in the generalized sense.

Proof. Since G is finite, convn G is compact and spann G is boundedly compact
and closed. As M is a compact subset of a finite-dimensional space, M ∩ convn G
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and M ∩ spann G are compact and closed boundedly compact, resp. So by Theo-
rem 2.1(iii) both problem (M ∩ convn G, eC) and (M ∩ spann G, eC) are Tikhonov
well-posed in the generalized sense. �

An important class of Boolean variable-basis functions are functions computable
by perceptron feedforward neural networks. We consider perceptrons with the
signum (bipolar) activation function, defined as sgn(t) = −1 for t < 0 and
sgn(t) = 1 for t � 0, instead of more common Heaviside function that assigns zero
to negative numbers. Let H̄d denotes the set of functions on {0, 1}d computable by
signum perceptrons, i.e., H̄d = {f : {0, 1}d → R : f (x) = sgn(v · x + b), v ∈
Rd, b ∈ R}.

Taking advantage of the equivalence between G-variation and l1-norm with
respect to an orthonormal countable basis G in any separable Hilbert space [18],
we shall estimate variation with respect to signum perceptrons using variations
with respect to two orthonormal bases of B({0, 1}d). The first one is the Euclidean
orthonormal basis, defined as Ed = {eu : u ∈ {0, 1}d}, where eu(u) = 1 and for
every x ∈ {0, 1}d with x �= u, eu(x) = 0. The second one is the Fourier orthonor-
mal basis (see, e.g., [32]) defined as Fd = {

fu : u ∈ {0, 1}d , fu(x) = 1√
2d

(−1)u·x}.

Every f ∈ B({0, 1}d) can be represented as f (x) = 1√
2d

∑
u∈{0,1}d f̂ (u)(−1)u·x ,

where f̂ (u) = 1√
2d

∑
x∈{0,1}d f (x)(−1)u·x . The l1-norm with respect to the Fourier

basis, ‖f ‖1,Fd
= ‖f̂ ‖l1 = ∑

u∈{0,1}d |f̂ (u)|, called the spectral norm, is equal to
Fd-variation (see [17] and [21]). For a subset I ⊂ {0, 1}d , I -parity is defined by
pI (u) = 1 if

∑
i∈I ui is odd, and pI (u) = 0 otherwise. If we interpret the output

1 as −1 and 0 as 1, then the elements of the Fourier basis Fd correspond to the
generalized parity functions.

Next proposition investigates Tikhonov well-posedness and estimates rates of
approximate solution of (M, eC) by a generalized Ritz method with M = B({0, 1}d)
and An equal to linear or convex combinations of certain Boolean functions. More-
over, the proposition gives conditions on target sets, which guarantee rates of mini-
mization of error functionals of the order of O( 1√

n
) for any number of variables

d. By G0 is denoted the set of normalized elements of G with respect to the
norm ‖ · ‖ (note that E0

d = Ed and F 0
d = Fd). We call ‖f ‖G0 normalized G-

variation of f . We use G0-variation in our estimates as, for every f ∈ X, we have
‖f ‖ � ‖f ‖G0 (i.e., the unit ball in G0-variation is contained in the unit ball in ‖·‖)
and ‖f ‖G0 � ‖f ‖G supg∈G ‖g‖ = ‖f ‖GsG [15].

PROPOSITION 4.4. Let d be a positive integer, r > 0, and C be a bounded subset
of B({0, 1}d). Then the following hold:

(i) If C ∩ Br(‖ · ‖H̄ 0
d
) �= ∅, then for every positive integer n, the problems

(spann H̄d, eC) and (convn H̄d(r), eC) are Tikhonov well-posed in the gen-
eralized sense and
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min
g∈ spann H̄d

eC(g) � min
g∈ convn H̄d (r)

eC(g) � r√
n
.

(ii) If C ∩ Br(‖ · ‖1,Fd
) �= ∅, then for every positive integer n, the problems

(spandn+1 H̄d, eC) and (convdn+1 H̄d(r), eC) are Tikhonov well-posed in the
generalized sense and

min
g∈ spandn+1 H̄d

eC(g) � min
g∈ convdn+1 H̄d (r)

eC(g) � r

2
√

n
.

(iii) If C ∩ Br(‖ · ‖1,Ed
) �= ∅, then for every positive integer n, the problems

(spann+1 H̄d, eC) and (convn+1 H̄d(r), eC) are Tikhonov well-posed in the gen-
eralized sense and

min
g∈ spann H̄d

eC(g) � min
g∈ convn H̄d (r)

eC(g) � r

2
√

n − 1
.

Proof. (i) The statement follows from Corollary 4.3 and Theorem 3.2(i).
(ii) It is easy to verify that every function from the Fourier basis Fd can be

expressed as a linear combination of at most d+1 signum perceptrons [21]. Indeed,
for every u, x ∈ {0, 1}d one has (−1)u·x = 1+(−1)d

2 +∑d
j=1(−1)j sgn(u ·x −j + 1

2).
Moreover, any linear combination of n elements of Fd belongs to spandn+1 H̄d ,
since all of the n occurrences of the constant function can be expressed by a
single perceptron. As ‖f̃ ‖1 = ‖f ‖1,Fd

= ‖f ‖Fd
, the statement follows from

Corollary 4.3 and Theorem 3.2(iii).
(iii) It is easy to check that for any u ∈ {0, 1}d , eu(x) is expressible as sgn(v·x+b)+1

2
for appropriate v and b [21]. Analogously as in the proof of (ii), adding sev-
eral occurrences of the constant function together, one obtains a representation
of every linear combination of n functions of the Euclidean basis as an element of
spann+1 H̄d . As ‖f ‖1,Ed

= ‖f ‖Ed
, the statement follows from Corollary 4.3 and

Theorem 3.2(iii). �
By Proposition 4.4, “fast” rates of minimization are guaranteed when target sets

contain a function with either “small” variation with respect to signum perceptrons
or “small” spectral norm or “small” norm with respect to the Euclidean basis.
Depending on which of these norms is smaller or for which an estimate is available,
one of the conditions (i), (ii), and (iii) of Proposition 4.4 can be applied.

5. Discussion

Deriving upper bounds on rates of approximation from Theorem 3.2 and Proposi-
tion 4.4 requires to estimate G-variation.

Upper bounds obtained via Proposition 4.4(ii) and (iii) require to estimate varia-
tion with respect to the orthonormal sets Fd and Ed , respectively. This may exhibit
limitations with respect to upper bounds derived via Proposition 4.4(i) combined
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with estimates of variation with respect to the set H̄d : examples of functions for
which H̄ 0

d -variation grows linearly with d while both Fd-variation and Ed-variation
grow exponentially are given in [21]. In [3, pp. 941–942], upper bounds on H̄d-
variation were derived in via estimates of a spectral norm (see also [22]).

In [21], it was shown that linear combination of a “small” number of generalized
parities have “small” variation. More precisely, let C be a subset of B({0, 1}d) con-
taining a function f with at most m Fourier coefficients nonzero and with ‖f ‖ � c.
Proceeding as in [21, p. 655], we obtain f = ∑m

i=1 wigi , where gi ∈ Fd . Hence,
‖f ‖Fd

= ‖f̃ ‖1 = ‖f ‖1,Fd
= ∑m

i=1 |wi |. By the Cauchy–Schwarz inequality one
has

∑m
i=1 |wi | � ‖w‖‖u‖, where w = (w1, . . . , wm) and u = (u1, . . . , um), with

ui = sgn(wi). As ‖w‖ = ‖f ‖ � c and ‖u‖ � √
m, we have ‖f ‖1,Fd

� c
√

m. Thus
C contains a function f with ‖f ‖1,Fd

� c
√

m. So Proposition 4.4(ii) implies that,
when eC is minimized over the set of d-variable Boolean functions computable by
networks with dn + 1 signum perceptrons, where n � c2m

4ε2 , then its minimum is

bounded from above by ε. As the number dc2m

4ε2 + 1 of perceptrons needed for an
accuracy ε grows with d linearly, the curse of dimensionality is avoided.

Another application of Proposition 4.4 is to decision trees, which play an im-
portant role in machine learning (see, e.g., [22] and the references therein). Recall
that a decision tree is a binary tree with labeled nodes and edges. The size of a
decision tree is the number of its leaves. A function f : {0, 1} → R is repre-
sentable by a decision tree if there exists a tree with internal nodes labeled by
variables x1, . . . , xd , all pairs of edges outgoing from a node labeled by 0s and
1s, and all leaves labeled by real numbers, such that f can be computed by this
tree as follows. The computation starts at the root and after reaching an inter-
nal node labeled by xi , continues along the edge whose label coincides with the
actual value of the variable xi ; finally a leaf is reached and its label is equal to
f (x1, . . . , xd). Let C be a subset of B({0, 1}d) containing a function f such that,
for all x ∈ {0, 1}d , f (x) �= 0, f is representable by a decision tree of size s, and

max
x∈{0,1}d |f (x)|

min
x∈{0,1}d |f (x)| ‖f ‖ � b. According to [21, Theorem 3.4], ‖f ‖1,Fd

= ‖f̃ ‖1 � sb.

An error functional defined by such target sets achieves for the minimum a value
bounded from above by ε when minimization is performed over admissible sets of
d-variable Boolean functions computable by neural networks with dn + 1 signum
perceptrons, where n � ( sb

2ε
)2. Thus Proposition 4.4(ii) implies that for target

sets containing a function with sb bounded by a constant independent of d or
growing “slowly” with d, the curse of dimensionality in minimization over Boolean
perceptron networks is avoided.

Upper bounds on variation in the Boolean case can be derived from upper
bounds on variations of suitable extensions of Boolean functions to a domain �

containing [0, 1]d , since H̄d can be obtained by restricting to the Boolean cube
{0, 1}d the set Hd of functions computable by signum perceptrons defined on �.
For target sets C containing a sufficiently smooth function, this can be combined
with the possibility of embedding balls in Sobolev norms into balls of proper radii
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in Hd-variation. More precisely, let � be an uniformly Cs-regular domain in [0, 1]d
(for the definition of Cs-regular domain, see [1, p. 67]),

a = inf{‖h‖2,s,� : h ∈ C|�},
and b = (

∫
Rd (1 + ‖ω‖2(s−1))−1dω)1/2 (for any x ∈ Rd and d � 1, ‖x‖ denotes its

Euclidean norm). Hence a is a lower bound on the Sobolev norm of functions in
C|�. Let

E : (Ws
2 (�), ‖ · ‖2,s,�) → (Ws

2 (Rd), ‖ · ‖2,s,Rd )

be an extension operator such that for all f ∈ (Ws
2 (�), ‖ · ‖2,s,�) one has (Ef )|� =

f a.e. in � and ‖Ef ‖2,s,Rd � c‖f ‖2,s,�, where c > 0 is a constant depending on
s and �; see [1, pp. 83–84]. For every ε > 0, suppose that C contains a function
in the ball of radius a + ε/c in Ws

2 (�). Thus, Ef is in the ball of radius ac + ε in
Ws

2 (Rd). Since ε can be arbitrarily small, Ef is in the ball of radius ac in Ws
2 (Rd).

Arguing as in [3, pp. 935, 941], we obtain that

Bac(‖ · ‖2,s,Rd )|� ⊆ B2abc(‖ · ‖Hd
)|�,

where b = (
∫
Rd (1 + ‖ω‖2(s−1))−1dω)1/2; b is finite as 2(s − 1) > d. Combin-

ing this with Proposition 4.4(i), one obtains upper bounds on (spann H̄d, eC) and
(convn H̄d(r), eC) formulated in terms of the smallest Sobolev norm of elements
of the target set C.

All the examples of minimization of error functionals discussed above share a
common feature, which has a deep meaning: a fixed accuracy ε of approximate
minimization can be guaranteed for any value d of the dimension (number of vari-
ables) by requiring that the target set C contains at least one “sufficiently smooth”
function (it may happen that the larger d, the more restrictive such a requirement
becomes). In other words, the “curse of dimensionality” in minimization of er-
ror functionals over variable-basis functions can be mitigated by the “blessing of
smoothness”.
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