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1. Introduction

Integral transformations play an important role in many
branches of applied science. A large class of such transformations
has the form

TK (f )(x) =


f (y)K(x, y)dy,

where the function of two variables K is called a kernel of the
integral operator TK (the term ‘‘kernel’’ is derived from the German
term ‘‘kern’’ introduced by Hilbert in 1904 Pietch (1987, p. 291)).
Also functions computable by units used in neurocomputing
depend on two vector variables, an input and a parameter, and
thus they can be considered as kernels. An integral transformation
with a kernel corresponding to a computational unit computing a
function φ : Ω × A → R, where Ω is a set of inputs and A is
a set of parameters, can be viewed as a mapping Tφ assigning to
an output weight function w : A → R an input–output function
Tφ(w) : Ω → R in the form

Tφ(w)(x) =


w(y)φ(x, y)dy

of a network with one linear output and one hidden layer with
infinitely many computational units.

Integral transformations have been used in the mathematical
theory of neurocomputing since the early 1990s. First, they
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occurred in proofs of the universal approximation property. Carroll
and Dickinson (1989) and Ito (1991) used the Radon transform to
show that functions satisfying various smoothness assumptions
can be represented as integrals in the form of networks with
infinitely many sigmoidal perceptrons. Discretizing these integral
representations they proved the universal approximation property
of perceptron networks. Park and Sandberg (1991, 1993) derived
the universal approximation property of radial-basis function
networks in Lp-spaces using convolutions with properly scaled
kernels. Similar ideas were used by Mhaskar (2004, 2006), see
also Schaback and Wendland (2006) and references therein. Note
that the use of integral transforms for approximation of functions
is very common in approximation theory. The book (DeVore &
Lorentz, 1993) gives many examples (the best constants in the
Favard inequality in the trigonometric polynomial approximation
are obtained in terms of an integral of the target function derivative
against a Bernoulli spline kernel). The idea of discretizing integral
transforms to obtain approximation as a discrete sum is also very
old (see, e.g., Bernstein, 1931; Szabados, 1974).

Later, integral transforms with kernels corresponding to com-
putational units were employed to obtain estimates of network
complexity. Such estimates can be derived from inspection of up-
per bounds on speed of decrease of errors in approximation of
multivariable functions by networks with increasing number of
units. Jones (1992) proved an upper bound on rates of approxima-
tion of functions from certain convex sets and suggested applying
the bound to functions with representations as infinite networks
with trigonometric perceptrons. Barron (1993) refined Jones’ re-
sult and used it to derive an estimate of model complexity for sig-
moidal perceptron networks based on an integral representation
in the form of a weighted Fourier transform. Girosi and Anzellotti
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(1993) combined the estimates by Jones and Barron with convolu-
tions with suitable kernels and Girosi (1995) proposed an alterna-
tive method for estimation of rates of neural network approxima-
tion based on a result frommachine learning. Kainen, Kůrková, and
Vogt (2007) and Kůrková, Kainen, and Kreinovich (1997) applied
the estimates of rates of approximation by Jones and Barron to rep-
resentations of sufficiently differentiable functions in the form of
networks with infinitely many Heaviside perceptrons.

In this paper, we present a unifying framework for estimation
of model complexity of neural networks based on representations
of multivariable functions as images of integral transforms with
kernels corresponding to network units. We combine upper
bounds on rates of approximation by convex combinations of
functions from ‘‘dictionaries’’ of computational units reformulated
in terms of ‘‘variational’’ norms tailored to these units together
with upper bounds on these norms derived using integral
transforms with kernels corresponding to the units. Using a
geometric characterization of variational norms, we prove that
L1-norms of output-weight functions in representations of
functions as infinite networks with units from a variety of
dictionaries are crucial factors in estimates of growth of model
complexitywith increasing accuracy requirements. Various special
cases of the latter estimate have been proven earlier using a
variety of proof techniques requiringmore complicated tools (such
as a probabilistic argument Barron, 1993, an approximation of
integrals by Riemann sums Kůrková et al., 1997, and interpretation
of infinite networks as Bochner integrals Girosi & Anzellotti,
1993; Kainen & Kůrková, 2009). The results here are proven
under minimal assumptions and thus they hold for quite general
dictionaries of hidden units and ambient function spaces and so
they allow applications to classes of networks to which previous
results were not applicable. Our proof technique takes advantage
of a version of the Hahn–Banach theorem. A preliminary version of
some of the results appeared in conference proceedings (Kůrková,
2009).

The paper is organized as follows. In Section 2, basic concepts
and notations concerning computational units and integral opera-
tors defined by such units are introduced. In Section 3, variational
norms induced by computational units are defined and estimates
of rates of approximation are reformulated in termsof these norms.
In Section 4, the geometric characterization of the variational norm
is proven and employed to derive its properties. In Section 5, a short
argument proving the relationship between the variational norm
of a function representable as an infinite network and theL1-norm
of the output-weight function of this network is given. In Section 6,
the results are applied to integral representations of smooth func-
tions in the form of infinite networks with Heaviside perceptrons.
Section 7 is a brief discussion. For the readers’ convenience, some
mathematical concepts and results used in the paper are recalled
in the Appendix.

2. Integral transforms induced by computational units

Computational units (such as perceptrons, radial or kernel
units) compute functions of two vector variables representing
inputs and parameters (e.g., weights, biases, centroids). So formally
computational units can be described as mappings

φ : Ω × A → R,

where Ω ⊆ Rd is a set of variables and A ⊆ Rs is a set of
parameters. We denote by

Gφ = Gφ(A) = Gφ(Ω, A) := {φ(·, a) | a ∈ A}

the parameterized set of functions on Ω determined by φ. The set
Gφ is sometimes called a dictionary. We use the shorter notation Gφ

or Gφ(A) when the sets Ω or A are clear from the context.

For example, a perceptronwith an activation function σ : R → R
can be described by a mapping φσ : Rd

× Rd+1 defined for (v, b) ∈

Rd
× R = Rd+1 as

φσ (x, (v, b)) := σ(v · x + b). (1)

An important type of activation function is the Heaviside function
ϑ : R → R defined as ϑ(t) = 0 for t < 0 and ϑ(t) = 1 for t ≥ 0.
An RBF unit with an even function β : R → R can be described by
a mapping φβ : Rd

× (Rd
× R+) → R defined as

φβ(x, (v, b)) := β(b∥x − v∥) (2)

and a kernel unit with a symmetric positive semidefinite kernel
K : Ω × Ω → R computes functions of the form

φ(x, a) = K(x, a).

A widely used network architecture is a one-hidden-layer
network with a single linear output. Such a network with n units
computing φ can compute input–output functions from the set

spannGφ(A) :=


n

i=1

wiφ(·, ai)

wi ∈ R, ai ∈ A


.

A network unit computing a function φ : Ω × A → R can also
induce an integral operator. The operator depends on a measure µ
on A. For a function w : A → R in a suitable space of functions on
A such that for all x ∈ Ω the integral (3) exists, we denote by Tφ,µ

the operator defined as

Tφ,µ(w)(x) :=


A
w(a)φ(x, a)dµ(a). (3)

When µ is the Lebesgue measure, we write for short Tφ and
da. Metaphorically, the integral on the right-hand side of the
Eq. (3) can be interpreted as a one-hidden-layer neural network
with infinitely many units computing functions from a dictionary
Gφ = {φ(·, a) | a ∈ A}. So the operator Tφ,µ transforms output-
weight functions w : A → R of infinite networks with units from
the dictionary Gφ to input–output functions Tφ,µ(w) : Ω → R.

Recall thatwhenφ ∈ Lp(Ω×A, ρ×µ), then Tφ,µ : Lq(A, µ) →

Lp(Ω, ρ), where 1
p +

1
q = 1, is a continuous operator (Friedman,

1982, p. 138). When in additionΩ and A are compact subsets of Rd

and ρ and µ are Lebesgue measures, then Tφ : Lq(A) → Lp(Ω) is
compact (Friedman, 1982, p. 188).

Note that classes of functions which can be expressed as
integrals in the form (3) representing infinite neural networks
with typical computational units such as perceptrons or RBF
are quite large. For example, all sufficiently smooth compactly
supported functions or functions decreasing sufficiently rapidly at
infinity (in particular, the Gaussian function) can be expressed as
networks with infinitely many Heaviside perceptrons (Ito, 1991;
Kainen et al., 2007; Kainen, Kůrková, & Vogt, 2010; Kůrková et al.,
1997). Functions from various Sobolev spaces can be represented
as infinite networks with Gaussian RBF units (Kainen, Kůrková,
& Sanguineti, 2009). Other large classes of functions can be
obtained as limits of sequences of input–output functions of
infinite networks with quite general radial or kernel functions
(Park & Sandberg, 1991, 1993).

3. Norms induced by computational units

An importance of the role of integral transforms induced by
computational units in investigation ofmodel complexity of neural
networks follows from the role of such transforms in estimation
of norms induced by computational units. In this section, we
introduce these norms and survey some estimates of rates of
approximation in which these norms play an important role.
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For G a bounded nonempty subset of a normed linear space
(X, ∥ · ∥X), the norm G-variation, denoted ∥ · ∥G, is defined for all
f ∈ X as

∥f ∥G,X := inf {c > 0 | f /c ∈ clX conv (G ∪ −G)} ,

where the closure clX is taken with respect to the topology
generated by the norm ∥ · ∥X and conv denotes the convex hull. So
G-variation depends on the ambient space norm, but when it is
clear from the context, we write merely ∥f ∥G instead of ∥f ∥G,X.
Note that G-variation is the Minkowski functional of the closed
convex symmetric hull of G. It is easy to check that G-variation is
a norm on the subspace of X formed by those f for which ∥f ∥G is
finite.

The concept of variation with respect to a set of functions was
introduced by Barron (1992) for sets of characteristic functions.
In particular, variation with respect to half-spaces has been used in
neurocomputing as it is induced by the set of functions computable
by Heaviside perceptrons (see Section 6 for more details). Barron’s
concept was generalized in Kůrková (1997, 2003) to a variation
with respect to an arbitrary bounded set of functions and applied
to various dictionaries of computational units. Typically, such
dictionaries are neither balanced nor convex.

We recall some upper bounds on rates of approximation by sets
of the form spannG in various ambient function spaces. Typically,
such bounds are of the form

∥f − spannG∥X ≤ n−1/sξ(d),

where ξ is a function of the number of variables d which often
involves G-variation ∥f ∥G of the function f to be approximated.
Inspection of these bounds shows that a network with

n ≥


ξ(d)
ε

s

units can approximate f within ε. Thus it is important to estimate
G-variation for wide classes of multivariable functions.

The following theorem from Kůrková (2003) and Kůrková and
Sanguineti (2005) is a reformulation of results by Barron (1993),
Darken, Donahue, Gurvits, and Sontag (1993), Jones (1992) and
Pisier (1981) in terms of G-variation.

Theorem 3.1. Let (X, ∥·∥X) be a normed linear space, G its bounded
nonempty subset, sG = supg∈G ∥g∥X, f ∈ X, and n be a positive
integer. Then

(i) for (X, ∥ · ∥X) a Hilbert space,

∥f − spannG∥
2
X ≤

s2G∥f ∥
2
G − ∥f ∥2

X

n
;

(ii) for (X, ∥ · ∥X) = (Lp(Ω), ∥ · ∥Lp), p ∈ (1, ∞), and Ω ⊆ Rd

Lebesgue measurable,

∥f − spannG∥Lp ≤
21+1/r sG∥f ∥G

n1/s
,

where 1/q + 1/p = 1, r = min(p, q), s = max(p, q).

The estimates by Barron (1993), Darken et al. (1993), Jones
(1992) and Pisier (1981) were formulated for approximation of
functions f from clX convG by elements of

convnG :=


n

i=1

wigi

 n
i=1

wi = 1, wi ∈ [0, 1], gi ∈ G


.

As for all c > 0,

∥f − spannG∥X ≤ ∥f − convn(c(G ∪ −G))∥X,

the concept of G-variation enables extension of upper bounds from
Theorem3.1 to all functions inXwith finiteG-variations. Note that

better upper bounds on approximation by convnG in Hilbert spaces
were derived in Kůrková and Sanguineti (2008) and Lavretsky
(2002), but these results are existential only and it seems difficult
to interpret them in terms of characterizations of functions to be
approximated which can be estimated. More precisely, in Kůrková
and Sanguineti (2008) it was shown that for every f ∈ convG there
exists αf ∈ [0, 1) such that ∥f − convn G∥

2
X ≤ αn−1

f (s2G − ∥f ∥2
X),

but estimates of such αf are not known.
Theorem 3.1 gives estimates of approximation errors in

Lp-spaces with p ∈ (1, ∞). It was shown in Donahue, Gurvits,
Darken, and Sontag (1997) that the proof method used in Barron
(1993), Donahue et al. (1997) and Jones (1992) based on construc-
tion of incremental approximants cannot be extended to approx-
imation in L1 and L∞-spaces. However, for special cases of sets
G, e.g., sets of characteristic functions with finite coVC-dimension
(see Appendix for the definition), some estimates in the supre-
mum norm were obtained by probabilistic proof techniques. The
following theorem is a reformulation of an upper bound from
Gurvits and Koiran (1997, Theorem 3) in terms of G-variation. By
(F (Ω), ∥ · ∥sup) is denoted the space of all bounded functions on
Ω with the supremum norm.

Theorem 3.2. Let Ω ⊆ Rd,G be a subset of the set of characteristic
functions on Ω such that the coVC-dimension h∗(G) is finite, then for
all f ∈ F (Ω),

∥f − spannG∥sup ≤ 6
√
3 ∥f ∥G,sup h∗(G)1/2 (log n)1/2 n−1/2.

4. Properties of variational norm

To apply results from Section 3 to neurocomputing we need
estimates of variational norms tailored to various computational
units. As large classes of functions can be represented as infinite
networkswith perceptrons andGaussian radial units (Girosi, 1995;
Ito, 1991; Kainen et al., 2009; Kůrková et al., 1997), estimates of
variational norms of functions from these classes can lead to useful
insights about network complexity. In this section, we derive
properties of the variational norm which will be used in the next
section to estimate Gφ-variation for functions representable as
integrals in the form of infinite networks with units computing φ.

First, we prove a characterization of the variational norm
in terms of bounded linear functionals using a version of the
Hahn–Banach theorem. Although in general normed linear spaces
this characterization (Theorem 4.1) is rather abstract, in Hilbert
spaces it has an interpretation in termsof angles between functions
and thus we call it ‘‘geometric’’.

The main advantage of the next characterization of G-variation
is that it leads to a simple proof of its estimate for functions
representable as infinite networks in the form (3).

By X∗ is denoted the dual of X (the space of all bounded linear
functionals on X) and SG = {l ∈ X∗

| (∃g ∈ G) (l(g) ≠ 0)}.

Theorem 4.1. Let (X, ∥ · ∥X) be a normed linear space, G be its
nonempty bounded subset and f ∈ X be such that ∥f ∥G < ∞. Then

∥f ∥G = sup
l∈SG

|l(f )|
sup
g∈G

|l(g)|
.

Proof. First, we show that for all c > 0 and all f ∈ X

f /c ∈ clX conv(G ∪ −G)

H⇒


(∀l ∈ X∗)( |l(f )| ≤ c sup

g∈G
|l(g)| )


. (4)

If f /c ∈ clX conv (G ∪ −G) then there exists a sequence {fk} such
that
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limk→∞ ∥f /c − fk∥X = 0 and all fk can be represented as
fk =

mk
i=1 wk,igk,i, where

mk
i=1 |wk,i| = 1 and all gk,i ∈ G. Then for

all l ∈ X∗, l(fk) =
mk

i=1 wk,il(gk,i) and so |l(fk)| ≤ supg∈G |l(g)|.
Since l is continuous, also |l(f /c)| ≤ supg∈G |l(g)| and thus |l(f )| ≤

c supg∈G |l(g)|.
Now, we prove that for all c > 0 and all f ∈ X with ∥f ∥G < ∞

the following implication holds:
(∀ l ∈ SG)( |l(f )| ≤ c sup

g∈G
|l(g)| )


H⇒ f /c ∈ clX conv(G ∪ −G). (5)

Assume by contradiction that f /c ∉ clX conv(G ∪ −G). Then by
Mazur’s theorem (Yoshida, 1965, p. 108) (see Theorem A.1 in the
Appendix), there exists l ∈ X∗ such that l(f /c) > 1 and for all
h ∈ clX conv (G ∪ −G), |l(h)| ≤ 1. Thus in particular for all
g ∈ G, |l(g)| ≤ 1. Hence |l(f )| = l(f ) > c ≥ c supg∈G |l(g)|. It
remains to show that l ∈ SG. As ∥f ∥G is finite, there exists some
b > 0 such that f /b ∈ clX conv (G ∪ −G), and hence by (4),
|l(f )| ≤ b supg∈G |l(g)|. If l were in X∗

\ SG, this would imply
|l(f )| ≤ b supg∈G |l(g)| = 0. But l(f ) = 0 is in contradiction with
l(f ) > c > 0.

It follows from the implications (4) and (5) that

f /c ∈ clX conv(G ∪ −G) ⇐⇒ c ≥ sup
l∈SG

|l(f )|
sup
g∈G

|l(g)|
. (6)

Thus ∥f ∥G = inf{c > 0 | f /c ∈ clX conv(G ∪ −G)} =

supl∈SG
|l(f )|

supg∈G |l(g)| . �

Theorem 4.1 is an extension of a characterization of the
variational norm in Hilbert spaces proven in Kůrková, Savický, and
Hlaváčková (1998), which was used there and in Kůrková (2008)
to prove existence of functions with variations growing with the
input dimension d exponentially.

When (X, ∥ · ∥X) is a Hilbert space, then all bounded linear
functionals are inner products (Friedman, 1982, p. 206). Denoting
byG⊥ the orthogonal complement of a subsetG ofX, i.e., G⊥

= {h ∈

X | (∀g ∈ G) (h · g = 0)}, we get by Theorem 4.1 for all f ∈ X

∥f ∥G = sup
h∈XrG⊥

|f · h|
sup
g∈G

|g · h|
.

In particular, for all f ∈ X r G⊥

∥f ∥G ≥
∥f ∥2

X

sup
g∈G

|f · g|
. (7)

The inequality (7) shows that the closer a function f is to
orthogonality to all elements of the set G, the larger the value of
G-variation f has.

To illustrate Theorem 4.1, consider the finite dimensional space
Rm with the Euclidean norm denoted ∥ · ∥2. Let G = {e1, . . . , em}

be an orthonormal basis of Rm. It is easy to see that for all f =m
i=1 wiei, ∥f ∥G = ∥f ∥1 =

m
i=1 |wi|. Let u = (1, . . . , 1). Then by

Theorem 4.1 for all f ∈ Rd,

∥f ∥G ≥
|f · u|

sup
i=1,...,m

|ei · u|
=

m
i=1

|wi|

1
.

As in this case ∥f ∥G = ∥f ∥1, the supremum from Theorem 4.1 is
the maximum. Moreover for all f ∈ Rm, the maximum is achieved
for the same linear functional, which is the inner product with
u = (1, . . . , 1).

It was shown in Kůrková and Sanguineti (2002) that for an
infinite orthonormal basis G = {ei} of (ℓ2, ∥ · ∥2), ∥ · ∥G = ∥ · ∥1. In
this case, for f ∈ ℓ2 ∩ ℓ1 with a representation f =


∞

i=1 wiei, we
have

∥f ∥G = ∥f ∥1 = sup
k

|f · hk|

sup
i

|ei · hk|
,

wherehk =
k

i=1 sign(wi)ei, with sign(x) = 1 for x > 0, sign(x) =

−1 for x < 0, and sign(0) = 0.
Theorem 4.1 implies that in the definition of G-variation,

infimum can be replaced with minimum.

Proposition 4.2. Let (X, ∥ · ∥X) be a normed linear space, G its
nonempty bounded subset, and f ∈ X be such that ∥f ∥G < ∞. Then

∥f ∥G = min{c > 0 | f /c ∈ clX conv (G ∪ −G)}.

Proof. By (4), for all l ∈ X∗ and all c > 0 such that f /c ∈

clX conv(G ∪ −G), |l(f )| ≤ c supg∈G |l(g)|. Hence also for b =

∥f ∥G = inf{c > 0 | f /c ∈ clX conv(G ∪ −G)}, |l(f )| ≤

b supg∈G |l(g)|. Thus by (5) also f /b ∈ clX conv(G ∪ −G). �

Another useful property of the variational norm following from
Theorem 4.1 is a bound on variation of the limit of a sequence of
functions. Although this property can also be derived directly from
the definition of variation (see Kainen & Kůrková, 2009; Kůrková
et al., 1997), application of Theorem 4.1 gives a shorter proof.

Proposition 4.3. Let (X, ∥ · ∥X) be a normed linear space, G its
nonempty bounded subset, f ∈ X, and {fk}∞k=1 ⊂ X be such that
limk→∞ ∥fk − f ∥X = 0, bk = ∥fk∥G < ∞ for all k, and b =

limk→∞ bk < ∞. Then ∥f ∥G ≤ b.

Proof. By Theorem 4.1,

lim
k→∞

∥fk∥G = lim
k→∞

sup
l∈SG

|l(fk)|
sup
g∈G

|l(g)|
≥ sup

l∈SG
lim
k→∞

|l(fk)|
sup
g∈G

|l(g)|
.

As all l ∈ X∗ are continuous, limk→∞
|l(fk)|

supg∈G |l(g)| =
|l(f )|

supg∈G |l(g)| .
Because f /b is a limit of a sequence of elements of conv(G ∪

−G), ∥f ∥G is finite. Thus ∥f ∥G satisfies (5) and so we obtain
limk→∞ ∥fk∥G ≥ ∥f ∥G. �

Proposition 4.3 implies that balls inG-variation are closed in the
ambient space norm, but it does not imply that the linear subspace
XG = {f ∈ X | ∥f ∥G < ∞} of functions with finite values of
G-variation is closed as a subspace of (X, ∥·∥X). This can be shown
by the following example. Consider the space (ℓ2, ∥ · ∥2) and let
G = {ei} be its orthonormal basis. It was shown in Kůrková and
Sanguineti (2002) that ∥ · ∥G = ∥ · ∥1, i.e., for f =


∞

i=1 wiei with
∥f ∥1 =


∞

i=1 |wi| < ∞, ∥f ∥G = ∥f ∥1. So for any f =


∞

i=1 wiei ∈

ℓ2 which is not in ℓ1, we have limk→∞ ∥f − fk∥2 = 0, where all
fk =

k
i=1 wiei have finite G-variations equal to

k
i=1 |wi|.

5. Variation of functions in images of transforms induced by
computational units

In this section, we use the characterization of variational norm
from Theorem 4.1 to derive an upper bound on variation of
functions representable as integrals in the form of networks with
infinitely many units.

First, consider the case of a finite set A of parameters. Each
ordering of A as A = {a1, . . . , am} determines a linear operator
Tφ : Rm

→ X defined for all w = (w1, . . . , wm) ∈ Rm as

Tφ(w)(x) =

m
i=1

wiφ(x, ai).
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It follows easily from the definition of variational norm that for
each f which can be represented as f = Tφ(w) for some w ∈ Rm,

∥f ∥Gφ (A) = min


∥w∥1

f =

m
i=1

wiφ(·, ai)


. (8)

Note that for some functions which can be exactly represented
as input–output functions of finite neural networks, the networks
might be too large to be implementable. In such cases, Theorem 3.1
and the upper bound (8) can be used to obtain estimates of rates of
approximation of f by input–output functions of smaller networks.
Note that the value of ℓ1 or ℓ2-norm of output weight vector w =

(w1, . . . , wm) plays a role of a stabilizer to beminimized in output-
weight regularization (Fine, 1999).

When the set A of parameters is infinite, analogy with (8)
suggests that for f representable as

f (x) = Tφ,µ(w) =


A
w(a)φ(x, a)dµ(a),

the estimate

∥f ∥Gφ,µ(A) ≤ ∥w∥L1(A,µ) (9)

might hold. The inequality (9) can only be considered when
quantities on both its sides are well defined, i.e., when

(i) Gφ(A) is a bounded subset of (X, ∥ · ∥X) and
(ii) w ∈ L1(A, µ).

Our main result (Theorem 5.1) shows that in a wide class of
function spaces, the assumptions (i) and (ii) are sufficient to guar-
antee the relationship (9) between Gφ(A)-variation and L1-norm.
We show that this relationship follows easily from the geomet-
ric characterization of G-variation given in Theorem 4.1 provided
that in the ambient function space a certain commutativity prop-
erty of bounded linear functionals holds. A linear space (X, ∥ · ∥X)
of functions on Ω ⊆ Rd has a commutativity property of linear
functionals with kernel operators if for every integral operator Tφ :

(L1
µ(A), ∥ · ∥L1) → (X, ∥ · ∥X) with a kernel φ : Ω × A → R such

that Gφ = {φ(·, a) | a ∈ A} is a bounded subset of (X, ∥ · ∥X), and
every linear functional l ∈ X∗ and every g ∈ L1(A)

l(Tφ(f )) =


A
f (a) l(φ(·, a)) dµ(a).

This property holds, for example, in spaces (Lp(Ω, ρ), ∥·∥Lp)with
p ∈ [1, ∞), (Cc(Ω), ∥ · ∥sup), and (C0(Rd), ∥ · ∥sup) as it is shown
in Theorem 5.2.

The next theorem on the relationship (9) between Gφ-variation
of an input–output function of an infinite network and the
L1-norm of its output-weight function has a short proof based
on the geometric characterization of the variational norm from
Theorem 4.1.

Theorem 5.1. Let (X, ∥ · ∥X) be a space of functions on Ω ⊆ Rd

satisfying the commutativity property of linear functionalswith kernel
operators, µ be a σ -finite measure on A ⊆ Rs, w ∈ L1(A, µ), φ :

Ω × A → R be such that Gφ(A) = {φ(·, a) | a ∈ A} is a
bounded subset of (X, ∥ · ∥X), and f ∈ X be such that for all
x ∈ Ω, f (x) =


A w(a)φ(x, a)dµ(a). Then

∥f ∥Gφ (A) ≤ ∥w∥L1(A,µ).

Proof. By the commutativity property, for all l ∈ X∗, l(f ) =
A w(a)l(φ(·, a))dµ(a). Thus |l(f )| ≤ supa∈A |l(φ(·, a))|


A |w(a)|

dµ(a) = supa∈A |l(φ(·, a))| ∥w∥L1(A,µ). So by Theorem 4.1,

∥f ∥Gφ (A) = sup
l∈X∗rGφ (A)⊥

|l(f )|
sup
a∈A

|l(φ(·, a))|
≤ ∥w∥L1(A,µ). �

The next theorem describes some function spaces with the
commutativity property. For Ω ⊆ Rd, by (Cc(Ω), ∥ · ∥sup) is
denoted the space of all continuous compactly supported functions
on Ω with the supremum norm and by (C0(Rd), ∥ · ∥sup) the space
of all continuous functions on Rd vanishing at infinity (i.e., functions
f for which lim∥x∥→∞ f (x) = 0).

Theorem 5.2. Each of the following spaces satisfies the commutativ-
ity property of linear functionals with kernel operators:

(i) (Lp(Ω, ρ), ∥ · ∥Lp) with p ∈ [1, ∞), and ρ a measure on
Ω ⊆ Rd;

(ii) (Cc(Ω), ∥ · ∥sup) with Ω a locally compact subset of Rd;
(iii) (C0(Ω), ∥ · ∥sup) with Ω = Rd.

Proof. First, we prove the statement for case (i). By the properties
of the duals of Lp-spaces with p ∈ [1, ∞) (Friedman, 1982, pp.
176, 180), for every l ∈ X∗ there exists h ∈ Lq(Ω, ρ) (where for
p > 1, q satisfies 1/q + 1/p = 1, while for p = 1, q = ∞), such
that for all f ∈ Lp(Ω, ρ),

l(f ) =


Ω

f (x)h(x)dρ(x).

By Hölder’s inequality (Friedman, 1982, p. 96) for all a ∈ A,
φ(·, a) h ∈ L1(Ω, ρ) and

∥φ(·, a) h∥L1 ≤ ∥φ(·, a)∥Lp∥h∥Lq .

Thus for all a ∈ A,


Ω
|φ(x, a)h(x)|dρ(x) ≤ ∥φ(·, a)∥Lp∥h∥Lq .

By the assumption Gφ(A) is bounded and so supa∈A ∥φ(·, a)∥Lp

= sφ is finite. Thus also
Ω


A
|w(y)φ(x, y)h(x)|dµ(y)dρ(x) ≤ sφ∥w∥L1

is finite. So we can use Fubini’s theorem (Friedman, 1982, p. 86) to
obtain

l(f ) =


Ω


A
w(a)φ(x, a)dµ(a)


h(x)dρ(x)

=


A
w(a)


Ω

φ(x, a)h(x)dρ(x)

dµ(a)

=


A
w(a)l(φ(·, a))dµ(a).

The proof of cases (ii) and (iii) is analogous to case (i). The only
difference is in the characterization of bounded linear functionals.
By the Riesz representation theorem (Rudin, 1974), for every
l ∈ X∗, there exists a signed measure ν on Ω such that for
all f ∈ Cc(Ω) or f ∈ C0(Ω), l(f ) =


Ω
f (x)dν(x) and

|ν|(Ω) = ∥l∥X∗ , where |ν| denotes the total variation of ν.
Thus for all a ∈ A,


Ω

|φ(x, a)|dν(x) ≤ ∥φ(·, a)∥sup |ν|(Ω). As
supa∈A ∥φ(·, a)∥sup = sφ is finite, also
A
|w(a)|


Ω

|φ(x, a)|dν(x)dµ(a)

≤ sφ∥l∥X∗


A
|w(a)|dµ(a) ≤ sφ∥l∥X∗ ∥w∥L1

is finite. Thus we can use Fubini’s theorem to obtain

l(f ) =


Ω


A
w(a)φ(x, a)dµ(a)


dν(x)

=


A
w(a)


Ω

φ(x, a)dν(x)

dµ(a)

=


A
w(a)l(φ(·, a))dµ(a). �
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Combining Theorems 4.1 and 5.2 we get the next corollary.

Corollary 5.3. Let (X, ∥ · ∥X) be one of the following spaces:

(i) (Lp(Ω, ρ), ∥·∥Lp)with q ∈ [1, ∞), and ρ a σ -finite measure:
(ii) (Cc(Ω), ∥ · ∥sup) with Ω a locally compact subset of Rd;
(iii) (C0(Ω), ∥ · ∥sup) with Ω = Rd.

Let µ be a σ -finite measure on A ⊆ Rs, w ∈ L1(A, µ), φ :

Ω × A → R be such that Gφ(A) = {φ(·, a) | a ∈ A} is a
bounded subset of (X, ∥ · ∥X) and f ∈ X be such that for all
x ∈ Ω, f (x) =


A w(a)φ(x, a)dµ(a). Then

∥f ∥Gφ (A) ≤ ∥w∥L1(A,µ).

Applying the upper bound onGφ-variation from Corollary 5.3 to
estimates of rates of approximation given in Theorem 3.1 we get
the following upper bounds on rates of approximation from the
dictionary Gφ .

Corollary 5.4. Let (X, ∥ · ∥X) be a space of functions on Ω ⊆

Rd, A ⊆ Rs, µ be a measure on A, φ : Ω × A → R be such that
Gφ(A) = {φ(·, a) | a ∈ A} is a bounded subset of (X, ∥ · ∥X), and
sφ = supa∈A ∥φ(·, a)∥X. Let f ∈ (X, ∥ · ∥X) be such that for some
w ∈ L1(A, µ), f (x) =


A w(a)φ(x, a)dµ(a). Then for all n

(i) for (X, ∥ · ∥X) = (L2(Ω, ρ), ∥ · ∥L2),

∥f − spannGφ(A)∥2
X ≤

s2φ∥w∥
2
L1(A,µ)

− ∥f ∥2
X

n
;

(ii) for (X, ∥ · ∥X) = (Lp(Ω), ∥ · ∥Lp), p ∈ (1, ∞),

∥f − spannGφ(A)∥Lp ≤
21+1/r sφ∥w∥L1

n1/s
,

where 1/q + 1/p = 1, r = min(p, q), and s = max(p, q).

6. Variation with respect to perceptrons

In this section, we apply our results to perceptron networks.
We consider the dictionary formed by functions computable by
perceptron networks with the Heaviside activation functions ϑ :

R → R defined as ϑ(t) = 0 for t < 0 and ϑ(t) = 1 for t ≥ 1. We
denote this dictionary

Gφϑ
= Gφϑ

(Sd−1
× R, Ω)

:= {ϑ(e · . + b) : Ω → R | e ∈ Sd−1, b ∈ R},

where Sd−1 denotes the unit sphere inRd. Recall that Gφϑ
-variation

has been called variation with respect to half-spaces (Barron, 1992)
as the dictionary Gφϑ

consists of characteristic functions of half-
spaces of Rd. Note that for every continuous sigmoidal function
(i.e., a non-decreasing σ : R → R with limt→−∞ σ(t) = 0 and
limt→∞ σ(t) = 1)

∥ · ∥Gφϑ
= ∥ · ∥Gφσ

,

in Lp(Ω) with p ∈ (1, ∞) and Ω compact (Kůrková et al., 1997).
So estimates of variation with respect to half-spaces apply also to
Gφσ -variation with any continuous sigmoidal function.

We use an integral representation of a sufficiently smooth func-
tion in terms of an infinite network with Heaviside perceptrons.
Such a representation was derived for all compactly supported
functions from C∞(Rd) (space of continuous functions with con-
tinuous derivatives of all orders) by Ito (1991) who used the Radon
transform. Kůrková et al. (1997) derived the same formula for all
compactly supported functions from Cd(Rd) (space of all continu-
ous functions on Rd with continuous derivatives up to the order d)
by a different proof technique based on an expression of the Dirac
delta function as the derivative of the Heaviside function and a

representation of the d-dimensional Dirac delta function δd as an
integral of derivatives of the one-dimensional delta function

δd(x) = ad


Sd−1

δ
(d−1)
1 (e · x) de,

where ad = (−1)
d−1
2 /(2(2π)d−1). Kainen et al. (2007) extended

the representation as an infinite network with Heaviside percep-
trons to functions with so called weakly controlled decay (see the
Appendix for the definition). This class contains all compactly sup-
ported functions from Cd(Rd) and the Schwartz class S(Rd) (all
functions from C∞(Rd) which are together with all their deriva-
tives rapidly decreasing (Adams & Fournier, 2003, p. 251)). In
particular, the Gaussian function belongs to the class of func-
tions of a weakly controlled decay. The next theorem from Kainen
et al. (2007) describes this representation. By D(d)

e is denoted the
directional derivative of the order d in the direction of the unit
d-dimensional vector e and by He,b the hyperplane {x ∈ Rd

|

ϑ(e · x + b) = 0}.

Theorem 6.1. Let d be an odd integer and f ∈ Cd(Rd) be of a weakly
controlled decay, then for all x ∈ Rd

f (x) =


Sd−1×R

wf (e, b) ϑ(e · x + b) de db,

where wf (e, b) = a(d)

He,b

D(d)
e (f )(y) dy and a(d) = (−1)(d−1)/2

(1/2)(2π)1−d.

Combining this integral representation with Theorem 4.1 we
obtain the next corollary.

Corollary 6.2. Let d be an odd positive integer, Ω ⊂ Rd has finite
Lebesgue measure λ(Ω), σ : R → R be a continuous sigmoidal
function, and f ∈ Cd(Rd) be a function with a weakly controlled
decay. Then for all n,

∥f|Ω − spannGφσ (Ω)∥L2(Ω) ≤
λ(Ω)∥wf ∥L1(Sd−1×R)

√
n

,

where wf (e, b) = a(d)

He,b

(D(d)
e (f ))(y)dy with a(d) = (−1)(d−1)/2

(1/2)(2π)1−d.

Proof. By Theorem 6.1, for all x ∈ Ω, f (x) =

Sd−1×R wf (e, b) ϑ(e ·

x + b) de db. As Gφϑ
(ω) is a bounded subset of L2(Ω) with sφϑ

≤

λ(Ω) and wf ∈ L1(Sd−1
× R), we can apply Theorem 4.1 to

obtain ∥f ∥Gφθ
≤ ∥wf ∥L1(Sd−1×R). Then the statement follows

from the equality ∥f ∥Gφσ
= ∥f ∥Gφθ

(Kůrková et al., 1997) and
Corollary 5.3(i). �

The upper bound from Corollary 6.2 provides some insight into
the impact of the input dimension d on rates of approximation
by perceptron networks. The factor |a(d)| decreases to zero
exponentially fast with d increasing and thus it can compensate
increase of the factor ∥


He,b

(D(d)
e (f ))(y)dy∥L1(Sd−1×R), which is

bounded from above by the maximum of the L1-norms of all
iterated partial derivatives of the order d of f . Note that λ(Ω)
depends on the shape of the d-dimensional domain Ω ⊂ Rd.
When Ω is the Euclidean d-dimensional ball, then λ(Ω) goes
to zero exponentially fast with d increasing, while when Ω is a
cube with the side larger than one, λ(Ω) increases exponentially
fast.

Here, we have stated the estimate only for d odd, for which the
output-weight function wf in the representation of a compactly
supported smooth function f as an integral in the form of infinite
perceptron network has a simpler form than wf in the case of d
even given in Ito (1991).
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7. Discussion

We have shown that the L1-norm of an output-weight
function in an integral representation of a smooth function as an
‘‘infinite network’’ is an important factor in estimates of model
complexity of networks approximating such functions. This result
is interesting in connection with the usefulness of output-weight
regularization minimizing ℓ1 or ℓ2-norms of output weights (Fine,
1999).

Various special cases of Theorem 5.1 have been derived by a
variety of proof techniques, but they all required some restrictions
on the domain Ω and the set of parameters A (compactness in
Kůrková et al., 1997), and on φ and w (continuity in Kainen &
Kůrková, 2009), or a special choice of φ (a trigonometric function
in Barron, 1993). Our approach uses only minimal assumptions
necessary for existence of the quantities which are compared: the
set Gφ has to be bounded so that Gφ-variation can be defined and
the output weight w has to be in L1(A, µ) so that its L1-norm is
finite.

The essential part of our proof of Theorem 5.1 is the
characterization of G-variation in terms of linear functionals given
in Theorem 4.1. This characterization is based on the Mazur
theorem (Theorem A.1 in the Appendix) which is a version of
the Hahn–Banach theorem. Thus we avoided the technicalities
of Bochner integration which were used in Kainen and Kůrková
(2009). The argument there used dominated convergence to prove
the existence of the Bochner integral. It also needed the Fubini
theorem which we also used in the proof of Theorem 5.2. For the
Bochner integral applied to neural networks see also Kainen and
Vogt (in press).
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Appendix

For the reader’s convenience we include several concepts and
tools used in the paper.

By χS : Ω → {0, 1} is denoted the characteristic function of
S ⊆ Ω , i.e., χS(x) = 1 if x ∈ S, otherwise χS(x) = 0. Let
F be any family of characteristic functions of subsets of Ω and
SF = {S ⊆ Ω | χS ∈ F } be the family of the corresponding
subsets of Ω . Then a subset A of Ω is said to be shattered by F if
{S ∩ A | S ∈ SF } is the whole power set of A. The VC-dimension
of F is the largest cardinality of any subset A which is shattered
by F .

The coVC-dimension of F is the VC-dimension of the set F ′
:=

{evx | x ∈ Ω}, where the evaluation evx : F → {0, 1} is defined
for every χS ∈ F as evx(χS) = χS(x).

The concept of VC-dimension was also extended to real-valued
functions. Let F be a family of real-valued functions on Ω with
range in the interval (a1, a2), where −∞ ≤ a1 < a2 ≤ +∞. Then
the VC-dimension of F is defined as the VC-dimension of the set
IF = {ϑ(f (t)−c) | f ∈ F , c ∈ (a1, a2), t ∈ Ω } of characteristic
functions, where ϑ : R → R is the Heaviside function.

Recall that for a positive integer s and q ∈ [1, ∞), the Sobolev
space W q,s(Rd) is formed by all functions having t-th order partial
derivatives in Lq(Rd) for all t ≤ s and the norm ∥ · ∥Wq,s is defined
as

∥f ∥Wq,s =


|α|≤s

∥Dα f ∥q
L2

1/q

,

where α denotes a multi-index (i.e., a vector of non-negative
integers), |α| = α1 + · · · + αd, and Dα is the corresponding partial
derivative operator.

A function f : Rd
→ R is of a weakly controlled decay when it

satisfies for all multi-indexes α with 0 ≤ |α| = α1 + · · · αd <
d, lim∥x∥→∞(Dα f )(x) = 0 (where Dα

= (∂/∂x1)α1 · · · (∂/∂xd)αd )
and for some ε > 0, all multi-indexes α with |α| = d satisfy

lim
∥x∥→∞

(Dα f )(x)∥x∥d+1+ε
= 0.

The following theoremon separation of a function from a closed
convex balanced set is from Yoshida (1965, p. 106).

Theorem A.1 (Mazur). Let X be a real locally convex linear
topological space, M a closed convex balanced subset of X. Then for
any f ∉ M there exists a continuous linear functional l onX such that
l(f ) > 1 and for all h ∈ M, |l(h)| ≤ 1.
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