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Comparison of Worst Case Errors in Linear and
Neural Network Approximation

Véra Kirkova and Marcello Sanguineti

Abstract—Sets of multivariable functions are described for 6(Y, M) Deviation of the sey” from the setM in
which worst case errors in linear approximation are Iarger (X, |-ID-
than those in approximation py n_eural network_s. A theoretical S n Deviation of the setY from span, G in
framework for such a description is developed in the context of ’ S
nonlinear approximation by fixed versus variable basis functions. (X []-[])- . .
Comparisons of approximation rates are formulated in terms of dn(Y") Kolmogorovn-width of the se” in (X, ||.|]).
certain norms tailored to sets of basis functions. The results are 53, (Y) Bernsteinr-width of the se®” in (X, ||.|]).
applied to perceptron networks. Gy Gy = {¢(a, ):ae AC R},
Index Terms—Complexity of neural networks, curse of dimen-  span; Go Set of functions computable by @network
sionality, high-dimensional optimization, linear and nonlinear ap- with % hidden units.
proximation, rates of approximation. 9 Heaviside function.
K Ramp function.
SUMMARY OF NOTATION J Closed interval ink.
) Py, J), Set of functions on/¢ computable by)-per-
(X 11D Normed linear space. Py() ceptronsg: R — R.
B (I.11) Ball of radiusr in (X, [[. ). Hy(J), Hy Hy(J) = Py(9, J), Hy = Pa(9).
Xn n-dimensional subspace df. M2, 1, norm with respect tol.
G Subset of X, ||.}). -l G-variation with respect td.| .
G Set of normalized elements Gf. -l 22, Variation with respect to half-spaces (Heavi-
G Closure ofG with respect td|.||. side perceptrons).
int @ Interior of & with respect td|.|. I-Ils. Variation with respect to signum perceptrons.
oG Boundary of¢ with respect td|.||. &, Variation with respect to ramp perceptrons.
cG {cg: g€ G}, ceR. Vg, J) Total variation ofy: J — IR.
G(c) {wg:g e G,weR, |w <c}, c>0. sS4 sup,c 4 llell-
G supec [|d-
va Minkowski functional ofG.
span G Linear span of. |. INTRODUCTION
span;, G Set of all linear combinations of at most L ) ,
elements of7. N many applications, where the approximate solution of
cone G Convex hull ofG. multivariable optimization problems is required, proper use
conv G Set of all convex combinations of at mast ?f neural networks as ?pprommators helps to cope with the
elements of7. curse of dimensionality” [1] and so to prevent the optimization

Error functional of the sed/ in (X, ||.||). task from becgming unmapageably complex with a growing
number of variables. This is the case, for example, with dy-
namic programming [2], parametric approximation of decision
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network hidden units, while thé, error of the best linear ap- the “capacity” of the basis (in the sense that its convex hull has
proximator is bounded from below b9(1/(d/n)), wherern an orthogonal subset containing, for any positive integeat

is the dimension of the linear approximating subspacedisd leastr? functions with norms greater than or equall{o-).

the number of variables of the functions to be approximated. AsApplying these estimates to balls in norms tailored to percep-
the number of free parameters of functions computable by oriens with periodic or sigmoidal activations, we obtain classes of
hidden-layer perceptron networks witthidden units isi(d + multivariable functions for which neural networks outperform
2), Barron compares an upper bound of the orde@@l/\/ﬁ) linear methods. Functions from such classes can be approxi-
with a lower bound of the order @b(1/(d/k(d + 2))). mated by perceptron networks havihdnidden units within an

Kainen, Kirkova, and Vogt [7], [8] have initiated the study@ccuracy of the Ofdef@(l/\/ﬁ), while, for some periodic ac-
of the comparison of properties of projections (best alopro)g\_/atlons, no increase in the dimension of a linear approximating
mation operators) in linear and neural network approximatiopdPSpace can decrease the worst case error below a constant
They have shown that many useful properties of best approg?_r_oposnmn 12)_. For_3|grn0|dal activations, the worst case error
mation operators, like uniqueness, homogeneity, and continuify,inéar approximation is bounded from below by a quantity
are not satisfied by neural networks, and have suggested e form1/(4d</2k(d + 2)) (Theorem 2 and Corollaries 4
this loss might allow improved approximation rates (as the arg@lDd 5).

ments proving the slow rates of linear approximators are based N€ Paper is organized as follows. Section Il contains basic
on such properties) concepts concerning approximation in normed linear spaces and

edforward neural networks. Section Il describes approxima-
n rates of the order aP(1/+/k) by one-hidden-layer neural

i matiord ibe the tradeoff bet h ¢ networks withk computational units, in terms of balls in certain
approximatiortiéscribe the tradeolt between Ih€ accuracy ot agy, ¢ 1aijored to such units. To compare these rates with those

proximation and the "complexity” of approximating funCtlor]Sachievable using linear approximation schemes, in Section 1V,

When such functions belong to a parameterized family, they, investigate methods of estimation of the Kolmogorov widths

complexity can be measured by the lengths of parametervectg{%alls in the above-mentioned norms. In Section V, the tools
(depending on the number of variables and, e.g., on the deg !

ifeBeloped in the previous sections are applied to perceptron net-
of a polynomial or a rational function, on the number of knoi, P P PP P P
in a spline, on the number of hidden units in a neural network,

etc.).

To describe sets of multivariable functions, for which worst
case errors in linear approximation are larger than those i
approximation by neural networks, we investigate such errorsFor basic concepts concerning functional analysis and
in a general framework of fixed- versus variable-basis approtopology see, e.g., [17].
imation. We callfixed-basis approximatioan approximation  In this paper, mormed linear spaci assumed to be real and
scheme where the approximating functions are elementsi®flenoted by X, ||.||) or merely.X when there is no ambiguity
finite-dimensional subspaces generated by theirstements on the norm. The dimension of is denoted bydim X. By
of a fixed basis, while invariable-basis approximatignthe ||.||,, p € [1, o], we denote thel,, norm with respect to the
approximating functions are linear combinations of /altu- Lebesgue measurl® denotes the set of real numbels, the
ples of elements of a given set. For example, algebraic aset of positive real numbers, alidl, the set of positive integers.
trigonometric polynomials belong to fixed-basis approxima- If (X, ||.||) is a normed linear spacB,.(||.||) denotes the ball
tion, whereas free-node splines [9, Ch. 13], trigonometraf radiusr, i.e., B..(||.||) = {f € X: ||f|| £ r}.
polynomials with free frequencies [11], and feedforward neural If G is a subset of X, ||.||), G° denotes the set of itsormal-
networks belong to the variable-basis family. izedelements, i.e.,

Within the general framework of fixed- and variable-basis ap- g
proximation, we derive estimates of worst case errors, formal- G° = {go =2 _:0#£gc¢ G} )
ized for the fixed-basis functions by the concepKofmogorov g1l

n-width (infimum of deviations fromm-dimensional linear sub- The closureof G is denoted by:IG; G is densén X if ¢lG =

spaces) and, for the variable ones, by treiation from the x Theinterior and theboundaryof G are denoted bynt G
union of finite-dimensional subspaagsnerated by ak-tuples anddq, respectively. For € IR, we define
of functions from a given basis. Considering relatively “small”

(of the order ofO(1/+/k)) upper bounds on such deviations G ={cg:ge G}

of balls in certain norms, we investigate “large” lower bounds

on their Kolmogorov widths. The norms we use to define theggd forc positive

balls are tailored to various sets of variable-basis functions. The

class of such norms includés norm [12], “spectral” norms G(c) ={wg: g€ G, we R, |w| < c}.

[13], [6], [14], a generalization of total variation [15], [16], etc.

We investigate several methods for deriving lower bounds on theis calledhomogeneous ¢G = G forall ¢ € R, ¢ # 0. If
Kolmogorov widths of balls in norms from this class. The lowef = —@G, then is calledcentrally symmetriclf G = G(1),
bounds are formulated in terms of either the Bernstein width tirenG is calledbalancedG(1) is called thébalanced hull of7.

. . f
In this paper, we improve and extend the results by Barron |
on the comparison of rates of approximation. Generedlgs of

Il. PRELIMINARIES

Approximation in Normed Linear Spaces
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The Minkowski functional; of a subset? of a linear space
X is defined for allf € X as

va(f)=inf{c € Ry: f € G}

(see, e.g., [18, p. 131]). WheH is balanced and convexg; is

anormon{f € X: vg(f) < oo}.
Thelinear spanof G is denoted bypan G, i.e.,

span G = {

k
Zwigi:wiGIR,giGG,keﬂ\I+

i=1

span, G denotes the set of all linear combinations of at most jence §(Y, M) = §(conv Y, M)

elements of7, i.e.,

k
Zwigi:wi eR, g, € d

=1

span, G = {

The convex hullof GG is denoted byonv G, i.e.,

k
convG= E ;G G
i=1

} .

€01, a;=1,9,€G, kelNy

=1

}.

conv G denotes the set of all convex combinations of at mog

k elements of7, i.e.,

k
convG = E ;i G;: G
i=1

A setd is calledconvexif G = conv G.
The error functionaleys: X — [0, +00) of a subsefi] of
(X, ||| is defined as

ewl) = If = Ml = iwf IS - gl

k
6[07 1]7Zai:179i€G

i=1

For any normed linear spa¢&’, ||.||) andM C X, eps is uni-
formly continuous but does not need to be linear (see, e.g., [
pp. 139-140 and p. 391]).

Theworst case approximation erras formalized by the con-
cept ofdeviationof a sefy” of functions to be approximated from
a setM of approximating functions, defined as

5(Y, M) = sup ep(f)

=sup inf ||f—g|.
fey fey M | |

We do not specify the dependence of deviatior{ &n ||.||), as

it will be clear from the context. Note that deviation describes

the “size” of the smallest neighborhood &8f containingY’:
6(Y, M) is the infimum of alle > 0, for which

Y CU.(M)={f € X: |f - M|| < <}.
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iii) holds as

sup |lg — M| = sup llef — M|l = ICIJScug If = M|
€ €

aCcY
iv)
6(Y, M) =inf{e > 0:Y CU.(M)}
where

Ue(M) ={f € X: |If — M[| < }}.

If Y C U(M), thenconvY C U (conv M) U.

&

(M).
O

An approximation is calledinear when the approximating
functions belong to dinear subspacgeoften generated by the
first n elements of a given linearly ordered set (for example, the
set of all polynomials of order at most— 1, generated by the
first n elements of the sgtz~1: i € IN;}). We call such an
approximation schemfxed-basis approximatiqrin contrast to
variable-basis approximatigrwhere the approximating func-
tions are linear combinations of alttuples of elements of a
jven setG. They form the setpan, G of all linear combina-
an of at mosk elements of7, which is theunion of finite-di-
mensional subspacegnerated by:-tuples of elements of7
(e.g., approximation by trigopnometric polynomials with free fre-
guencies(z being the set of sines and cosines with arbitrary fre-
guencies). The number of parametersafn, G depends o
and on the number of parameters of the elements.of

B. One-Hidden-Layer Feedforward Neural Networks

Feedforward neural networks compute parameterized sets of
functions dependent both on the type of computational units and
on the type of their interconnectiorSomputational unitsom-

{Jgte functionsp: IR? x IR — IR of two vector variables: an
mput vectorand aparameter vectaryp corresponds to the type
of unit andp andd correspond to the dimensions of tharam-
eter spaceand of theinput spacerespectively.

We call p-networksone-hidden-layer feedforward networks
with hidden units computing a functiof and a single linear
output unit. Thusg-networks compute functions of the form

k

Z wid)(aiv )

=1
wherea; € A C IR”. Let us denote by
Gy = {#(a, ):a€ AC R}

the parameterized set of functions corresponding to the compu-

Z,Y,andM be its subsets. Then
i) if Y C Z, thens(Y, M) < §(4, M);
i) 8(Y, M) = 8(clY, M);
iii) if A is homogeneous, then, for afly # ¢ € IR,
6(cY, M) = |c|6(Y, M);
iv) if M is convex, thed(Y, M) = 6(conv Y, M).
Proof: i) and ii) follow directly from the definition of de-
viation and from the continuity of the error functional.

its input—output functions all the elementssptn;, G4, which
is the union of all at most-dimensional subspaces spanned by
k-tuples of elements of74. Thus, span, G4 belongs to vari-
able-basis approximation. Note that the number of free param-
eters in ap-network withx computational units i&(p + 1).
Standard types of hidden units are perceptrongefseptron
with anactivation functiony: IR — IR computes functions of
the form

(v, b), z) = p(v -z +0): R x R = R
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wherev € IR? is aninput weight vectoandb € R is abias setY C (X, ||.||) of functions to be approximated, to eval-
Let J be a closed interval ilk. We denote by uate the rates of variable-basis approximationgbgetworks
P, J) with & units in the hidden layer we shall investigate the devi-

’ ation 8(Y, span;,G,). As we are interested in the comparison
= {fi J4* = R: f(z) =p(v-z+b),veR be IR} of approximation rates by-networks having: computational
units with the rates achievable by the optimal linear approxima-
tors with the same number of free parameters, we shall compare
6(Y, span;,G) with the Kolmogorov widthdy,,41)(Y").

the set of functions od“ computable by)-perceptrons. When
itis clear from the context what is considered, we shall simply
write Py(+)) instead ofP; (v, J). span, Py(%, J) represents the
set of functions on/¢ computable byy-perceptron networks
with & hidden units, andpan Py(+, J) denotes the set of func-
tions on.J¢ computable by such networks with any number oh. Properties of Deviation From Unions of Finite-Dimensional
hidden units. The number of free parameters in a perceptron riggbspaces

work with & perceptrons i&(d + 2). To derive tools for estimating rates of approximation by
variable-basis functions, we investigate the properties of sets of
functions of the formspan,, G, whereG is a subset of a normed
Rates of approximation describe the tradeoff between the #inear space(X, ||.||). This approximation scheme includes
curacy of approximation and the “complexity” of approximatingionlinear trigonometric approximation (i.e., approximation
functions. When a class of such functions is represented as fiyetrigonometric polynomials with free frequencies; see, e.g.,
union of a nested sequence of sets of parameterized functiqag]) as well as free-node splines (see, e.g., [9, Ch. 13]) and
the complexity corresponds to the increasing length of a paraome-hidden-layer feedforward neural networks. Multilayer
eter vector. Le{ M;: j € IN} be a sequence of nested subsefeedforward networks with a single linear output unit and
of anormed linear spac¢eX, ||.||). Therate of approximatiomf units in the last hidden layer belong to this approximation
asubset” of X by {M,: j € IN, } can be investigated in termsscheme as well, but they correspond to more complexGets
of worst case errors, corresponding to the deviatégd$ M;). which depend on the number of units in the previous hidden
If U;env, M, is dense inX, then, for anyf € X, the se- layers.
quence{ens, (f): j € IN; } converges td. In practical appli-  To simplify the notation, we shall denote the deviatiorkof
cations, this convergence has to be sufficiently fast to guaranfeem span, G by é¢ &, i.e.,
the desired accuracy of approximation jamall enough so that _ ‘
the functions from\{; have a moderate number of parameters. 66,1 (Y') = 8(Y, span; G).
In the case of functions af variables, sometimes it happens'he following proposition states the basic propertie®@f:.
that deviations are of the order 6f(1//5). In such a case, to that follow directly from its definition and from Proposition 1
achieve accuracy within, approximating functions with com- (note thatspan,, G' is homogeneous).
plexity of the order ofO(1/e?) are needed. Such exponential
dependence (_)f com_plexi_ty on the number of variables is Ca”%dandG be its subsets. Then, for any positive integer
the curse of dimensionalitjl]. o
In fixed-basis approximation, the nested s&fs are n-di- ) if Y C Z, thenég, x(Y) < ba,1(2);
mensional subspaces. The number of free parameters is theit) 6 x(Y) > éc x+1(Y);
equal ton (the free parameters are only the coefficients of the jjj) S, 1(Y) = Sa x(clY);
linear combinations of the first fixed-basis functions). To de-
scribe a theoretical lower bound on linear approximation, Kol-
mogorov [20] investigated the infimum of deviations over a
n-dimensional subspaces &f. He introduced the concept of
n-width (which was later calledolmogorovn-width) of a set Sets of multivariable functions with upper bounds of the order

I1l. DEVIATION FROM Spanva OF BALLS IN (G-VARIATION

C. Rates of Approximation

Proposition 2: Let (X, ||.||) be a normed linear space a¥id

iv) foranyc € IR, 8¢, 1(cY) = |c|bg, 1(Y).

llg. Variation With Respect to a Set of Functions

Y, defined as of O(1/+/k) on the deviation frompan, G can be described in
] ] ] terms of a norm tailored to a given S8t
dn(Y) = g‘}f 8(Y, Xp) = g‘}f Jscg ggﬁ? 1/ = gl For a subsef of anormed linear spa¢«, ||.||), G-variation

(variation with respect to the sét), denoted byj.||, is defined

where the leftmost infimum is taken over aldimensional sub- - < +ha Minkowski functional of the set conv (GU-G),ie.

spacesX,, of X. For example, in(£,([0, 1]*), ||.]|,) the Kol-
mogorov widths of certain balls in Sobolev norms defined in Iflle = inf {C € Ry: f € ¢l conv (GU —G)} .
terms of a fixed degree of smoothness exhibit the curse of di- ¢

mensionality [21, pp. 232—-233]. However, if the requirementgote that
on smoothness are appropriately increased with the number .
of variables, then the curse of dimensionality can be avoided. Ifle = inf{c € Ry: f € clconv G{c)}

In the case of variable-basis approximation dpyetworks as conv (G U —G) = conv G(1). G-variation is a norm on
with & computational units), corresponds tepan;, G,. The the subspacdf € X: ||fll¢ < oo} C X. It was defined
number of free parameters is equalk + 1), wherep is by Klrkova [22] as an extension of Barron’s [15] concept of
the number of free parameters of each hidden unit. Givervariation with respect to half-spaces. Note thAl; represents
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the minimum “dilation” of the set guaranteeing thatis con-  Sincespan,; G = span, G° (G° denotes the set of the normal-
tained in the closure of the convex symmetric hull of the “dized elements of7), Theorem 1 implies

lated” set. . /12 — 117172
WhenX is finite-dimensional, all norms i are equivalent. I|lf — span, G| < -

Hence, in such a casé;variation does not depend on the norm

on X. In the infinite-dimensional casé-variation in general ~ As an immediate corollary, we get a description of sets of
depends on the choice of a norm&n To simplify the notation, Multivariable functions that can be approximated spyn; G

we shall not write such dependence explicitly, as the norm wilith rates of the order ob(1/v/k).

be clear from the context. _ _ Corollary 1: Let (X, ||.||) be a Hilbert space; its subset,
The following proposition states the basic properties %{ndsG = sup,c |lg]l- Then, for any positive integdr

G-variation. se 1
Proposition 3: Let (X, ||.||) be a normed linear spadg,and ba.r (Bulll-lle)) < VE and 8¢,k (Bu(llleo)) < VE
I be its subsets, angk: = sup, ¢ |gl|. Then If the elements of X, ||.||) are functions ofd variables, then
i) forall f e X Corollary 1 implies that functions in the unit ball &°-varia-
tion can be approximated by elementsspfin, G with a rate
171l < sall fllas that does not depend ah This estimate of rate of approxi-

mation is sometimes called “dimension-independent” (see, e.g.,
[26]). However, this term is misleading as, with an increasing
} numberd of variables, the condition of being in the unit ball in

i) if Gis finite with card G = m andf € span G, then

GP-variation becomes more and more constraining (see [23] for

m m
||f||G=min{Z |wsl: fzz wigi, 9i € G, wi € R

i=1 i=1 examples of functions with variations dependentdcven ex-
. . ponentially).
i) |llle < ell-lr ifand only if, forall b € I [[hlle < c. Note that the upper bounds di; ;. in terms of G-varia-
_ Proof: o tion are not restricted to Hilbert spaces. In [27], the result by
i) Follows from the definitions of|.|| and s Maurey, Jones, and Barron has been extendéq, &paces, for
For ii), see [23, Proposition 2.3]. p € (1, o), with a slightly worse rate of approximation (of the

iii) Follows from elementary properties of norms and ffonﬂ)rderofO(kfl/(I),whereq =max {p, p/(p — 1)}). There also
the fact thatl|hllc < cforall b € Bi(||.||r) if and only if it exist extensions td.. (see, e.g., [15], [28]-[30], and [23]). An
holds for allh € F'. Ll interesting improvement has been derived in [31], combining a

G-variation is a generalization df norm. LetA be an or- concept from metric entropy theory with a probabili_stic argu-
thonormal basis of a separable Hilbert spa&e ||.||). Thel, ~Ment. The tightness of the boud(1/+/k) has been investi-

norm with respect tol of f € X is defined as gated in [15], [31], [23], [32] and [12].
1fll, 4= Z If - al. IV. KOLMOGOROVWIDTHS OF BALLS IN G-V ARIATION
acd

A. Basic Properties of the Kolmogorov Widths of Balls in
The following relationship betweer-variation and/; norm @G-Variation

with respect tad has been shown in [12]. The following proposition summarizes the basic properties of

Proposition 4 [12]: Let (X, ||.]|) be a separable Hilbert the Kolmogorow:-width (see [33, pp. 132-133] and [21, p. 10]).

space andt its orthonormal basis. Thel4 = [|-[l2, 4. Proposition 5: Let (X, ||.||) be a normed linear space axd

Thus, wherd is an orthonormal basis, the unit ballinvari- andZ be its subsets. Then, for all positive integers
ation coincides with the unit ball i norm with respect tol. i) if Y C Z, thend, (V) < d.(%);

i) dp(Y) > dnsi(Y)
)

S . ) da(elY) = d (Y
Some insights into the properties of sets of multivariable
functions that can be approximated by neural networks with iv) foranyc € R, du(cY) = |c[dn(Y);
rates of the order ab(1/+/k) have been obtained by Jones [13] V) dn(convY) = d,.(Y);
and_Barron [6]. The same estimate of appro>.<|mat|on rates hadyi) d,(Y?) infrey [|f]] < da(Y) < dn(Y?) Sup ey IFAlE
earller b_een proved'by Maurey (see [24]). Using the concept Ofvii) if Y C Z, thend,(Z) — §(Z, Y) < du(Y) < dn(Z).
G-variation, Kukova [22], [25] has reformulated Barron's [6]
improvement of Jones’ result [13] in the following way. Thus, the Kolmogorov width of a set is equal to the Kolmogorov
) , width of its closed, convex, balanced hull. As a convex balanced
Theorem1: Let (X, ||.||) be a Hilbert space; its subset, and g getermines a norm on the spatén which it forms the unit
sG = Supgcg |9/l Then, for anyf € X and for any positive 5 ia the Minkowski functional), the Kolmogorov width is
integerk essentially a property of balls in various normsX®nlt repre-
(sallflle)? = |12 sents the best possible accuracy that can be achieved when such
If = spany G| < . balls are approximated linearly.

C. Upper Bounds on the Deviations of BallsGiVariation
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To describe sets of functions for which variable-basthe context. IfY is closed, convex, and centrally symmetric,
approximation by ¢-networks outperforms linear methodsthen, for all integers:
we shall consider the unit balls i&¥,-variations as the sets .
of functions to be approximated and we shall find conditions PaY) = P fea&%fxnﬂ) 171
on ¢ that guarantee thatc (B1(].|lc,)) is smaller than e
depr1y(Bi(||-]le,)) (recall thati(p + 1) is the number of free  An argument based on the Borsuk Antipodality Theorem
parameters in a-network with & computational units). We (see, e.g., [21, p. 11]) shows that the Kolmogorowidth
shall start by investigating lower bounds on the Kolmogord$ bounded from below by the Bernsteinwidth. More pre-
widths of balls in variation with respect to a sét. The cisely, for any closed, convex, centrally symmetric suliSet
following proposition summarizes the basic properties 6f a Banach spacéX, ||.||) and for any positive integen,
dn(Bi(||.la))- d,(Y) > B.(Y) [21, p. 13]. To obtain from this estimate a

iy _ lower bound on
Proposition 6: Let (X, |.]|) be a normed linear space atd

andF be its subsets. Then for any positive integer 1) () = driprny(Bu(ll-lle,))

) dn(Bi(]]-lle) = dn(G); larger than the upper bound é&, , (B1(||.||l¢,)) guaranteed

Sy . by Corollary 1,3;, (Gy) has to be larger thas;, /\/E.

i) if I C G, thend, (B.(]| < d,(B(]]. ; k(p+D\M¢ e,

) o Bu(ll-lr)) < du(Balll-le)) Let A be a countable orthonormal basis of a separable

iii) if 0# spc =suppep [|hlle < oo, then Hilbert space and, for anfey, ..., any1) € A™FL where

1 n < card A, let
d,, (B1(]- =d.(G) > d,(F
Balll-le)) (@) SFG () Xp1 = span{aq, ..., apy1}
1 i (B and
sk n (Brllllr))- Apyr ={a1, ..., anq1}.
Then
Proof:
i) Follows from Proposition 5 iii), v), vii), and from Bi(||-l4) N Xng1 = Br(|[- /|4, 11)-

Bi(||l.llg) = ¢l conv (GU =G). N
i) As F C G implies||.|l¢ < |||, we haveBy(||.||z) C BY Proposition 4, we havé, (|||, 4) = Bi(||[l.a), hence we

Bi(|llla)- get, for alln < card A
iii) Follows from Proposition 3 iii) and Proposition 5 iv), Bu(Bi(|]]|1) = 1 )
noting that]|.||¢ < ¢||.||r impliesc B1(||.||¢) 2 Bi(||-]|r). O ’ vn+1
The first of these elementary properties has an important col'ne-t
sequence. It implies that any estimate of the worst case error in BY) = inf |If||.
linear approximation of the unit ball i&-variation also applies feoy

to G itself. Thus, the speed of decreaselp{G) can be evalu- 1,4 fgl10wing bound is obtained by an elementary argument,
ated usingt,, (B.1(||.||c:)). To derive a lower bound on the Kol- hic is a slight extension of a result from [33, p. 133].
mogorovn-width of By (||.||¢) might be easier than fa¥.

Proposition 7: Let (X, ||.||) be a Banach space afitlbe its

B. Lower Bounds in Terms of the Bernstein Width subset such thdif||¢ < oo for any f € X. Then, for any

_ - ) positive integer such thain < dim X
As pointed out by Proposition 3 i), for any subg&tof a

normed linear spacéX, ||.||), Il < sq|llla, wheresg = (@) =dn (Bi(lllle) 2 B (B1(]|-le))
sup,eq ||gll- Thus, whensg # 0, the unit ball inf|.|| contains = inf {|f|: Iflle = 1}.

the ball of radiud /s in G-variation. When also the unit ball in
G-variation contains a ball of some nonzero radiu.jh(i.e., it
has a nonempty interior in the topology inducedXrby ||.||),
then the normg.||c and||.|| are equivalent. In such a case, th

Proof: Let X,, be ann-dimensional subspace df and
h € X — X,,. Then there existg € X,, such that|h — X,,|| =
Jh — gll (see, e.g., [19, p. 98]). Let

Bernstein width can be used to estimate the Kolmogorov width f= ﬂ.
of Bi(||.]le)- 1 —glle
TheBernstein:-widthof a subsel” of a normed linear space We shall show thalf f — 0[] = [|f — X,.||. Asforallg’ € X,
(X, |II) is defined as alsog — ||k — gllc ¢’ € X, we have
lh=gll _l[lh=—g—Ilh—gllcdl ,
_ e Ry: B, (|| fll = < =|f-g
. _ hencecx, (f) = IIf — Xull = [IfIl- As |Iflle = 1, using
where the leftmost supremum is taken over(all- 1)-dimen-  Proposition 6 we get
sional subspaces of, and||.||*»+* denotes the restriction of
P I dn(Q) =d (Bu(|le)) = [I£]

||| to X,.+1 (see, e.g., [21, p. 13]). We do not specify the depen-
dence of the Bernstein width ¢iX, ||.||), as it will be clear from > inf{||fll: Iflle =1} = 8 (B llg)) - O
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To illustrate Proposition 7, considdR™ with the I, norm the bound, equal té/+/n + 1, derived in the previous subsec-

and an orthonormal basié. As by Proposition 48(||.||s) = tion for n < m using the Bernstein width.
Bi(]]|l1, 4), we get Proposition 8 implies a lower bound on the Kolmogorov
1 width of any set7, for which there exists an orthonormal sét
dn(A) = dn (Br(||-][4)) 2 Jm with a finite value ofsup 4 ||l|c.
for anyn < m. Corollary 2: Let (X, ||.]|) be a Hilbert space; and A be its

Note that if the unit ball inG-variation has an empty subsets, and let be orthonormal with
|nter|0r with respect td|.||, then the method of estimation of

d.(B1(]|.]|¢)) based on Proposition 7 gives the trivial lower 0Fsa,¢= o ladle < oo
bound equal to zero. If A is infinite, then, for all positive integers
C. Lower Bounds on the Kolmogorov Widths of Orthogonal d,(G) >
Sets L o SA.G

_ _ o ) ) If A is finite of cardinalitys, then, for all positive integers
Even when the unit ball ig/-variation contains no ballsinthe ,, < ,,

norm |.||, it might contain a ball of nonzero radius i+varia-
tion for some set4, the Kolmogorov width of which can be do(G) > 1 -
estimated from below. In particular, fot orthonormal, we can T osaq m
use the following estimate, which is a slight improvement of a
bound obtained by Barron [6, p. 942, Lemma 6].

Proof: By Proposition 3iii),||.||¢ < s4,¢]|-||l.a. Thus,

1
Proposition 8: Let (X, ||.||) be a Hilbert space and be its By o(lll14) = Sac Billl4) € Bi(ll-lle)-
orthonormal subset. Ift is infinite, then, for all positive inte- Hence, by Proposition 6 we have

gersn 1 1
dn(@)=dn(Bi(lllle) 2 — du(Bill-la) = — dn(4)
dn(A) > 1. A,G SA,G
- and we conclude by Proposition 8. O

If A is finite of cardinalitym, then, for all positive integers

< Corollary 2 implies that, whenever the unit ballivariation
n<m

contains a ball of nonzero radigsin variation with respect to
n an infinite orthonormal set7 cannot be approximated with an
dn(A) 24 [1 - —. error smaller tham using a linear approximation scheme. No
increase at all in the dimensienof the linear approximating
Proof. Let space can decrease the Kolmogonewidth of G belowr).

X, = span{hi, ---, hn} Even whenBy (J|.||¢) is not “large enough” to contain a ball
where {hy, ---, h,} is an orthonormal subset of, and let of some nonzero radius in variation with respect to an infinite
px,: X — X, be the best approximation mapping (projectior@rthonormal set, it might contain a ball in variation with respect
from X to X,, (see, e.g., [19, p. 139]). Then, for anyc A, we tosome orthogonal set, the elements of which have norms going

have to zero “rather slowly” with respect to a positive integeThe
eg(n(a) = [la = px, (@) = 1 — [|px. (@)|I? following definition formalizes the concept of such a slow de-
crease.
and Let(X, ||.||) be anormed linear spac4jts countable subset,
by  w ) andd a positive integer. We say thatis not quickly vanishing
lpx, ()||” = Z (a-hy). with respect tof if A can be linearly ordered a$={«; :j €
=1 IN, }, so that the norms of its elements are nonincreasing and,
For anym € IN,, let A,, be a subset ofi of cardinality for all » € INy, ||a,«|| > 1/7. Note thatA is not quickly
m > n. Then vanishing with respect td if and only if it can be represented
n asA = U7C]N A,, where, for allr € INy, card A, > 7¢,
> lpx. (@)’ = Z Yo (e )<Y Il = llaf| > 1/ for all & € A,, and, for all+’ > r ande/ € Ay,
o€ J=L o i=l [l = [[e/].
Hence, there exists,,, € A,, such thaf|px, («,)||> < n/m.  The following proposition demonstrates the slow decrease of
Thus, the Kolmogorovn-widths of orthogonal, not quickly vanishing
n sets: if an orthogonal set is not quickly vanishing with respect to
ex, (am) >4 /1 ——. d andn = 7¢/2 for some integer, then itsn-width is bounded
m from below by1/(v/2/2n).

So, if A is finite of cardinality m, we haved,(A) >

P iti s Let (X, | Hil i
\/1 — n/m If Ais infinite, then for an)m € IN4, we have roposition 9: Let (X, ||.[)) be a Hilbert space and be its

countable orthogonal subset, not quickly vanishing with respect

2 /1 —n/m, henced,(4) > D' 4o a positive integed. Then, for all positive integers
Note that, for a countable orthonormal s&tProposition 8 d(A) > 1

gives a lower bound on the Kolmogorov width dflarger than

= Vayi
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where V. COMPARISON OFRATES OF LINEAR AND PERCEPTRON
my, = min {m € INy: (20 <m)(3Ir € INy) (m = rd)} ) NETWORK APPROXIMATION
If 2n = r< for some integer, then A. Variation With Respect to Perceptrons
dn(A) > + (1) To apply the tools developed in the previous sections to per-
V220 ceptron networks, we shall first derive some basic properties of
Proof: Let A, ={a1,..., .« } C A. Thencard A, =7¢  variation with respect to sets of functions computable by per-
and, by Proposition 8, for all € IN; and alln < 7 ceptrons with various types of activation functions.
da(A%) > 1 - n The most common activation functions asigmoidalsi.e.,
T, = rd bounded measurable functionsIR — IR such that
where A2 denotes the set of normalized elements4pf By _ _
Proposition 5 vi) Jm o(t) =0 and  lim o(t)=1.
1 n
dn(Ar) 2 Vv 1= rd” One can use both continuous sigmoidals (like ldgstic sig-
For anyn € IN, take the smallest € IN for which2n < moid1/(1 + exp (—t)) or thehyperbolic tangentand the dis-
m, = r¢. By Proposition 5, we have continuousHeaviside functior, defined as}(¢) = 0fort < 0
1 n 1 andd(t) = 1fort > 0. Let.J be aclosed interval ilR. Note that
dn(A) 2 dn(Ar) 2 24 /1= 5 2 ik the setP, (¥, J) of functions computable by Heaviside percep-
o trons is equal to theet of characteristic functions of half-spaces
AsT = i, we getd,(4) 2 1/(v2 /). N of R restricted to.J%. Indeed, the functiond(v - . + b)

The lower bound (1) implies that, in linear approximation ofestricted to.J¢ is equal to the characteristic function of
an orthogonal set of functions dfvariables that is not quickly {x € J% v -z + b > 0}. We shall writeH,(.J) andH, instead
vanishing with respect td, the dimension of a linear subspacef ;(¢, J) andP,(?), respectively, and we shall call variation
necessary to guarantee an accuratys to be of the order of with respect toH, variation with respect to half-spacesd
O((1/€)%). Thus, this lower bound exhibits the curse of dimerdenote it by|.| #,.
sionality (the term “dimensionality” referring to the numheér  Sometimes it is more convenient to use as an activation
of variables). the signumfunction, defined asgn (¢) = —1 for ¢ < 0 and

Let {G4: d € IN, } be a family of sets for which there existsgn (t) = 1 for t > 0. We shall writeS; instead ofP;(sgn)
orthogonal set§A,: d € IN4} not quickly vanishing with to denote variation with respect to signum perceptrons. Also
respect tal and such that, for alf, s4, ¢, = sup,c 4, ||ollq, Other types of activation functions have been considered, like
is finite. Even whens 4, ¢, does not grow too quickly witkl, the cosinefunction [34] and theamp function « [14], defined
using Proposition 9 we might get useful lower bounds on ti&sk(t) = ¢9(t), i.e.,x(¢t) = 0fort < 0O andx(t) = tfort > 0.
Kolmogorov widths of the setsGy: d € IN, }. We shall writeR,; instead ofF,(r).

Corollary 3: Let (X, |.|) be a Hilbert space, and Ay be The following proposition describes some elementary rela-

. ) o . ionships among variations with respect to perceptrons with var-
its subsetsd, be orthogonal not quickly vanishing with respec&Ous kinds of activation functions.

to a positive integed, and

0% s4, c,= sup |laflg, < oo Proposition 10: Let d be a positive integer angl€ [1, co).
“Ad,d d R

acAq Then, in(£,(J%), ||.|l,), the following holds:

Then, foranyn & IN.. ) s < Il < 31
1 . . . .
d,(Ga) > i) for any sigmoidal functionr
S544,Gq ﬁ\d/mn,
-l pucey < MllHas
where
m,, = min {m € IN,: (2n <m) (Ir € INy) (m = 7,(1) } iii) for any continuous nondecreasing sigmoidal
In particular, if2n = r¢ for some integer, then -l Pacoy = Nl a2
1
do(Gy) > ——————. (2) iv) for any continuous nondecreasing sigmoidal

$44,Gq. V2V 20
Note that the dependence®f, «, ondis crucial for the speed [-lz. = 21 Puco)-
of decrease of the estimate of the Kolmogorewidth of G.
For example, it/ is the number of variables and , ¢, is con- Proof:
stant, then (2) implies the curse of dimensionality. D) |Ils, < |-z, follows from Proposition 3 iii), noting that,

= > A
In the next section, we shall apply Corollary 3 to sets (;Prt € J = [t ] andb = maxi[ti], |t2]}

d-variable functions computable by one-hidden-layer percep- 1 1 1 1
tron networks. 0(t) = gseu(t) + 5 = Sseu(t) + gsgu(t + )



272 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 1, JANUARY 2002

implies||¥||s, < 1. Similarly,||.]|z, < 3||.||s, isobtainedfrom  Lemma 1: Let d be a positive integer and

Proposition 3 iii) noting thatgn (¢) = 29(t) — 1 = 29(¢) —
e ), el <5 " Fe &0, M), pell =)
For ii) and iii), see [16, Propositions 3.3 and 3.4]. be a plane wav¢(z) = (v - z), wherev = (v1, ..., va) €

To verify iv), consider the functiop defined ag(t) = 0 for  RG andJ = [0, 325, wil- If |91, () < oo, then
t<0,p(t)=tfor0<t<1andp(t) =1fort > 1.Since 120, 30 < 10l
pl0) = w(t) = r(t = 1), we havel. |, < 2|l nyo- ASpis o 0D i L
a continuous nondecreasing sigmoidal, it follows from iii) that/"€r¢ (fl([ , 1])-variation is considered with respect to
-l 2aipy = |-l 222 = ||l Paco) fOr any continuous nondecreasing£» ([0 11°). [ll), and Hi(J)-variation with respect to

sigmoidal functiono. O L) 1) o
Proof: Setb = [|¢|| 1, (s)- From the definition o (/)-

Thus, in(£,(J%), ||.|l,), p € [1, o), variation with respect variation, we have
to half-spaces is equal to variation with respect to perceptrons N o
with any continuous nondecreasing sigmoidal activation fung- . — —~ /
. N - i p(t)= lim Wy s HE+ i)+ Y w o, A —t+E
tion or, up to a multiplicative constant, to variation with respet?t( )= Hm Z m,0(t+tm,5) Z ¥ )

. . Jj=1 Jj=1
to signum or ramp perceptrons. In particular

in (L,(J), |I-llp), where, for albn € IN,,
Bl(””]’d(o’)) = Bl(HHHd) trn,Oa ey tnl,nmatrn’707 ey tnl’,nm/ eJ

for any continuous nondecreasing sigmoidalrhus, applying and

to perceptron networks with such sigmoidals Corollary 1 (as M !
well as its various extensions 1, spaces wittp € (1, oo), S w1 Y fwhy ;| < 0.
which can also be formulated in terms of variation), we can J=1 i=1
restrict our investigation to variation with respect to half-spaceé. d d
Moreover, since by Proposition 10 i) for any sigmoidal functioh'™" forallz € [0, 1% v -z € J =0, 3.;_, v, we have

o we have %
Pv-x2)= lim Wi, j NV -2+t )
Bi([[-lpucer) 2 Br(ll-lm.) S
any lower bound ond,(Bi(||.||z,)) can be applied to X ,
dn(Bl(H-HPd(o)))- +Z:l wnl/7j0(_v'$+tnl’7j)
J:

B. Variation With Respect to Half-Spaces of Plane Waves in (£, ([0, 1]¢), |.||,)- Hence,

To obtain a lower bound on the Kolmogorov width of the unit|| £ () || 7, (0. 172) = 19 (v - @)l 1.0, 179y < b = 19 11, (-
ball in variation with respect to half-spaces, we shall use not O
quickly vanishing orthogonal families containing plane waves.

Afunction f:IR* — R is called gplane wavef it can be repre-  Lemma 2: Let 2: J — IR be a function of bounded variation
sented ag(x) = ¢ (v-z), wherey: R — R andv € R. Note over a closed interval C IR. Then

that plane waves are constant along hyperplanes parallel to the 3 <V(h.J 3
: . ) 0
cozero hyperplanéz € IR v - z = 0} of the linear function WAlls ) < VI )+ [R(O)]
v - T where Hy(.J)-variation is considered with respect to

For d = 1, variation with respect to half-spaces coincide&Cp(/); [Illp), p € [1, o0). .
with total variation up to a constant [15], [16]. Recall that the ~ Proof: By [27, Theorem 6] (see also [15]) applied to
total variationof a functionh: J — IR of bounded variation on A(t) = h(t) — h(0), we get

J = [to, t,] is defined as 12l 71, (7)o = V(R )

V(h, J) = sup Z Ih(t:) — h(ts_1)| where||.||, (5., denotesH, (J)-variation with respect to the
=1

topology of the uniform convergence gnWe conclude noting

that
where the supremum is taken over all finite partitigns< - - - < _
t, of J (see, e.g., [18, p. 328)). It follows directly from the Vih, J) =V (h, J)
definition of total variation that, for a periodic functign IR — h <R (0
IR with a periodr and bounded variation g, 7] and WAllrs (s < IR )+ [RCO)]
l
Vi< [ vin .7 @ Ml < Il 51

wherel denotes the length of the interval where||.|| (s denotes (J)-variation with respect tg}. ||.

Variation with respect to half-spaces of a plane wage) =
(v - z) can be estimated in terms of the total variationjof =~ From Lemma 1 and Lemma 2, we get the following upper
using the property (3) together with the following two lemmadound on variation with respect to half-spaces of plane waves.
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Proposition 11: Let d be a positive integer, It should be noted that in [6] the Kolmogoravwidth dy, (Ff)

- . . d . Nd . _

f c (Lp([O, 1](1)7 HHP)? pE [1’ OO) IS_ COI’]SId_GI’Gd II’QSQ([O, 1] ), ||||2), while 6Pd(0)7k(r6) IS ((:io_n

sidered in(£L2(BY), ||-]|2). The volume of the unit balB{ in

be a plane wave SUCE‘ that(z) = (v - x), where R4 iththel, norm is equal tar®/2/T'((d+2)/2) [35, p. 304],

v = _(1117 ., va) € RY, and;/; be a function of bounded \ynerer denotes the gamma function. Thus, the Lebesgue mea-

variation onJ, whereJ = [0, >~°_, v;]. Then sure of B¢ goes to zero with the dimensieh in contrast to the
1l a0, 139 < V@, J) + [3(0)]. behavior of thed-dimensional cube of side (see also the re-

marks in [36, Sec. 18.2]).
C. Lower Bounds for Perceptrons With Periodic or Sigmoidal Barvon [6] c_ompared ".”eaf approxmatpn bydimensional
Activations subspacgs wnh approx!matlon.by .S|gm0|dal perceptron net-
works with k£ hidden units. Taking into account the number
We shall derive estimates of the Kolmogorov widths of ballsf free parameters, we shall instead compare approximation
in variation with respect to perceptrons using embeddings 9§ k(4 + 2)-dimensional subspaces with networks having

suitable orthogonal sets. _ k perceptrons. We shall derive a lower bound of the form
It is easy to check that the family 1/(4d3/2k(d +2)) on the Kolmogorovk(d + 2)-width in
M .
A(sin) = {3 s ) v e INY (£2([0, 1]%), ||.]|l2) of the set of functions computable by
a(sin) {\/_ sinrv - 2): v € +} networks withk sigmoidal perceptrons. Further, we shall show

is orthonormal in(£([0, 1]%), ||.||2) for all positive integersl.  that, for Heaviside activation functions, the worst case error is
As Ay(sin) is a subset of/2 Py(sin) the following lower achieved.

bound follows from Proposition 8. To derive from Corollary 3 lower bounds on the Kolmogorov

Proposition 12: For all positive integers d, », in width of balls in variation with respect to half-spaces, we shall

(L2([0, 11D, [|-]]2) scale elements dfsin(7v - x): v € IN¢ } to obtain an orthog-
. 1 onal set not quickly vanishing with respectdpwhich can be
dp(Pa(sin)) = dn(B1(||-l| py(sin))) = 75 embedded in a ball in variation with respect to half-spaces.

Thus, there is no possibility of decreasing fheworst case er- ~ Theorem 2:In (£5([0, 1]%), ||.]|2), for all positive integerd

ror in linear approximation oB; (||.|| p,(sin)) (€ven of Py(sin)) andn

under1/+/2 by increasing the dimension of a linear approxi- 1

mating épace. Thus, perceptrons with sine activation cannot be dn(Ha) = dn (Br(||-l12)) 2 dm, (Ha) 2 4d Ym,,

efficiently approximated linearly. W
On the other hand, from Corollary 1 it follows that func-

tions in the unit ballBy(||.| p,(siny) can be approximated by 7, = min {meINy: (2n <m)(Fr € INy) (m =7r9)}.

span,, Py(sin) with a worst case error bounded from above by |, particular, if2n — r

O(1/v/k). More precisely '

6Pd(sin),k (Bl(HHPd(an))) S 4d\d/ 27’L
Barron [6, p. 942, Theorem 6] considered sets of functions Proof. Using Corollary 3 a_nd Proposition 11, we Sh‘?‘” de-
d : rive a lower bound o®,,(H) using an orthogonal, not quickly
r<, ¢ > 0, defined as . . .
¢ vanishing set4,; obtained by a proper scaling of the elements of
Fd: {f IRd—>IR,: / |w| |f(w)|dw < C} the SetAd(Sin) = {\/i Sin(m}-aﬁ):v EINi} FOI’d7 r EIN+,
€ R4 - set

here

¢ for some integer, then

do(Ha) = dn (Bu( 1) > —

5~
ol

where/ is the Fourier transform of, and|w| = \/w - wdenotes Ag = {%(.): vell, ..., 7,}(1} c (/;2([07 1]4), ||.||2)
the I, norm of the frequency (note that, withd increasing,
the condition defining the sef¥ becomes more constraining).Vhere

Barron proved that, ifL2([0, 1]9), ||-||2) (@) = ey sin(ro - 2): [0, 1] — R

—d ca
di. (D)) > ——
wl C)_dxd/ﬁ v="(vi, ..., v) € R%, and

wherea > 1/(8r¢™) andTs = {f|p,y«: f € T'¢}, while, 42
in (L2(B7), [I]]2) wTTd '

- 2¢ > Uk

Spy(ay, k(I8 < == k=1
vk Let Ag=U, cpv, Ad, - We shall show thatt € By (1|1 ),

wherel'? = {flps: f € I'Y} and Bf denotes the unit ball in and thatA, is not quickly vanishing with respect tb
IR* with the I, norm. (The reader should note that there is an We first verify thatAy C B, (||l x,)- By Proposition 11
unfortunate misprint in the Discussion in [6] referring to the

d d
result of [6, Theorem 6] a®(1//n), omitting the factord in || sin(zv - )| s, <V | sin(at), |0, Z vl ] <2 Z vk |
the denominator.) T =1 I ot
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Thus, for anyw, € Ay, ||c ||, < 2d+/2, and hence by Propo- where
sition 3 iii), ||.]|z, < 2dv/2||.]|a,. Finally, by Proposition 6 i) = min {m € Ny: (2n < m) (3 € N4) (m = )}

and iii), we obtain

1 In particular, for2n = ¢ for some integer
dn(Ha) = dn (Br(||-|1.)) 2 203 dn(Aa)-

dn (Pa(0))

ReindexA, as{«;:¢ € IN; } using a linear ordering dN‘fr

such that the sequenggc;||»: i € IN,} is nonincreasing and, As the number of free parameters in a perceptron net-
for all » € IN4, v, corresponds tey;,., . AS work with & hidden units isk(d + 2), we have to compare
dia+2)(Bill | pacoy)) With 6p, o), k(B1(ll-| pa(o)))-  From
Corollaries 1 and 5 we obtain, fer nondecreasing sigmoidal,

1
d, (B1(]]. )z —.
( 1(” ||Pd( ))) 4d\d’/%

2 2 1
—— sin(mv - 2)|| = — [|sin(7v-z)||2 = =
r r

llevyalla = ‘

dr ) the following estimates:
Aq is not quickly vanishing with respect th Hence, by Propo- di(at2y (Bl pacey)) = digata) (Palo))
sition 9, for all positive integers we get 1 1
) = b (Bull) 2 5 () = ® 4aVe Viv2
where e WBulH ) <
my, =min {m € INy: (2n < m) (Fr € IN;) (m = 7"1)} . O
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within an error smaller tham/(4d/2n). discussions.

Corollary 4: For all positive integerd, n, and any»-dimen-
sional subspac&’,, of (£2([0, 1]¢), ||.||2), there exists a char-
acteristic functiony of a half-space of0, 1] such that
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