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Comparison of Worst Case Errors in Linear and
Neural Network Approximation

Věra Kůrková and Marcello Sanguineti

Abstract—Sets of multivariable functions are described for
which worst case errors in linear approximation are larger
than those in approximation by neural networks. A theoretical
framework for such a description is developed in the context of
nonlinear approximation by fixed versus variable basis functions.
Comparisons of approximation rates are formulated in terms of
certain norms tailored to sets of basis functions. The results are
applied to perceptron networks.

Index Terms—Complexity of neural networks, curse of dimen-
sionality, high-dimensional optimization, linear and nonlinear ap-
proximation, rates of approximation.

SUMMARY OF NOTATION
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Deviation of the set from the set in
.

Deviation of the set from span in
.

Kolmogorov -width of the set in .
Bernstein -width of the set in .
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span Set of functions computable by a-network

with hidden units.
Heaviside function.
Ramp function.
Closed interval in .

, Set of functions on computable by -per-
ceptrons, .

, , .
norm with respect to .
-variation with respect to .

Variation with respect to half-spaces (Heavi-
side perceptrons).
Variation with respect to signum perceptrons.
Variation with respect to ramp perceptrons.
Total variation of .

.

I. INTRODUCTION

I N many applications, where the approximate solution of
multivariable optimization problems is required, proper use

of neural networks as approximators helps to cope with the
“curse of dimensionality” [1] and so to prevent the optimization
task from becoming unmanageably complex with a growing
number of variables. This is the case, for example, with dy-
namic programming [2], parametric approximation of decision
strategies in optimization problems with high-dimensional
state or output spaces [3], pattern recognition [4], approximate
minimization of functionals [5], etc.

While theoretical investigations of approximation by neural
networks have mostly focused on the existence of an arbitrarily
close approximation and on how accuracy depends on a net-
work’s complexity, the difference between linear and neural ap-
proximators has remained less understood.

The first result attempting to explain the advantages of neuro-
computing methods is Barron’s [6] comparison of the worst case
errors in linear and neural network approximation. He described
sets of multivariable functions for which the approxima-
tion error by one-hidden-layer sigmoidal perceptron networks
is bounded from above by , where is the number of
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network hidden units, while the error of the best linear ap-
proximator is bounded from below by , where
is the dimension of the linear approximating subspace andis
the number of variables of the functions to be approximated. As
the number of free parameters of functions computable by one-
hidden-layer perceptron networks withhidden units is

, Barron compares an upper bound of the order of
with a lower bound of the order of .

Kainen, Kůrková, and Vogt [7], [8] have initiated the study
of the comparison of properties of projections (best approxi-
mation operators) in linear and neural network approximation.
They have shown that many useful properties of best approxi-
mation operators, like uniqueness, homogeneity, and continuity,
are not satisfied by neural networks, and have suggested that
this loss might allow improved approximation rates (as the argu-
ments proving the slow rates of linear approximators are based
on such properties).

In this paper, we improve and extend the results by Barron [6]
on the comparison of rates of approximation. Generally,rates of
approximationdescribe the tradeoff between the accuracy of ap-
proximation and the “complexity” of approximating functions.
When such functions belong to a parameterized family, their
complexity can be measured by the lengths of parameter vectors
(depending on the number of variables and, e.g., on the degree
of a polynomial or a rational function, on the number of knots
in a spline, on the number of hidden units in a neural network,
etc.).

To describe sets of multivariable functions, for which worst
case errors in linear approximation are larger than those in
approximation by neural networks, we investigate such errors
in a general framework of fixed- versus variable-basis approx-
imation. We callfixed-basis approximationan approximation
scheme where the approximating functions are elements of
finite-dimensional subspaces generated by the firstelements
of a fixed basis, while invariable-basis approximation, the
approximating functions are linear combinations of all-tu-
ples of elements of a given set. For example, algebraic and
trigonometric polynomials belong to fixed-basis approxima-
tion, whereas free-node splines [9, Ch. 13], trigonometric
polynomials with free frequencies [11], and feedforward neural
networks belong to the variable-basis family.

Within the general framework of fixed- and variable-basis ap-
proximation, we derive estimates of worst case errors, formal-
ized for the fixed-basis functions by the concept ofKolmogorov

-width (infimum of deviations from -dimensional linear sub-
spaces) and, for the variable ones, by thedeviation from the
union of finite-dimensional subspacesgenerated by all -tuples
of functions from a given basis. Considering relatively “small”
(of the order of ) upper bounds on such deviations
of balls in certain norms, we investigate “large” lower bounds
on their Kolmogorov widths. The norms we use to define these
balls are tailored to various sets of variable-basis functions. The
class of such norms includes norm [12], “spectral” norms
[13], [6], [14], a generalization of total variation [15], [16], etc.
We investigate several methods for deriving lower bounds on the
Kolmogorov widths of balls in norms from this class. The lower
bounds are formulated in terms of either the Bernstein width or

the “capacity” of the basis (in the sense that its convex hull has
an orthogonal subset containing, for any positive integer, at
least functions with norms greater than or equal to ).

Applying these estimates to balls in norms tailored to percep-
trons with periodic or sigmoidal activations, we obtain classes of
multivariable functions for which neural networks outperform
linear methods. Functions from such classes can be approxi-
mated by perceptron networks havinghidden units within an
accuracy of the order of , while, for some periodic ac-
tivations, no increase in the dimension of a linear approximating
subspace can decrease the worst case error below a constant
(Proposition 12). For sigmoidal activations, the worst case error
in linear approximation is bounded from below by a quantity
of the form (Theorem 2 and Corollaries 4
and 5).

The paper is organized as follows. Section II contains basic
concepts concerning approximation in normed linear spaces and
feedforward neural networks. Section III describes approxima-
tion rates of the order of by one-hidden-layer neural
networks with computational units, in terms of balls in certain
norms tailored to such units. To compare these rates with those
achievable using linear approximation schemes, in Section IV,
we investigate methods of estimation of the Kolmogorov widths
of balls in the above-mentioned norms. In Section V, the tools
developed in the previous sections are applied to perceptron net-
works.

II. PRELIMINARIES

A. Approximation in Normed Linear Spaces

For basic concepts concerning functional analysis and
topology see, e.g., [17].

In this paper, anormed linear spaceis assumed to be real and
is denoted by or merely when there is no ambiguity
on the norm. The dimension of is denoted by . By

, , we denote the norm with respect to the
Lebesgue measure. denotes the set of real numbers, the
set of positive real numbers, and the set of positive integers.

If is a normed linear space, denotes the ball
of radius , i.e., .

If is a subset of , denotes the set of itsnormal-
izedelements, i.e.,

Theclosureof is denoted bycl ; is densein if cl

. The interior and theboundaryof are denoted by
and , respectively. For , we define

and for positive

is calledhomogeneousif for all . If
, then is calledcentrally symmetric. If ,

then is calledbalanced. is called thebalanced hull of .
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TheMinkowski functional of a subset of a linear space
is defined for all as

(see, e.g., [18, p. 131]). When is balanced and convex, is
a norm on .

The linear spanof is denoted byspan , i.e.,

span

span denotes the set of all linear combinations of at most
elements of , i.e.,

span

Theconvex hullof is denoted byconv , i.e.,

conv

conv denotes the set of all convex combinations of at most
elements of , i.e.,

conv

A set is calledconvexif conv .
The error functional of a subset of

is defined as

For any normed linear space and , is uni-
formly continuous but does not need to be linear (see, e.g., [19,
pp. 139–140 and p. 391]).

Theworst case approximation erroris formalized by the con-
cept ofdeviationof a set of functions to be approximated from
a set of approximating functions, defined as

We do not specify the dependence of deviation on as
it will be clear from the context. Note that deviation describes
the “size” of the smallest neighborhood of containing :

is the infimum of all , for which

Proposition 1: Let be a normed linear space and let
, , and be its subsets. Then

i) if , then ;

ii) cl ;

iii) if is homogeneous, then, for any ,
;

iv) if is convex, then conv .

Proof: i) and ii) follow directly from the definition of de-
viation and from the continuity of the error functional.

iii) holds as

iv)

where

If , then conv conv .
Hence, conv .

An approximation is calledlinear when the approximating
functions belong to alinear subspace, often generated by the
first elements of a given linearly ordered set (for example, the
set of all polynomials of order at most , generated by the
first elements of the set ). We call such an
approximation schemefixed-basis approximation, in contrast to
variable-basis approximation, where the approximating func-
tions are linear combinations of all-tuples of elements of a
given set . They form the setspan of all linear combina-
tions of at most elements of , which is theunion of finite-di-
mensional subspacesgenerated by -tuples of elements of
(e.g., approximation by trigonometric polynomials with free fre-
quencies, being the set of sines and cosines with arbitrary fre-
quencies). The number of parameters ofspan depends on
and on the number of parameters of the elements of.

B. One-Hidden-Layer Feedforward Neural Networks

Feedforward neural networks compute parameterized sets of
functions dependent both on the type of computational units and
on the type of their interconnections.Computational unitscom-
pute functions of two vector variables: an
input vectorand aparameter vector. corresponds to the type
of unit and and correspond to the dimensions of theparam-
eter spaceand of theinput space, respectively.

We call -networksone-hidden-layer feedforward networks
with hidden units computing a function and a single linear
output unit. Thus, -networks compute functions of the form

where . Let us denote by

the parameterized set of functions corresponding to the compu-
tational unit . A -network with hidden units can generate as
its input–output functions all the elements ofspan , which
is the union of all at most-dimensional subspaces spanned by

-tuples of elements of . Thus,span belongs to vari-
able-basis approximation. Note that the number of free param-
eters in a -network with computational units is .

Standard types of hidden units are perceptrons. Aperceptron
with anactivation function computes functions of
the form



KŮRKOVÁ AND SANGUINETI: COMPARISON OF WORST CASE ERRORS IN LINEAR AND NEURAL NETWORK APPROXIMATION 267

where is an input weight vectorand is abias.
Let be a closed interval in . We denote by

the set of functions on computable by -perceptrons. When
it is clear from the context what is considered, we shall simply
write instead of . span represents the
set of functions on computable by -perceptron networks
with hidden units, andspan denotes the set of func-
tions on computable by such networks with any number of
hidden units. The number of free parameters in a perceptron net-
work with perceptrons is .

C. Rates of Approximation

Rates of approximation describe the tradeoff between the ac-
curacy of approximation and the “complexity” of approximating
functions. When a class of such functions is represented as the
union of a nested sequence of sets of parameterized functions,
the complexity corresponds to the increasing length of a param-
eter vector. Let be a sequence of nested subsets
of a normed linear space . Therate of approximationof
a subset of by can be investigated in terms
of worst case errors, corresponding to the deviations .

If is dense in , then, for any , the se-
quence converges to . In practical appli-
cations, this convergence has to be sufficiently fast to guarantee
the desired accuracy of approximation forsmall enough so that
the functions from have a moderate number of parameters.
In the case of functions of variables, sometimes it happens
that deviations are of the order of . In such a case, to
achieve accuracy within, approximating functions with com-
plexity of the order of are needed. Such exponential
dependence of complexity on the number of variables is called
thecurse of dimensionality[1].

In fixed-basis approximation, the nested sets are -di-
mensional subspaces. The number of free parameters is then
equal to (the free parameters are only the coefficients of the
linear combinations of the first fixed-basis functions). To de-
scribe a theoretical lower bound on linear approximation, Kol-
mogorov [20] investigated the infimum of deviations over all

-dimensional subspaces of. He introduced the concept of
-width (which was later calledKolmogorov -width) of a set
, defined as

where the leftmost infimum is taken over all-dimensional sub-
spaces of . For example, in the Kol-
mogorov widths of certain balls in Sobolev norms defined in
terms of a fixed degree of smoothness exhibit the curse of di-
mensionality [21, pp. 232–233]. However, if the requirements
on smoothness are appropriately increased with the number
of variables, then the curse of dimensionality can be avoided.

In the case of variable-basis approximation by-networks
with computational units, corresponds tospan . The
number of free parameters is equal to , where is
the number of free parameters of each hidden unit. Given a

set of functions to be approximated, to eval-
uate the rates of variable-basis approximation by-networks
with units in the hidden layer we shall investigate the devi-
ation span . As we are interested in the comparison
of approximation rates by-networks having computational
units with the rates achievable by the optimal linear approxima-
tors with the same number of free parameters, we shall compare

span with the Kolmogorov width .

III. D EVIATION FROM span OF BALLS IN -VARIATION

A. Properties of Deviation From Unions of Finite-Dimensional
Subspaces

To derive tools for estimating rates of approximation by
variable-basis functions, we investigate the properties of sets of
functions of the formspan , where is a subset of a normed
linear space . This approximation scheme includes
nonlinear trigonometric approximation (i.e., approximation
by trigonometric polynomials with free frequencies; see, e.g.,
[11]) as well as free-node splines (see, e.g., [9, Ch. 13]) and
one-hidden-layer feedforward neural networks. Multilayer
feedforward networks with a single linear output unit and
units in the last hidden layer belong to this approximation
scheme as well, but they correspond to more complex sets,
which depend on the number of units in the previous hidden
layers.

To simplify the notation, we shall denote the deviation of
from span by , i.e.,

span

The following proposition states the basic properties of
that follow directly from its definition and from Proposition 1
(note thatspan is homogeneous).

Proposition 2: Let be a normed linear space and,
and be its subsets. Then, for any positive integer,

i) if , then ;

ii) ;

iii) cl ;

iv) for any , .

B. Variation With Respect to a Set of Functions

Sets of multivariable functions with upper bounds of the order
of on the deviation fromspan can be described in
terms of a norm tailored to a given set.

For a subset of a normed linear space , -variation
(variation with respect to the set), denoted by , is defined
as the Minkowski functional of the setcl conv , i.e.,

cl conv

Note that

cl conv

as conv conv . -variation is a norm on
the subspace . It was defined
by Kůrková [22] as an extension of Barron’s [15] concept of
variation with respect to half-spaces. Note that represents
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the minimum “dilation” of the set guaranteeing that is con-
tained in the closure of the convex symmetric hull of the “di-
lated” set.

When is finite-dimensional, all norms on are equivalent.
Hence, in such a case,-variation does not depend on the norm
on . In the infinite-dimensional case,-variation in general
depends on the choice of a norm on. To simplify the notation,
we shall not write such dependence explicitly, as the norm will
be clear from the context.

The following proposition states the basic properties of
-variation.

Proposition 3: Let be a normed linear space,and
be its subsets, and . Then

i) for all

ii) if is finite with card and span , then

iii) if and only if, for all .

Proof:
i) Follows from the definitions of and .
For ii), see [23, Proposition 2.3].
iii) Follows from elementary properties of norms and from

the fact that for all if and only if it
holds for all .

-variation is a generalization of norm. Let be an or-
thonormal basis of a separable Hilbert space . The
norm with respect to of is defined as

The following relationship between -variation and norm
with respect to has been shown in [12].

Proposition 4 [12]: Let be a separable Hilbert
space and its orthonormal basis. Then .

Thus, when is an orthonormal basis, the unit ball in-vari-
ation coincides with the unit ball in norm with respect to .

C. Upper Bounds on the Deviations of Balls in-Variation

Some insights into the properties of sets of multivariable
functions that can be approximated by neural networks with
rates of the order of have been obtained by Jones [13]
and Barron [6]. The same estimate of approximation rates had
earlier been proved by Maurey (see [24]). Using the concept of

-variation, Kůrková [22], [25] has reformulated Barron’s [6]
improvement of Jones’ result [13] in the following way.

Theorem 1: Let be a Hilbert space, its subset, and
. Then, for any and for any positive

integer

span

Sincespan span ( denotes the set of the normal-
ized elements of ), Theorem 1 implies

span

As an immediate corollary, we get a description of sets of
multivariable functions that can be approximated byspan

with rates of the order of .

Corollary 1: Let be a Hilbert space, its subset,
and . Then, for any positive integer

and

If the elements of are functions of variables, then
Corollary 1 implies that functions in the unit ball in -varia-
tion can be approximated by elements ofspan with a rate
that does not depend on. This estimate of rate of approxi-
mation is sometimes called “dimension-independent” (see, e.g.,
[26]). However, this term is misleading as, with an increasing
number of variables, the condition of being in the unit ball in

-variation becomes more and more constraining (see [23] for
examples of functions with variations dependent oneven ex-
ponentially).

Note that the upper bounds on in terms of -varia-
tion are not restricted to Hilbert spaces. In [27], the result by
Maurey, Jones, and Barron has been extended tospaces, for

, with a slightly worse rate of approximation (of the
order of , where ). There also
exist extensions to (see, e.g., [15], [28]–[30], and [23]). An
interesting improvement has been derived in [31], combining a
concept from metric entropy theory with a probabilistic argu-
ment. The tightness of the bound has been investi-
gated in [15], [31], [23], [32] and [12].

IV. K OLMOGOROVWIDTHS OFBALLS IN -VARIATION

A. Basic Properties of the Kolmogorov Widths of Balls in
-Variation

The following proposition summarizes the basic properties of
the Kolmogorov -width (see [33, pp. 132-133] and [21, p. 10]).

Proposition 5: Let be a normed linear space and
and be its subsets. Then, for all positive integers

i) if , then ;

ii) ;

iii) cl ;

iv) for any ;

v) conv ;

vi) ;

vii) if , then .

Thus, the Kolmogorov width of a set is equal to the Kolmogorov
width of its closed, convex, balanced hull. As a convex balanced
set determines a norm on the spacein which it forms the unit
ball (via the Minkowski functional), the Kolmogorov width is
essentially a property of balls in various norms on. It repre-
sents the best possible accuracy that can be achieved when such
balls are approximated linearly.
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To describe sets of functions for which variable-basis
approximation by -networks outperforms linear methods,
we shall consider the unit balls in -variations as the sets
of functions to be approximated and we shall find conditions
on that guarantee that is smaller than

(recall that is the number of free
parameters in a -network with computational units). We
shall start by investigating lower bounds on the Kolmogorov
widths of balls in variation with respect to a set. The
following proposition summarizes the basic properties of

.

Proposition 6: Let be a normed linear space and
and be its subsets. Then for any positive integer

i) ;

ii) if , then ;

iii) if , then

Proof:
i) Follows from Proposition 5 iii), v), vii), and from

cl conv .
ii) As implies , we have

.
iii) Follows from Proposition 3 iii) and Proposition 5 iv),

noting that implies .

The first of these elementary properties has an important con-
sequence. It implies that any estimate of the worst case error in
linear approximation of the unit ball in -variation also applies
to itself. Thus, the speed of decrease of can be evalu-
ated using . To derive a lower bound on the Kol-
mogorov -width of might be easier than for .

B. Lower Bounds in Terms of the Bernstein Width

As pointed out by Proposition 3 i), for any subsetof a
normed linear space , , where

. Thus, when , the unit ball in contains
the ball of radius in -variation. When also the unit ball in

-variation contains a ball of some nonzero radius in(i.e., it
has a nonempty interior in the topology induced onby ),
then the norms and are equivalent. In such a case, the
Bernstein width can be used to estimate the Kolmogorov width
of .

TheBernstein -widthof a subset of a normed linear space
is defined as

where the leftmost supremum is taken over all -dimen-
sional subspaces of , and denotes the restriction of

to (see, e.g., [21, p. 13]). We do not specify the depen-
dence of the Bernstein width on , as it will be clear from

the context. If is closed, convex, and centrally symmetric,
then, for all integers

An argument based on the Borsuk Antipodality Theorem
(see, e.g., [21, p. 11]) shows that the Kolmogorov-width
is bounded from below by the Bernstein-width. More pre-
cisely, for any closed, convex, centrally symmetric subset
of a Banach space and for any positive integer ,

[21, p. 13]. To obtain from this estimate a
lower bound on

larger than the upper bound on guaranteed
by Corollary 1, has to be larger than .

Let be a countable orthonormal basis of a separable
Hilbert space and, for any , where

card , let

span

and

Then

By Proposition 4, we have , hence we
get, for all card

Let

The following bound is obtained by an elementary argument,
which is a slight extension of a result from [33, p. 133].

Proposition 7: Let be a Banach space andbe its
subset such that for any . Then, for any
positive integer such that

Proof: Let be an -dimensional subspace of and
. Then there exists such that

(see, e.g., [19, p. 98]). Let

We shall show that . As for all
also , we have

hence . As , using
Proposition 6 we get
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To illustrate Proposition 7, consider with the norm
and an orthonormal basis. As by Proposition 4

, we get

for any .
Note that if the unit ball in -variation has an empty

interior with respect to , then the method of estimation of
based on Proposition 7 gives the trivial lower

bound equal to zero.

C. Lower Bounds on the Kolmogorov Widths of Orthogonal
Sets

Even when the unit ball in -variation contains no balls in the
norm , it might contain a ball of nonzero radius in-varia-
tion for some set , the Kolmogorov width of which can be
estimated from below. In particular, for orthonormal, we can
use the following estimate, which is a slight improvement of a
bound obtained by Barron [6, p. 942, Lemma 6].

Proposition 8: Let be a Hilbert space and be its
orthonormal subset. If is infinite, then, for all positive inte-
gers

If is finite of cardinality , then, for all positive integers

Proof: Let

span

where is an orthonormal subset of , and let
be the best approximation mapping (projection)

from to (see, e.g., [19, p. 139]). Then, for any , we
have

and

For any , let be a subset of of cardinality
. Then

Hence, there exists such that .
Thus,

So, if is finite of cardinality , we have
. If is infinite, then, for any , we have

, hence .

Note that, for a countable orthonormal set, Proposition 8
gives a lower bound on the Kolmogorov width oflarger than

the bound, equal to , derived in the previous subsec-
tion for using the Bernstein width.

Proposition 8 implies a lower bound on the Kolmogorov
width of any set , for which there exists an orthonormal set
with a finite value of .

Corollary 2: Let be a Hilbert space, and be its
subsets, and let be orthonormal with

If is infinite, then, for all positive integers

If is finite of cardinality , then, for all positive integers

Proof: By Proposition 3 iii), . Thus,

Hence, by Proposition 6 we have

and we conclude by Proposition 8.

Corollary 2 implies that, whenever the unit ball in-variation
contains a ball of nonzero radiusin variation with respect to
an infinite orthonormal set, cannot be approximated with an
error smaller than using a linear approximation scheme. No
increase at all in the dimensionof the linear approximating
space can decrease the Kolmogorov-width of below .

Even when is not “large enough” to contain a ball
of some nonzero radius in variation with respect to an infinite
orthonormal set, it might contain a ball in variation with respect
to some orthogonal set, the elements of which have norms going
to zero “rather slowly” with respect to a positive integer. The
following definition formalizes the concept of such a slow de-
crease.

Let be a normed linear space,its countable subset,
and a positive integer. We say that is not quickly vanishing
with respect to if can be linearly ordered as

, so that the norms of its elements are nonincreasing and,
for all , . Note that is not quickly
vanishing with respect to if and only if it can be represented
as , where, for all , card ,

for all , and, for all and ,
.

The following proposition demonstrates the slow decrease of
the Kolmogorov -widths of orthogonal, not quickly vanishing
sets: if an orthogonal set is not quickly vanishing with respect to

and for some integer, then its -width is bounded
from below by .

Proposition 9: Let be a Hilbert space and be its
countable orthogonal subset, not quickly vanishing with respect
to a positive integer . Then, for all positive integers
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where

If for some integer , then

(1)

Proof: Let . Thencard
and, by Proposition 8, for all and all

where denotes the set of normalized elements of. By
Proposition 5 vi)

For any , take the smallest for which
. By Proposition 5, we have

As , we get .

The lower bound (1) implies that, in linear approximation of
an orthogonal set of functions ofvariables that is not quickly
vanishing with respect to, the dimension of a linear subspace
necessary to guarantee an accuracyhas to be of the order of

. Thus, this lower bound exhibits the curse of dimen-
sionality (the term “dimensionality” referring to the number
of variables).

Let be a family of sets for which there exist
orthogonal sets not quickly vanishing with
respect to and such that, for all,
is finite. Even when does not grow too quickly with,
using Proposition 9 we might get useful lower bounds on the
Kolmogorov widths of the sets .

Corollary 3: Let be a Hilbert space, and be
its subsets, be orthogonal not quickly vanishing with respect
to a positive integer , and

Then, for any

where

In particular, if for some integer , then

(2)

Note that the dependence of on is crucial for the speed
of decrease of the estimate of the Kolmogorov-width of .
For example, if is the number of variables and is con-
stant, then (2) implies the curse of dimensionality.

In the next section, we shall apply Corollary 3 to sets of
-variable functions computable by one-hidden-layer percep-

tron networks.

V. COMPARISON OFRATES OFLINEAR AND PERCEPTRON

NETWORK APPROXIMATION

A. Variation With Respect to Perceptrons

To apply the tools developed in the previous sections to per-
ceptron networks, we shall first derive some basic properties of
variation with respect to sets of functions computable by per-
ceptrons with various types of activation functions.

The most common activation functions aresigmoidals, i.e.,
bounded measurable functions such that

and

One can use both continuous sigmoidals (like thelogistic sig-
moid or thehyperbolic tangent) and the dis-
continuousHeaviside function , defined as for
and for . Let be a closed interval in . Note that
the set of functions computable by Heaviside percep-
trons is equal to theset of characteristic functions of half-spaces
of restricted to . Indeed, the function
restricted to is equal to the characteristic function of

. We shall write and instead
of and , respectively, and we shall call variation
with respect to variation with respect to half-spacesand
denote it by .

Sometimes it is more convenient to use as an activation
the signumfunction, defined as for and

for . We shall write instead of
to denote variation with respect to signum perceptrons. Also
other types of activation functions have been considered, like
thecosinefunction [34] and theramp function [14], defined
as , i.e., for and for .
We shall write instead of .

The following proposition describes some elementary rela-
tionships among variations with respect to perceptrons with var-
ious kinds of activation functions.

Proposition 10: Let be a positive integer and .
Then, in , the following holds:

i) ;

ii) for any sigmoidal function

iii) for any continuous nondecreasing sigmoidal

iv) for any continuous nondecreasing sigmoidal

Proof:
i) follows from Proposition 3 iii), noting that,

for and
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implies . Similarly, is obtained from
Proposition 3 iii) noting that

, implies .
For ii) and iii), see [16, Propositions 3.3 and 3.4].
To verify iv), consider the function defined as for

, for , and for . Since
, we have . As is

a continuous nondecreasing sigmoidal, it follows from iii) that
for any continuous nondecreasing

sigmoidal function .

Thus, in , , variation with respect
to half-spaces is equal to variation with respect to perceptrons
with any continuous nondecreasing sigmoidal activation func-
tion or, up to a multiplicative constant, to variation with respect
to signum or ramp perceptrons. In particular

for any continuous nondecreasing sigmoidal. Thus, applying
to perceptron networks with such sigmoidals Corollary 1 (as
well as its various extensions to spaces with ,
which can also be formulated in terms of variation), we can
restrict our investigation to variation with respect to half-spaces.
Moreover, since by Proposition 10 ii) for any sigmoidal function

we have

any lower bound on can be applied to
.

B. Variation With Respect to Half-Spaces of Plane Waves

To obtain a lower bound on the Kolmogorov width of the unit
ball in variation with respect to half-spaces, we shall use not
quickly vanishing orthogonal families containing plane waves.
A function is called aplane waveif it can be repre-
sented as , where and . Note
that plane waves are constant along hyperplanes parallel to the
cozero hyperplane of the linear function

.
For , variation with respect to half-spaces coincides

with total variation up to a constant [15], [16]. Recall that the
total variationof a function of bounded variation on

is defined as

where the supremum is taken over all finite partitions
of (see, e.g., [18, p. 328]). It follows directly from the

definition of total variation that, for a periodic function
with a period and bounded variation on

(3)

where denotes the length of the interval.
Variation with respect to half-spaces of a plane wave

can be estimated in terms of the total variation of
using the property (3) together with the following two lemmas.

Lemma 1: Let be a positive integer and

be a plane wave , where
and . If , then

where -variation is considered with respect to
, and -variation with respect to

.
Proof: Set . From the definition of -

variation, we have

in , where, for all ,

and

As, for all , , we have

in . Hence,

Lemma 2: Let be a function of bounded variation
over a closed interval . Then

where -variation is considered with respect to
, .

Proof: By [27, Theorem 6] (see also [15]) applied to
, we get

where denotes -variation with respect to the
topology of the uniform convergence on. We conclude noting
that

and

where denotes -variation with respect to .

From Lemma 1 and Lemma 2, we get the following upper
bound on variation with respect to half-spaces of plane waves.
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Proposition 11: Let be a positive integer,

be a plane wave such that , where
, and be a function of bounded

variation on , where . Then

C. Lower Bounds for Perceptrons With Periodic or Sigmoidal
Activations

We shall derive estimates of the Kolmogorov widths of balls
in variation with respect to perceptrons using embeddings of
suitable orthogonal sets.

It is easy to check that the family

is orthonormal in for all positive integers .
As is a subset of the following lower

bound follows from Proposition 8.

Proposition 12: For all positive integers in

Thus, there is no possibility of decreasing theworst case er-
ror in linear approximation of (even of )
under by increasing the dimension of a linear approxi-
mating space. Thus, perceptrons with sine activation cannot be
efficiently approximated linearly.

On the other hand, from Corollary 1 it follows that func-
tions in the unit ball can be approximated by
span with a worst case error bounded from above by

. More precisely

Barron [6, p. 942, Theorem 6] considered sets of functions
defined as

where is the Fourier transform of, and denotes
the norm of the frequency (note that, with increasing,
the condition defining the sets becomes more constraining).
Barron proved that, in

where and , while,
in

where and denotes the unit ball in

with the norm. (The reader should note that there is an
unfortunate misprint in the Discussion in [6] referring to the
result of [6, Theorem 6] as , omitting the factor in
the denominator.)

It should be noted that in [6] the Kolmogorov-width
is considered in , while is con-
sidered in . The volume of the unit ball in

with the norm is equal to [35, p. 304],
where denotes the gamma function. Thus, the Lebesgue mea-
sure of goes to zero with the dimension, in contrast to the
behavior of the -dimensional cube of side (see also the re-
marks in [36, Sec. 18.2]).

Barron [6] compared linear approximation by-dimensional
subspaces with approximation by sigmoidal perceptron net-
works with hidden units. Taking into account the number
of free parameters, we shall instead compare approximation
by -dimensional subspaces with networks having

perceptrons. We shall derive a lower bound of the form
on the Kolmogorov -width in
of the set of functions computable by

networks with sigmoidal perceptrons. Further, we shall show
that, for Heaviside activation functions, the worst case error is
achieved.

To derive from Corollary 3 lower bounds on the Kolmogorov
width of balls in variation with respect to half-spaces, we shall
scale elements of to obtain an orthog-
onal set not quickly vanishing with respect to, which can be
embedded in a ball in variation with respect to half-spaces.

Theorem 2: In , for all positive integers
and

where

In particular, if for some integer , then

Proof: Using Corollary 3 and Proposition 11, we shall de-
rive a lower bound on using an orthogonal, not quickly
vanishing set obtained by a proper scaling of the elements of
the set . For ,
set

where

, and

Let . We shall show that ,
and that is not quickly vanishing with respect to.

We first verify that . By Proposition 11
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Thus, for any , , and hence by Propo-
sition 3 iii), . Finally, by Proposition 6 i)
and iii), we obtain

Reindex as using a linear ordering of
such that the sequence is nonincreasing and,
for all , corresponds to . As

is not quickly vanishing with respect to. Hence, by Propo-
sition 9, for all positive integers we get

where

The following corollary shows that, for for
some integer and for any -dimensional subspace of

, there exists a half-space of that
achieves the lower bound from Theorem 2, i.e., its character-
istic function cannot be approximated by an element from
within an error smaller than .

Corollary 4: For all positive integers , and any -dimen-
sional subspace of , there exists a char-
acteristic function of a half-space of such that

where

In particular, if for some integer , then

Proof: By Theorem 2, for any -dimensional subspace
of , we have

As is compact in (see, e.g., [29]) and the
error functional is continuous (see, e.g., [19, p. 391]), the
supremum of on is achieved at some.

As variation with respect to half-spaces is bounded from
below by variation with respect to perceptrons with any sig-
moidal activation function (see Proposition 10 ii)), we have

Hence, Theorem 2 can be extended to include all sigmoidal per-
ceptrons.

Corollary 5: Let and be positive integers andany sig-
moidal function. Then in

where

In particular, for for some integer

As the number of free parameters in a perceptron net-
work with hidden units is , we have to compare

with . From
Corollaries 1 and 5 we obtain, for nondecreasing sigmoidal,
the following estimates:
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wick, Eds. London, U.K.: Springer-Verlag, 1998, pp. 177–188.

[26] H. N. Mhaskar and C. A. Micchelli, “Dimension-independent bounds on
the degree of approximation by neural networks,”IBM J. Res. Devel.,
vol. 38, no. 3, pp. 277–283, 1994.

[27] C. Darken, M. Donahue, L. Gurvits, and E. Sontag, “Rate of approx-
imation results motivated by robust neural network learning,” inProc.
6th Annu. ACM Conf. Computational Learning Theory, Santa Cruz, CA,
1993, pp. 303–309.

[28] F. Girosi, “Approximation error bounds that use VC-bounds,” inProc.
Int. Conf. Artificial Neural Networks ICANN’95, vol. 1, Paris, France,
1995, pp. 295–302.

[29] L. Gurvits and P. Koiran, “Approximation and learning of convex super-
positions,”J. Comput. Syst. Sci., vol. 55, no. 1, pp. 161–170, 1997.

[30] Y. Makovoz, “Uniform approximation by neural networks,”J. Approx.
Theory, vol. 95, no. 2, pp. 215–228, 1998.

[31] , “Random approximants and neural networks,”J. Approx. Theory,
vol. 85, no. 1, pp. 98–109, 1996.
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