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Abstract

Covering numbers of precompact symmetric convex subsets of Hilbert spaces are investigated. Lower bounds are derived for
sets containing orthogonal subsets with norms of their elements converging to zero sufficiently slowly. When these sets are convex
hulls of sets with power-type covering numbers, the bounds are tight. The arguments exploit properties of generalized Hadamard
matrices. The results are illustrated by examples from machine learning, neurocomputing, and nonlinear approximation.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Covering numbers, introduced by Kolmogorov [24], play an important role in a variety of areas, such as density
estimation [6,14], empirical processes [36], machine learning [1,17,40,42,45,46], eigenvalue estimation [8,11,16], and
Gaussian processes [28,31].

Covering numbers have been studied in ambient spaces with various metrics. For example, with the metrics induced
by the supremum norm [2, Chapter 10, 13] and the L1-norm [2, Chapter 17], they were used in statistical learning
theory to estimate sample errors. With the metric induced by the L2-norm, covering numbers were investigated in
machine learning [2, Section 18.5], probability [15], approximation [32], convex geometry [34], mathematical theory
of neural networks [32], and to derive bounds on L1-covering numbers [5]. (The list of references in this paragraph is
by no means complete.)
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Various authors studied the dependence of covering numbers of convex hulls on covering numbers of sets generating
them (e.g., [7,9,10,12,19,20,29,33,41]) and derived estimates via entropy numbers of operators (e.g., [38,39,45]).

In contrast, our approach is based on exploitation of suitable properties of orthogonal subsets of convex sets. A
precompact subset of a Hilbert space cannot contain an infinite orthogonal subset with the magnitudes of the norms of
its elements bounded from below. But it may contain an infinite orthogonal subset with the magnitudes of the norms
converging to zero rather slowly. We show that the slower the rate of convergence, the larger the lower bound on covering
numbers of the convex hull of the precompact set. Even when a precompact set does not contain such an orthogonal
subset, it may contain a sequence of finite orthogonal subsets of increasing cardinality with minima of norms of their
elements converging to zero. Also in this case, we show that the faster the increase of cardinality of the orthogonal
sets in the sequence, the larger the lower bound on covering numbers of the convex hull of the precompact set. For the
symmetric convex hulls of sets with power-type covering numbers (in particular, sets of finite Vapnik–Chervonenkis
(VC)-dimension), the bounds that we derive are tight.

We illustrate our results by examples from machine learning, neurocomputing, and nonlinear approximation. We
show that balls in certain variational norms generated by computational units called perceptrons are precompact and
satisfy assumptions implying our tight estimates. This allows us to extend a result by Makovoz [32] disproving the
possibility of a substantial improvement of a bound on approximation rates by certain perceptron neural networks.
Makovoz’s [32] estimate is based on a result by Lorentz [30], while our proofs take advantage of the exponential
growth of the size of generalized Hadamard matrices [23] (which differ from the classical ones in allowing a tolerance
in the orthogonality condition).

The paper is organized as follows. Section 2 introduces notations and definitions. Section 3 gives lower bounds
on covering numbers of symmetric convex precompact subsets of Hilbert spaces in terms of rates of decay of
norms of their orthogonal subsets and includes examples of such sets. It is also shown that for symmetric convex
hulls of sets with power-type covering numbers (such as sets with finite VC-dimension) our lower bounds are tight.
Proofs of the bounds are given in Section 4. Section 5 applies estimates from the previous sections to neurocom-
puting and Section 6 uses them to derive tightness results on rates of nonlinear approximation. Section 7 is a brief
discussion.

2. Preliminaries

By R and R+ are denoted the sets of real and positive real numbers, resp., and by N and N+ the sets of natural
numbers and positive integers, resp. For a positive integer d, �d

1 and �d
2 denote the �1- and �2-norms on Rd , resp.

Sequences are denoted by {si} = {si |i ∈ N+}. For f, g : R+ → R, we write

g(�)�f (�) for � ↓ 0

when there exists c > 0 such that for every decreasing sequence {�i} of positive real numbers with limi→+∞�i = 0 one
has g(�i )�c f (�i ) for all positive integers i. When both g(�)�f (�) for � ↓ 0 and f (�)�g(�) for � ↓ 0, we write

g(�) ∼ f (�) for � ↓ 0.

Let (X, ‖.‖) be a normed linear space, f ∈ X, and r > 0. By Br(f, ‖.‖) is denoted the closed ball of radius r in the
norm ‖.‖ centered at f ∈ X, i.e.,

Br(f, ‖.‖) = {h ∈ X|‖h − f ‖�r}.
We write Br(‖.‖) instead of Br(0, ‖.‖).

For a positive integer d and a set � ⊆ Rd , (L2(�), ‖.‖2) denotes the Hilbert space of real-valued, square-integrable
functions on � with the L2-norm denoted by ‖.‖2.

For a subset G of (X, ‖.‖), cl G denotes its closure with respect to the topology generated by the norm ‖.‖ and conv G

is its convex hull, i.e.,

conv G =
{

n∑
i=1

aigi

∣∣∣∣∣ai ∈ [0, 1],
n∑

i=1

ai = 1, gi ∈ G, n ∈ N+

}
.
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For a positive integer n we denote

convn G =
{

n∑
i=1

aigi

∣∣∣∣∣ai ∈ [0, 1],
n∑

i=1

ai = 1, gi ∈ G

}
.

For G ⊆ (X, ‖.‖) and � > 0, {g1, . . . , gm} ⊆ G is called an �-net in G if the family of closed balls of radii � centered at gi

covers G, i.e., if G ⊆ ⋃m
i=1B�(gi, ‖.‖), and {g1, . . . , gm} is called �-separated if for each distinct pair i, j ∈ {1, . . . , m},

‖gi −gj‖��. If a set G contains a 2�-separated subset of size m, then every �-net in G must contain at least m elements.
The �-covering number of a subset G of (X, ‖.‖) is the cardinality of a minimal �-net in G, i.e.,

N(G, ‖.‖, �) = min

{
m ∈ N+ | ∃f1, . . . , fm ∈ G such that G ⊆

m⋃
i=1

B�(fi, ‖.‖)
}

.

If the set over which the minimum is taken is empty, then N(G, ‖.‖, �)=+∞. Note that we consider covering numbers
defined in terms of closed balls as in [10,44], but some authors (e.g., [2, p. 148]) use open balls.

When we use covering numbers of balls in another norm than the one on the ambient normed linear space, we include
the norm into the notation N(G, ‖.‖, �), otherwise we write merely N(G, �).

When there exists � > 0 such that N(G, �)�(1/�)� for � ↓ 0, G is said to have power-type covering numbers.
The closed symmetric convex hull of a bounded subset G of a normed linear space (X, ‖.‖) generates a norm via its

Minkowski functional [37, p. 25]. This norm, called G-variation and denoted by ‖.‖G, is defined as

‖f ‖G = inf

{
c ∈ R+

∣∣∣∣fc ∈ cl (conv(G ∪ −G))

}
,

where the closure is taken with respect to the ambient space norm ‖.‖. G-variation was used in [25] as an extension of
the concept of variation with respect to characteristic functions of half-spaces from [3].

Balls in G-variation play an important role in machine learning. For their elements, rates of approximation by linear
combinations of n elements of G are bounded from above by rn−1/2 [3,4,22,35], where r is the radius of the ball. By
the definition, the unit ball in G-variation is the closure in the norm ‖.‖ of the symmetric convex hull of G, i.e.,

B1(‖.‖G) = cl (conv (G ∪ −G)). (1)

It is easy to check that for every G and every � > 0

N (B1(‖.‖G), �) = N(conv (G ∪ −G), �), (2)

where the covering number is considered with respect to the norm ‖.‖ of the ambient space.
By H is denoted the binary entropy function, defined for every p ∈ (0, 1) as

H(p) = −p log2(p) − (1 − p) log2(p − 1).

3. Lower bounds

For a subset A of a normed linear space (X, ‖.‖) and a positive integer r, we denote

Ar =
{
f ∈ A

∣∣∣∣‖f ‖� 1

r

}
.

The larger the sets Ar , the slower the decrease of the norms of the elements of A.

Definition 3.1. When Ar is finite for all positive integers r, the function �A : N+ → N+ defined as

�A(r) = card Ar

is called the decay function of A.
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Definition 3.2. A set A such that Ar is finite for all positive integers r is called slowly decaying with respect to � if
there exists � > 0 such that �A(r) = r�.

Note that if A is a precompact subset of a Hilbert space and Ar is orthogonal, then Ar must be finite. Thus decay
functions are defined for all precompact orthogonal subsets of Hilbert spaces and also for subsets A = ⋃∞

r=1Ar with
all Ar orthogonal but A not necessarily orthogonal.

Definition 3.3. A set A formed by d-variable functions with the decay function �A(r) = rd is called slowly decaying.

Under a slightly different name, the concept of a slowly decaying set was introduced in [27] to compare worst-case
errors in linear and neural-network approximation.

Example 3.4. The set A = {n−1/�en}, where {en} is the standard orthonormal basis of �2 and � > 0 (investigated in
[10, p. 886]), is an orthogonal precompact subset of �2 and its decay function is �A(r) = r�, so A is slowly decaying
with respect to �.

Example 3.5. Let A =⋃∞
r=1Ar with Ar = {n−1/��r (en)|n = 1, . . . , r�}, where {�r} is a sequence of distinct rotations

of �2. This subset of �2 is slowly decaying with respect to � but it is not orthogonal as soon as one of the rotations is
not the identity.

Example 3.6. The precompact subset A = ⋃∞
r=1Ar of (L2([0, 1]d), ‖.‖2), where Ar = {hv|v = (v1, . . . , vd) ∈

{1, . . . , r}d}, hv = cv sin(�v · x), and cv = d
√

2/
∑d

k=1vk , is slowly decaying with respect to the number d of vari-
ables (its decay function is rd ). Indeed, it is easy to check that for each hv = cv sin(�v · x) ∈ Ar , ‖hv‖2 � cv√

2
=

d
√

2/
√

2
∑d

k=1vk � 1
r
.

The following theorem estimates from below covering numbers of symmetric convex precompact subsets of
infinite-dimensional Hilbert spaces in terms of decay functions of their nearly orthogonal (and in particular orthogonal)
subsets.

Definition 3.7. For 	�0, a finite subset A={g1, . . . , gm} of a Hilbert space (X, ‖.‖) with inner product 〈·, ·〉 is called
	-nearly orthogonal if

m∑
i,j=1,j �=i

|〈gi, gj 〉|�	.

Note that for 	 = 0 the set A is orthogonal.

Theorem 3.8. Let (X, ‖.‖) be a Hilbert space, F a symmetric convex subset containing an infinite set A = ⋃∞
r=1Ar

with the decay function �A such that for every positive integer r, �A(r)�3 and Ar is 	r -nearly orthogonal with
	r �1/r2, and b = 1 − H( 1

4 ) � 0.085, where H denotes the binary entropy function. Then for every positive
integer r

b�A(r) − 1� log2 N

⎛
⎝F,

1

2r

√
1 − r2	r

�A(r)

⎞
⎠ .

The proof of Theorem 3.8 is based on properties of generalized Hadamard matrices, is given in Section 4.

Example 3.9. Let F = conv(A ∪ −A), where A = {n−1/�en} is the subset of �2 considered in Example 3.4 with the
decay function �A(r) = r�. By Theorem 3.8 with 	r = 0 for all r

br� − 1� log2 N(F, 1
2 r−(�+2)/2). (3)
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Covering numbers of the set F were investigated in [10, p. 886], where for all positive integers � the tight bounds

log2 N(F, c1 r−(�+2)/2)�r� − 1 and r� − 1� log2 N(F, c2 r−(�+2)/2), (4)

with c1 and c2 constants, were derived. So for the set F the lower bound (3) is up to constants the same as the
asymptotically tight bound (4).

Example 3.10. Let F = conv(A ∪ −A), where A = ⋃∞
r=1Ar is a subset of (L2([0, 1]d), ‖.‖2) with Ar = {hv|v =

(v1, . . . , vd) ∈ {1, . . . , r}d}, hv = cv sin(�v · x), and cv = d
√

2/
∑d

k=1vk . By Theorem 3.8 with 	r = 0 for all r

brd − 1� log2 N

(
F,

1

2rd/2+1

)
.

For the special case of sets containing subsets slowly decaying with respect to � > 0, the next asymptotic estimate
holds.

Corollary 3.11. Let (X, ‖.‖) be a Hilbert space, F its symmetric convex subset containing for some t > 0 a set tA,
where A = ⋃∞

r=1Ar with all Ar orthogonal, A slowly decaying with respect to � > 0, and b = 1 − H( 1
4 ), where H

denotes the binary entropy function. Then(
1

�

)2�/(�+2)

− 1� log2 N(F, �) for � ↓ 0.

The next theorem exploits the upper bound derived in [10, Proposition 5.1] to show that the estimate from Corollary
3.11 is tight for convex hulls of sets with power-type covering numbers.

Theorem 3.12. Let (X, ‖.‖) be a Hilbert space, G a precompact subset of its unit ball such that there exist t, �, � > 0
with N(G, �)�(1/�)� for � ↓ 0, and conv(G ∪ −G) ⊇ t A, where A =⋃∞

r=1Ar with all Ar orthogonal and A slowly
decaying with respect to �. Then(

1

�

)2�/(�+2)

� log2 N(conv(G ∪ −G), �)�
(

1

�

)2�/(�+2)

for � ↓ 0.

Theorem 3.12 shows that if G has power-type covering numbers with an exponent �, then its symmetric convex hull
cannot contain an orthogonal set slowly decaying with respect to � > �. When � and � are close to each other, Theorem
3.12 gives a tight estimate. In particular, when � = � we get

log2 N(conv(G ∪ −G), �) ∼
(

1

�

)2�/(�+2)

for � ↓ 0.

Sets of functions with finite VC-dimension have power-type covering numbers [43]. For a set G of {0, 1}-valued
functions defined on a set � and S ⊂ �, we denote by G|S the set of functions from G restricted to S. Functions from
S to {0, 1} are called dichotomies. If G|S contains all dichotomies, then G is said to shatter S. The VC-dimension of
G, denoted by V C(G), is the cardinality of the largest subset S of � that is shattered by G; if the largest set is infinite,
then V C(G) = ∞.

The next corollary shows that symmetric convex hulls of sets of finite VC dimension cannot contain orthogonal
subsets slowly decaying with respect to the VC-dimension of the generating set.

Corollary 3.13. Let (X, ‖.‖) be a Hilbert space and G a precompact subset of its unit ball such that G contains only
{0, 1}-valued functions, V C(G) = v < ∞, and t, � > 0 such that conv(G ∪ −G) ⊇ t A, where A is an orthogonal set
slowly decaying with respect to �. Then(

1

�

)2�/(�+2)

� log2 N(conv(G ∪ −G), �)�
(

1

�

)2v/(v+1)

for � ↓ 0.
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4. Proofs of the lower bounds

To prove Theorem 3.8 and Corollary 3.11, we construct �-separated subsets of symmetric convex hulls of orthogonal
sets using coefficient vectors obtained from “large” sets of quasiorthogonal vectors from the Hamming cube {−1, +1}m.
Recall that a Hadamard matrix of order m is a matrix with m columns, entries equal to +1 or −1, and each pair of
distinct rows orthogonal. The concept of Hadamard matrix has been generalized in [23] by allowing a tolerance in the
orthogonality condition.

Definition 4.1. For � ∈ (0, 1], an �-Hadamard matrix of order m is a matrix with m columns, entries equal to +1
or −1, and the inner products of any two distinct rows less than or equal to m�.

Let

R(�, m)

denote the maximal number of rows of an �-Hadamard matrix of order m. If � = s/m for a positive integer s, M is the
matrix for which the maximum is reached, and TM is the set of its row vectors, then for each pair of distinct vectors
u, v ∈ TM ,

|u · v|��m = s,

where “·” denotes the Euclidean inner product. The weakened orthogonality condition can also be described in terms
of Hamming distance, denoted by h and defined on {−1, 1}m as the number of coordinates at which two vectors differ.
The Hamming distance of two vectors u, v ∈ {−1, 1}m is equal to 1

2 of the �m
1 -norm of the vector u − v, i.e.,

h(u, v) = (1/2)

m∑
i=1

|ui − vi |.

It is easy to check that the Hamming distance of two vectors u, v ∈ TM , where M is an �-Hadamard matrix of order m,
satisfies

h(u, v)�m(1 − �)/2.

In particular, for � = s/m one has

h(u, v)�(m − s)/2. (5)

The next lemma gives lower bounds on covering numbers of convex symmetric sets in terms of the cardinality of their
nearly orthogonal or orthogonal subsets with minima of magnitudes of norms of their elements bounded from below.
For a real number s, we denote by �s� the smallest integer n�s and by �s� the largest integer n�s. We also denote

B(
, m) = 
!
m!(
 − m)! .

Lemma 4.2. Let F be a convex symmetric subset of a Hilbert space (X, ‖.‖) such that F contains for some 	�0 a
	-nearly orthogonal subset A with card A = m, ming∈A‖g‖ = a, and 	�a2. Then the following estimates hold:

(i) for every positive integer s such that 1�s < m,

R
( s

m
, m

)
�N

(
F,

√
a2 − 	

m

√⌈
m − s

2

⌉)
;

(ii) for every positive integer s such that 1�s�m − 2,

2m−1

B(
m,s, m)
�N

(
F,

√
a2 − 	

m

√⌈
m − s

2

⌉)
;
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(iii) for m�3,

b m − 1� log2 N

⎛
⎝F,

1

2

√
a2 − 	

m

⎞
⎠ ,

where b = 1 − H( 1
4 ) � 0.085 and H denotes the binary entropy function.

Proof. (i) Let A = {g1, . . . , gm}, M be an (s/m)-Hadamard matrix of order m with R(s/m, m) rows, TM the set of

its row vectors, A(M) = { 1
m

∑m
i=1uigi |ui ∈ TM}, and �s =

√
a2−�
m

√
�m−s

2 �. We show that A(Ms) is 2�s-separated. For

any pair of distinct vectors u, v ∈ TM , we first estimate from below the distance ‖ 1
m

∑m
i=1uigi − 1

m

∑m
i=1vi gi‖. Let

I denote the set of coordinates at which u and v differ, k = card I , and �i = 1
2
√

k
(ui − vi), i ∈ I . Then �i = ± 1√

k
,

‖ 1
m

∑m
i=1(ui−vi)gi‖= 1

m
‖∑i∈I gi‖= 2

√
k

m
‖∑k

i=1�i gi‖, and ‖∑k
i=1�i gi‖2=|∑k

i=1
∑k

j=1�i�j gi ·gj |. Since
∑k

i=1�
2
i =1,

it is sufficient to derive a lower bound on the function �(�1, . . . , �k) = |∑k
i=1

∑k
j=1�i�j gi · gj | on the unit sphere S1 in

the l2-norm on Rk . Let DI be the k×k matrix defined by DI ij =gi · gj . Then �(�1, . . . , �k)�
√|
min(DI )|in S1, where


min(DI ) denotes the minimum eigenvalue of DI . As |
min(DI )|�
∣∣∣mingi∈A‖gi‖2 − ∑

i∈I,i �=j |gi · gj |
∣∣∣ �a2 − 	, we

get 1
m

‖∑m
i=1(ui − vi)gi‖� 2

√
k(a2−	)

m
� 2

√
a2−	
m

√⌈
m−s

2

⌉
.

(ii) follows from (i) combined with the lower bound R (s/m, m) �2m−1/B(
m,s, m) from [23, Theorem 3.4].

(iii) Let �s =
√

a2−	
m

√
�m−s

2 �. From (ii) with s = �m
2 �, we get

�s =
√

a2 − 	

m

√⌈
m − �m

2 �
2

⌉
�

√
a2 − 	

m

√⌈
m − m

2

2

⌉
�

√
a2 − 	

m

√
m

4
=

√
a2 − 	

2
√

m

and

N

⎛
⎝F,

1

2

√
a2 − 	

m

⎞
⎠ �N

(
F, 	�m/2�

)
�2m−1/B(
m,�m/2�, m).

As


m,�m/2� =
⌈

m − �m
2 � − 2

2

⌉
=
⌈ m

2 − 2

2

⌉
� m

4
,

we can use the estimate B(
, m)�2mH(
/m) from [18, p. 44], which is valid for 
 < m/2. Finally, as the entropy
function H is increasing over the interval (0, 1

2 ) we get

N

⎛
⎝F,

1

2

√
a2 − 	

m

⎞
⎠ � 2m−1

2
mH

(

m,�m/2�

m

) �2m−1 2−mH(1/4) = 2m(1−H(1/4))−1 = 2mb−1. �

Using Lemma 4.2 we now prove Theorem 3.8 and Corollary 3.11.

Proof of Theorem 3.8. For every positive integer r, by Lemma 4.2(iii) with A = Ar , a = 1/r , and m = �A(r) we get
1
2

√
a2−	r

m
= 1

2r

√
1−r2	r

�A(r)
. Thus, b �A(r) − 1� log2 N

(
F, 1

2r

√
1−r2	r

�A(r)

)
. �

Proof of Corollary 3.11. By Lemma 4.2(iii) with A=Ar , a = t/r , m= r�, and 	=0, for every positive integer r such

that r� �3 we have b r� − 1� log2 N
(
F, t

2 �/(�+2)

)
. So c(1/�)2�/(�+2) − 1� log2 N(F, �) , where c = b (t/2)2�/(�+2).

Hence (1/�)2�/(�+2) − 1� log2 N(F, �) for � ↓ 0 . �



Author's personal copy
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Proof of Theorem 3.12. The upper bound follows from [10, Proposition 5.1], which states thatN(G, �)�( 1
� )

� for � ↓
0 implies

log2 N(conv(G ∪ −G), �)�
(

1

�

)2�/(�+2)

for � ↓ 0.

The lower bound follows from Corollary 3.11. �

Proof of Corollary 3.13. By [33, Theorem 2.6], there exists an absolute constant c such that for all � > 0, N(G, �)�
cv(4e)v�−2v . So the estimate follows from Theorem 3.12. �

5. Application to neurocomputing

An important class of sets with power-type covering numbers in (L2(�), ‖, ‖2), with � ⊂ Rd bounded, consists of
sets of functions computable by perceptrons with various types of activation functions 
 : R → R. Such sets are of
the form

Pd(
) = {f : � → R|f (x) = 
(a · x + b), x ∈ �, a ∈ Rd , b ∈ R}. (6)

Widely used activation functions are sigmoidals, i.e., measurable functions � : R → R such that

lim
t→−∞ �(t) = 0 and lim

t→+∞ �(t) = 1.

An important type of sigmoidal is the Heaviside function ϑ, defined as ϑ(t) = 0 for t < 0 and ϑ(t) = 1 for t �0. We say
that a sigmoidal is polynomially quickly approximating the Heaviside if there exist �, C > 0 such that for all t ∈ R,

|�(t) − ϑ(t)|�C |t |�.

The set Pd(ϑ) is the set of characteristic functions of half-spaces of Rd restricted to �. We denote it by Hd , i.e.,

Hd = Pd(ϑ) = {f : � → R |f (x) = ϑ(a · x + b), a ∈ Rd , b ∈ R}.
Gurvits and Koiran [21] proved that for every d and every � ⊂ Rd bounded, the set Hd is compact in (L2(�), ‖.‖2)

(inspection of their proof shows that compactness also holds in Lp-spaces with p ∈ [1, ∞)). Makovoz [32] estimated
from above its covering numbers; he proved that for every positive integer d

N(Hd, �)�
(

1

�

)2d

for � ↓ 0. (7)

Moreover, he showed that for � a Lipschitz continuous sigmoidal polynomially quickly approximating the Heaviside,
Pd(�) has power-type covering numbers, i.e., there exists � > 0 such that

N(Pd(�), �)�
(

1

�

)�

for � ↓ 0. (8)

So, for such sigmoidals the set Pd(�) is precompact. The next proposition shows that precompactness of Pd(�) holds
even for Lipschitz continuous non-decreasing sigmoidals.

Proposition 5.1. Let d be a positive integer, � ⊂ Rd bounded, and � a Lipschitz continuous non-decreasing sigmoidal.
Then Pd(�) is precompact in (L2(�), ‖.‖2).

Proof. For � > 0, we decompose Pd(�) into three sets, in each of which we construct an �-net. To simplify the notation,
we write �a,b(x) and ϑa,b(x) instead of �(a · x + b) and ϑ(a · x + b), resp. Let

Pd(�) = P
1,�
d ∪ P

2,�
d ∪ P

3,�
d ,
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where

P
1,�
d (�) = {�a,b|‖a‖l2 �a�, b ∈ R},

P
2,�
d (�) = {�a,b|‖a‖l2 < a�, |b|�b�},

and

P
3,�
d (�) = {�a,b|‖a‖l2 < a�, |b| < b�}.

As � is bounded, for every � > 0 we can choose a� ∈ Rd+ such that for every a ∈ Rd with ‖a‖l2 �a�.

∥∥�a,b − ϑa,b

∥∥
2 =

(∫
�
(�(a · x + b) − ϑ(a · x + b))2 dx

)1/2

� �

3
.

As ϑa,b = ϑa/‖a‖l2 ,b/‖a‖l2
, we get

∥∥∥�a,b − ϑa/‖a‖l2 ,b/‖a‖l2

∥∥∥
2
� �

3
. (9)

Since � is sigmoidal, limt→±∞(�(t) − ϑ(t)) = 0. So for every � > 0, we can choose a�, b� > 0 such that for every
a ∈ Rd with ‖a‖l2 < a� and b ∈ R with |b|�b�:

∥∥�a, b − ϑa, b

∥∥
2 � �

3
. (10)

As � is Lipschitz continuous, for every a, a′ ∈ Rd and every b, b′ ∈ R there exist M1, M2 > 0 such that

‖�a, b − �a′,b′ ‖2 �M1 |a · x − b − a′ · x + b′|�M2 (‖a − a′‖l2 + |b − b′|). (11)

If {ϑe1
i , c1

i
} is an �/3-net in Hd , then {�a1

i ,b1
i
} := {�a� e1

i ,a�c
1
i
} is an �-net in P

1,�
d (�). Indeed, (9) gives for every a ∈ Rd

with ‖a‖l2 �a�∥∥∥�a,b − �a1
i ,b1

i

∥∥∥
2
�
∥∥∥�a,b − ϑa/‖a‖l2 ,b/‖a‖l2

∥∥∥
2
+
∥∥∥ϑa/‖a‖l2 ,b/‖a‖l2

− ϑe1
i , c1

i

∥∥∥
2

+
∥∥∥ϑe1

i ,c
1
i
− �a1

i ,b1
i

∥∥∥
2
��.

If {ϑe2
i ,b2

i
} is an �/3-net in Hd , then {�e2

i ,b2
i
} is an �-net in P

2,�
d (�). Indeed, for every a ∈ Rd with ‖a‖l2 < a� and every

b ∈ R with |b|�b�, by (10) we have∥∥∥�a,b − �a2
i ,b2

i

∥∥∥
2
�
∥∥�a,b − ϑa,b

∥∥
2 +

∥∥∥ϑa,b − ϑa2
i ,b2

i

∥∥∥
2
+
∥∥∥ϑa2

i ,b2
i
− �a2

i ,b2
i

∥∥∥
2
��.

For M2 > 0, if {a3
i } is an �/(2M2)-net in [0, a�] and {b3

i } is an �/(2M2)-net in [0, b�], then {�a3
i ,b3

i
} is an �-net in P

3,�
d (�).

Indeed, by (11) we get

∥∥∥�a,b − �a3
i ,b3

i

∥∥∥
2
�M2(‖a − a3

i ‖l2 + |b − b3
i |)�M2

(
�

2M2
+ �

2M2

)
��.

As Pd(�) = P
1,�
d (�) ∪ P

2,�
d (�) ∪ P

3,�
d (�), the set {�a1

i ,b1
i
} ∪ {�a2

i ,b2
i
} ∪ {�a3

i ,b3
i
} is an �-net in Pd(�). �

It was shown in [26, Propositions 3.3 and 3.4] that in (L2(�), ‖.‖2) with � ⊂ Rd compact, for every continuous
non-decreasing sigmoidal �, Pd(�)-variation is equal to Hd -variation and so the unit balls B1(‖.‖Hd

) and B1(‖.‖Pd(�))

are equal. The next theorem gives a tight estimate for the covering numbers of these balls.
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Theorem 5.2. Let d be a positive integer and � : R → R either the Heaviside function or a continuous non-decreasing
sigmoidal. Then in (L2([0, 1]d), ‖.‖2):

log2 N(B1(‖.‖Hd
), �) = log2 N(B1(‖.‖Pd(�)), �) ∼

(
1

�

)2d/(d+1)

for � ↓ 0.

Proof. By (7) and the upper bound from Theorem 3.12 with � = 2d, we get log2 N(B1(‖.‖Hd
), �)�(1/�)2d/(d+1)

for � ↓ 0.

To prove the lower bound, we recall the construction that we made in [27] extending an idea from [3]. Let Ad =⋃∞
r=1Ad,r , where Ad,r ={hv| v=(v1, . . . , vd) ∈ {1, . . . , r}d } ⊂ (L2([0, 1]d), ‖.‖2), hv(x)=cv sin(�v·x) : [0, 1]d →

R, and cv =d
√

2/
∑d

j=1vj . The sets Ad,r are orthogonal and Bd
√

8(‖.‖Hd
) ⊃ Ad . So Ad is orthogonal slowly decaying

with respect to d and is contained in the ball of radius d
√

8 in Hd -variation. Thus B1(‖.‖Hd
) ⊃ 1

d
√

8
Ad and by the

lower bound from Theorem 3.12 with � = 2d we get

(
1

�

)2d/(d+1)

� log2 N(B1(‖.‖Hd
), �) for � ↓ 0. �

6. Application to nonlinear approximation

In this section, we extend Makovoz’s [32] result on tightness of an upper bound on rates of approximation of
elements of the closed symmetric convex hulls of sets Pd(�), which was derived by Maurey (see [35]), Jones [22] and
Barron [4].

Given two subsets S and T of a normed linear space (X, ‖.‖), we denote by 	(S, T ) the deviation of S from T, which
is the worst-case error in the approximation of elements of S by elements of T, i.e.,

	(S, T ) = 	(S, T , (X, ‖.‖)) = sup
f ∈S

inf
g∈T

‖f − g‖.

Reformulated in terms of G-variation [25], Maurey–Jones–Barron’s estimates states that for a bounded subset G of a
Hilbert space (X, ‖.‖) with sG = supg∈G‖g‖ and every positive integer n,

	(B1(‖.‖G), convn(G ∪ −G))� sG

n1/2 . (12)

For perceptron networks with certain sigmoidal functions, the impossibility of improving the exponent 1
2 in the bound

(12) over 1
2 +1/d was proven by Barron [3] via a probabilistic argument and by Makovoz [32] via estimates of covering

numbers. Exploiting Makovoz’s [32] method of proof, we establish the tightness of the upper bound (12) for a set G
with (i) power-type covering numbers and (ii) a sufficient “capacity” of its symmetric convex hull conv(G ∪ −G), in
the sense that conv (G ∪ −G) contains a subset slowly decaying with respect to some � > 0. The next theorem shows
that for sets satisfying these two conditions, the exponent 1

2 cannot be improved over 1
2 + 1/�.

Theorem 6.1. Let (X, ‖.‖) be a Hilbert space, G its bounded precompact subset with sG = supg∈G‖g‖ and power-type
covering numbers, t, � > 0, and B1(‖.‖G) ⊇ t A, where A is slowly decaying with respect to �. If � > 0 is such that for
some c > 0 and all positive integers n one has

	(B1(‖.‖G), convn(G ∪ −G))�c/n�, then �� 1
2 + 1/�.

To prove this theorem, we need the following lemma.

Lemma 6.2. Let (X, ‖.‖) be a normed linear space and G be a bounded subset with sG = supg∈G‖g‖. For every � > 0
and every positive integer n,

N(convn G, �(1 + sG))�(N(G, �))n(2/�)n.
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Proof. Let B be an �-net in B1(‖.‖�n
1
) with respect to the �n

1-norm and A an �-net in G with respect to the norm ‖.‖
of X. Let C ⊂ convn G be defined as C = {∑n

i=1 bi gi | (g1, . . . , gn) ∈ An, (b1, . . . , bn) ∈ B}. We show that C is an
� (1 + sG)-net in convn G. Let

∑n
i=1 b̄i ḡi ∈ convn G. Since B is an �-net in B1(‖.‖ln1

) with the ln1 -norm, there exist

(b1, . . . , bn) ∈ B such that
∑n

i=1 (bi −b̄i )��.As A is an �-net in G with the norm ‖.‖ of X, there exist (g1, . . . , gn) ∈ An

such that for every i = 1, . . . , n, ‖gi − ḡi‖��. Thus,∥∥∥∥∥
n∑

i=1

bi gi −
n∑

i=1

b̄i ḡi

∥∥∥∥∥ �
∥∥∥∥∥

n∑
i=1

bigi −
n∑

i=1

bi ḡi

∥∥∥∥∥ +
∥∥∥∥∥

n∑
i=1

bi ḡi −
n∑

i=1

b̄i ḡi

∥∥∥∥∥
=

∥∥∥∥∥
n∑

i=1

bi(gi − ḡi )

∥∥∥∥∥ +
∥∥∥∥∥

n∑
i=1

(bi − b̄i )ḡi

∥∥∥∥∥
�

n∑
i=1

|bi |� +
n∑

i=1

|bi − b̄i |‖gi‖�� + � sG = �(1 + sG).

As card C = (card A)ncard B, we get

N(convn G, ‖.‖, �(1 + sG))�(N (G, ‖.‖, �) )n N(B1(‖.‖�n
1
), ‖.‖�n

1
, �).

It is well-known (see, e.g., [11, 1.1.10]) and easy to check that for a positive integer d, a norm |.| on Rd , and � > 0, one
has (1/�)d �N(B1(|.|), |.|, �)�(2/�)d . So N(convn G, ‖.‖, �(1 + sG))�(N (G, ‖.‖, �))n (2/�)n. �

Using Corollary 3.11 and Lemma 6.2 we now prove Theorem 6.1.

Proof of Theorem 6.1. Suppose ab absurdo that � > 1
2 + 1/� is such that for some c > 0 and every positive integer n

one has 	(B1(‖.‖G), convn(G ∪ −G))�c/n�.

For � > 0, let n� =�(2c/�)1/��, so c/n�
� ��/2. Let �n� be an �/2-net in convn�(G∪−G). As for every f ∈ B1(‖.‖G)

there exist hn� ∈ convn� (G ∪ −G) and �n�
∈ �n� such that ‖f − hn�‖�c/n� and ‖hn� − �n�

‖��/2, by the triangle
inequality ‖f − �n�

‖�c/n�
� + �/2��. So, �n� is an �-net in B1(‖.‖G).

Since for an �-net in G, −A is an �-net in −G, we get N(G ∪ −G, �)�2N(G, �). This together with Lemma 6.2,
implies that the cardinality of �n� is bounded from above by (

4(1+sG)
� N(G, �

1+sG
))n� . As G has power-type covering

numbers, there exists � > 0 such that N(G, �)�(1/�)� for � ↓ 0 and so N(B1(‖.‖G), �)� ((
1+sG

� )�
4(1+sG)

� )n� =
(4 1+sG

� )n�(�+1). Thus, log2N(B1(‖.‖G), �)�n�(� + 1) log2(4
1+sG

� ). As ��2c/n�
� , we get

log2 N(B1(‖.‖G), �)�n�(� + 1) log2

(
4

1 + sG

�

)

�
⌈(

2c

�

)1/�
⌉

(� + 1) log2

(
4

1 + sG

�

)
. (13)

On the other hand, by Corollary 3.11(
1

�

)2�/(�+2)

� log2 N(B1(‖.‖G), �) for � ↓ 0. (14)

Combining the bounds (13) and (14), we obtain

(
1

�

)2�/(�+2)

� log2N(B1(‖.‖G), �)�
⌈(

2c

�

)1/�
⌉

(� + 1)log2

(
4

1 + sG

�

)
for � ↓ 0. (15)

When � > 1
2 + 1/�, we get 1

� <
2�

�+2 and so for � small enough, (15) gives a contradiction (as the lower bound is larger
than the upper bound). �
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Thus, the exponent � in the bound from Theorem 6.1 can be at most 1
2 + 1/� when G has power-type covering

numbers and its symmetric convex hull contains an infinite set with orthogonal subsets of increasing cardinalities and
magnitudes of the norms of their elements slowly decaying with respect to some � > 0. The critical value of the exponent
� in the denominator is 1

2 + 1/�. When � increases, 1
2 + 1/� approaches 1

2 , which is the exponent in the bound (12).

Example 6.3. The set A = {n−1/�en} considered in Example 3.4 satisfies the assumptions of Theorem 6.1. Indeed,
for all � > 0 and all positive integers n�(1/�)� we have n−1/�en ∈ B�(‖.‖2). So A has power-type covering numbers.
As A is also slowly decaying with respect to �, by Theorem 6.1 the term n−� in the upper bound on approximation of
elements of cl conv(A ∪ −A) = B1(‖.‖A) by convn A cannot be improved over n−1/2−1/�.

For every � ⊂ Rd compact and every non-decreasing sigmoidal �, in (L2(�), ‖.‖2) Pd(�)-variation is equal to
Hd -variation [26, Propositions 3.3 and 3.4] and B1(‖.‖Hd

) contains a set that is slowly decaying with respect to d (see
the second part of the proof of Theorem 5.2). So we can apply Theorem 6.1 to the set Pd(�) of functions computable
by perceptrons (see (6)), where � is either the Heaviside function or a Lipschitz continuous sigmoidal polynomially
quickly approximating the Heaviside. This implies Makovoz’s result [32, Theorem 4, (11)]. Hence, in the upper bound
(12) on approximation of elements of cl conv(Pd(�)∪−Pd(�))=B1(‖.‖Pd(�)) by convn Pd(�), the term n−1/2 cannot
be improved over n−1/2−1/d .

7. Discussion

We have derived lower bounds on covering numbers of precompact symmetric convex sets in terms of rates of decay
of the magnitudes of the norms of the elements of their orthogonal subsets. The slower the rate of decay, the larger the
lower bound. For symmetric convex hulls of sets with power-type covering numbers, by comparing our lower bounds
with upper bounds we have obtained tight estimates of covering numbers. In particular, we have derived estimates for
sets with finite VC-dimension.

Our results extend an estimate derived by Makovoz [32, Lemma 3], who using a result from [30] showed that for an
orthogonal set A with cardinality m:

cm� log2 N

(
conv(A ∪ −A),

1√
m

)
,

where c is an unspecified positive absolute constant. We have used a different proof technique (based on generalized
Hadamard matrices) that provides more general results and allows one to specify the constant.

Applying our estimates to sets G of functions used in neurocomputing, we have obtained tight power-type bounds on
covering numbers of conv (G ∪ −G). Functions from such convex hulls can be approximated by convex combinations
of n elements of G at rates n1/2 [3,22,35]. We have shown that the exponent 1

2 cannot be improved over 1
2 + 1/�,

where � > 0 depends on the rate of decay of the magnitude of the norms of the elements of orthogonal subsets of
conv (G ∪ −G). This extends a result from [32] for perceptron neural networks with certain sigmoidals as activation
functions. We have also shown that in L2-norm, sets of functions computable by perceptrons with more general
sigmoidals (non-decreasing Lipschitz continuous) are precompact .
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