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Abstract. Devices such as neural networks typically approximate the elements of some function space X

by elements of a nontrivial finite union M of finite-dimensional spaces. It is shown that if X = Lp(�)

(1 < p < ∞ and � ⊂ Rd ), then for any positive constant � and any continuous function φ from X to M ,
‖f − φ(f )‖ > ‖f − M‖ + � for some f in X. Thus, no continuous finite neural network approximation
can be within any positive constant of a best approximation in the Lp-norm.
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1. Introduction

A neural network consists of d input nodes, h hidden nodes, and 1 or more output nodes,
connected by an architecture of weights and activation functions. Without loss of gener-
ality we study the case where there is exactly one output node and the neural network is
used for functional approximation. In this case the objective is to approximate a function
f :� → R where � is a subset of Rd . Given f , we seek a function of the form

x �−→
h∑

j=1

wjg(aj , x), x ∈ �, (1)

that best approximates f . The functions g(a1, ·), . . . , g(ah, ·) are chosen from a para-
metric family of functions g(a, ·) with parameter a in some subset A of Rm, while the
weights w1, . . . , wh are real numbers. A typical case is a family of Heaviside functions:
g(a, x) = H(c + b1x1 + · · · + bdxd), where H(u) = 1 for u � 0 and H(u) = 0 other-
wise, a = (c, b1, . . . , bd), and m = d+1. Other cases are based on the logistic function,
radial Gaussians, etc. We suppose that f and each function g(a, ·) are members of the
space Lp(�), and that approximation is with respect to the Lp-norm for some fixed p
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satisfying 1 < p < ∞. The set � is assumed to be the closure of a nonempty open
subset of Rd . A function of the form (1) can also be described as follows: it is a member
of spanhG where G = {g(a, ·): a ∈ A} and spanhG denotes the union of all subspaces
spanned by h elements of G. As in the examples mentioned above, the family G without
loss of generality can be taken to be linearly independent.

The issues of interest can be expressed alternatively in the languages of optimiza-
tion theory or approximation theory. With respect to optimization theory, we wish to
find a function in spanhG that minimizes the Lp-distance to f , determine whether this
function is unique or not, and determine whether it varies continuously as f is varied.
See [2] for a treatment of well-posedness of optimization problems. With respect to
approximation theory, the issues are whether f has a best approximation, whether it is
unique, and whether any best approximation operator is continuous. For example, when
the function space is a uniformly convex Banach space, best approximation by closed
convex subsets is unique and continuous. However, spanhG is not convex, and this is
the situation considered below. We also discuss the more general issue of whether a near
best, rather than best, approximation function can be continuous.

2. Best approximation

Let X be a normed real vector space. If X is sequentially complete in the norm,
X is called a Banach space. Let X∗ be the space of all continuous linear functionals
h :X → R, with the norm ‖h‖ = sup{|h(x)|: ‖x‖ � 1}. Let M be a subset of X. (Our
prototype is X = Lp(�) with the Lp-norm, and M = spanhG.) For x in X let ‖x −
M‖ = inf{‖x − m‖: m ∈ M}. Then we denote by PM(x) the set {m ∈ M: ‖x − m‖ =
‖x −M‖}. An element of PM(x) is called a best approximation to x. Existence, unique-
ness, and continuity can then be rephrased in the following terms. If PM(x) is nonempty,
a best approximation for x exists. If this is true for all x in X, then M is said to be proxim-
inal. If PM(x) is a singleton set, the best approximation is unique. If this is true for all x
in X, then M is said to be a Chebyshev set. Finally, a (continuous) best approximation of
X by M exists when the set-valued map x �→ PM(x) has a (continuous) selection defined
on all of X, i.e., a (continuous) map φ :X → M such that φ(x) is in PM(x) for all x.

The space X is strictly convex iff whenever x and y are distinct unit vectors in
X all nontrivial convex combinations of the two have norm less than 1. All Lp-spaces
are uniformly convex, and all uniformly convex spaces are strictly convex (see, e.g.,
[3, p. 232]).

Theorem 2.1. If M is a subset of a strictly convex subspace X and there exists a con-
tinuous best approximation of X by M, then M is a Chebyshev set.

For a proof of this theorem, see [5, theorem 3.2] or [6, theorem 2.3]. The idea of the
proof is simply that if two points m1 and m2 lie in PM(x), then the best approximation
map restricted to the union of the two intervals [m1, x] ∪ [x,m2] cannot be continuous.
Continuity would demand that the intervals map to {m1,m2}, a disconnected set.
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Theorem 2.2. Let 1 < p < ∞ and let G be a linearly independent subset of Lp(�)

with |G| > h. Then there is no continuous best approximation of Lp(�) by spanhG.

Proof. Let X = Lp(�) and M = spanhG. Then X is strictly convex, and so is its
dual X∗. Hence, by a theorem of Vlasov (see [4]), if M is a Chebyshev set for which the
best approximation of X by M is continuous, then M is convex. By theorem 2.1 if PM

has a continuous selection, M is a Chebyshev set and thus is convex. A convex union of
subspaces is itself a subspace, but [5, lemma 4.1] shows that this is impossible when G

is as above. �

An example indicates the importance of strict convexity. Let X = R2 with the
L1-norm ‖(x, y)‖ = |x| + |y|, and let M = {(x, y): y = ±x}. Then X is not a strictly
convex space, M is not convex and not Chebyshev, M is a union of subspaces, and
PM((x, y)) is always an interval or a pair of intervals meeting at (0, 0). Furthermore,
there does exist a continuous best approximation φ :X → M, namely, the function
defined by φ(x, y) = (min{x, y},min{x, y}) for (x, y) in the first quadrant, with a sym-
metric definition in the other quadrants.

3. Near best approximation

We consider a generalization of best approximation. For a nonnegative number ε, an
ε-near best approximation of X by M is a function φ :X → M such that ‖φ(x) − x‖ �
‖x − M‖ + ε for all x in X.

The set PM(x) of best approximants of x by elements in M is the intersection
of M with the smallest closed ball centered at x which intersects M, the ball of radius
‖x − M‖. Similarly, PM,ε(x) is the intersection of M with a closed ball centered at x
of radius ε + ‖x − M‖. A function from X to M is an ε-near best approximation of X
by M if and only if it is a selection for the set-valued mapping PM,ε.

A set M is boundedly compact iff the closure of its intersection with any ball of
finite radius is compact (cf. [7, p. 365]). A closed, boundedly compact set is always
proximinal. When M is boundedly compact and closed, then the sets PM(x) and PM,ε(x)

are compact.

Theorem 3.1. If M is a closed, boundedly compact subset of a strictly convex space X

and for every ε > 0 there is a continuous ε-near best approximation of X by M, then M

is a Chebyshev set.

Here is a sketch of the proof of theorem 3.1; for details, see [6, theorem 2.3].
It suffices to show that for an arbitrary point x in X, PM(x) is a singleton. Plainly,

this will not be affected by translation or scalar multiplication so without loss of gen-
erality, take x = 0 and assume that ‖x − M‖ = 1. For every positive integer n, let
φn be a 1/n-near best approximation of X by M. Since the sets of near best approxi-
mants are compact (by bounded compactness of M), it follows from the Schauder fixed
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point theorem that there is a point xn on the boundary of the unit ball B satisfying
xn = −π ◦ φn(xn), where π is the normalization map π(y) = y/‖y‖. Moreover,
‖xn − M‖ � 2 − 1/n. Again by bounded compactness of M, the sequence xn has a
subsequence converging to a point x∞. It follows from strict convexity of X that if m is
any point in PM(x), then m = −x∞.

Theorem 3.2. Let 1 < p < ∞, let G be a finite linearly independent subset of Lp(�)

with |G| > h, and let φ :Lp(�) → spanhG be a continuous function. Then for every
� > 0 there exists a function f in Lp(�) such that ‖f − φ(f )‖ > ‖f − spanhG‖ + �.

Proof. Put X = Lp(�) and M = spanhG and assume the theorem is false, i.e., that
for some � > 0 there is a �-near best approximation of X by M. Since M is positively
homogeneous, it follows that for every ε > 0, there exists an ε-near best approximation
of X by M; see [6, corollary 2.4]. Since G is linearly independent and |G| > h, M is not
convex. Moreover, since G is finite, M is boundedly compact. Now apply theorem 3.1
to complete the proof. �

4. Multiple output nodes

In the introduction we observed that it was sufficient to consider the case of one output
node. If the number of output nodes is k, the weights wj in the introduction should be
replaced by weights wi,j with 1 � i � k and 1 � j � h. Then as before we seek
an approximation of f :� → Rk where f is in Lp(�,Rk), � ⊆ Rd , and ‖f ‖p

p =
‖f1‖p

p + · · · + ‖fk‖p
p with f1, . . . , fk :� −→ R the component functions of f . The

approximation is to be chosen from the set

M(k) = {
F : � → Rk : ∃g1, . . . , gh ∈ G with Fj ∈ span(g1, . . . , gh) ∀j}

.

Analogues of theorems 2.2 and 3.2 hold in this case under the same hypotheses on G.
For the first theorem, it can be shown that M(k) is not convex. In the second theorem,
M(k) ⊆ M × · · · × M (k times), where M = M(1) = spanhG, and M(k) is boundedly
compact whenever M is.

5. Remarks

With a neural network, one approximates an unknown function by first choosing a finite
set of basis functions that yield the outputs of the hidden units, and then choosing a
suitable linear combination of the basis functions. There are two sets of parameters
involved: weights which control the linear combination and parameters which select the
given basis functions. Basis functions are continuously but nonlinearly parametrized.
Since we only aim at approximation, it is not necessary to have a continuous family
of basis functions available when the inputs are restricted to lie in a compact subset.
Accordingly, the basis functions can be taken to lie in some finite (though large) set; that
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is, the set of functions produced by their linear combinations is a finite union of finite
dimensional subspaces.

Admittedly, the weights are also discrete in practice and this too prevents continu-
ity. However, as technology improves, both parameters and weights can be chosen more
precisely; theorem 3.2 indicates that continuous approximations will still be arbitrarily
poor for some functions.

Theorem 3.2 says that no finite neural network approximation operator can be con-
tinuous unless its error, measured in an Lp-norm with 1 < p < ∞, exceeds the mini-
mum by more than any prescribed constant for at least one function in the domain. By
continuity the same conclusion holds for an entire open set of functions.

What are the implications for nonlinear optimization? While there are known lower
bounds in the case of continuous approximation schemes (DeVore et al. [1]) which force
exponentially slow convergence, our results show that these lower bounds do not apply in
the neural network case. If a neural network approximation technique can be developed
which remains within some fixed additive constant of the best approximation error, then
it might compensate for an occasional non-continuity by faster convergence.

Indeed, neural network approximation provides novel applications for nonlinear
optimization. In particular, the sets of parametrized functions corresponding to neural
networks determine nonconvex subsets of the ambient function space for which distance
optimization is needed. These nonconvex subsets, however, have a regular structure as
unions of convex sets. See [6] for some results on the topology and geometry of best and
near best approximants in these sets.

Acknowledgement
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