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1. Introduction

Fredholm integral equations play an important role in many problems in applied science and engineering. They arise in
image restoration [1], differential problems with auxiliary boundary conditions, potential theory and elasticity [2, Chapter
IV], and many other problems (see, e.g., [3]). Solving an inhomogeneous Fredholm integral equation of the second kind is an
inverse problem of finding for a function f representing measured data a function / which is mapped to f by a linear operator
of the form I � kTK, where I is the identity operator, TK is an integral operator with a kernel K defined as
TKð/ÞðxÞ :¼
Z

X
/ðyÞKðx; yÞdy
and k is a parameter. So for every x in the domain of the functions f and /, the solution / of the Fredholm equation satisfies
/ðxÞ � k
Z

X
/ðyÞKðx; yÞdy ¼ f ðxÞ:
The classical Fredholm Alternative Theorem from 1903 (see, e.g., [4, Section 1.3]) gives under suitable continuity and
compactness assumptions a formula describing an exact solution of the Eq. (1) in terms of Liouville–Neumann series and
resolvent kernel (see Appendix A.1 in the Appendix). But numerical calculations based on this theorem may be computation-
ally demanding (see Appendix A.2). Thus various methods constructing so-called surrogate models [5] of solutions have been
developed. A classical approach is based on polynomial interpolation of numerical solutions at certain collocation points in
the domain of / (see, e.g., [6, Chapter 11]).
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Recently, several authors proposed an alternative approach to classical surrogate modeling of solutions of Fredholm
equations by replacing polynomials with various nonlinear computational models such as perceptron networks [7] and
Gaussian and multiquadric radial-basis functions (RBF) [8,9]. In these methods, numerically calculated values of solutions
at collocation points are used as training sets for various learning algorithms that optimize parameters of neural networks
with various types of units (perceptrons or RBF). As neural networks have more free parameters than linear models, in many
cases they achieve better accuracy of approximation with smaller model complexity than linear methods [10–13]. Thus one
may expect that approximation of solutions of Fredholm integral equations by neural networks is more efficient than
approximation by linear models. Recent experimental results [7–9] indicate usefulness of applications of neural networks
to solutions of Fredholm equations.

In this paper, we theoretically investigate efficiency of neural-network surrogate modeling of these solutions. Using
results from nonlinear approximation theory which have been motivated by problems from neurocomputing, we derive
estimates of rates of approximation of solutions of Fredholm equations by networks with increasing number of units. We
obtain estimates for networks with units of several types: Gaussian radial units, kernel units induced by degenerate kernels,
and smooth kernels. Our results show that the number of computational units required for a desired accuracy of approxi-
mation depends on the VC-dimension of the set of functions computable by network units (which is in some literature called
‘‘dictionary’’ [11,12,14]), the Lebesgue measure of the domain where the solution is searched for, and the L1-norm of the
function f describing the data in the Eq. (1). We apply our estimates to networks with Gaussian radial units and kernel units
induced by degenerate kernels, for which we estimate VC-dimensions of induced dictionaries. These results are theoretical –
they estimate approximation accuracies achievable by networks with increasing numbers of units. Then we address the issue
of designing networks achieving our theoretical estimates. A preliminary version of some of the results appeared in
conference proceedings [15].

The paper is organized as follows. In Section 2, Fredholm integral equations and methods of their approximate solutions
are briefly reviewed. Section 3 recalls some results from a branch of nonlinear approximation theory, called variable-basis
approximation. These results are used as tools in Sections 4 and 5 to derive estimates of accuracy of approximate solutions to
Fredholm equations. Section 6 applies estimates to Gaussian RBF networks. Section 7 studies a constructive method to
achieve the upper bounds and Section 8 analyzes learning methods for networks computing approximate solutions. Section
9 provides some numerical results and Section 10 is a short discussion. To make the paper self-contained, we have included
an appendix (Appendix A) with some technical issues.
2. Approximate solutions to Fredholm integral equations

An inhomogeneous Fredholm integral equation of the second kind on X � Rd is defined by a kernel K : X � X ! R, a function
f : X ! R, and a parameter k 2 R n f0g. Its solution is a function / : X ! R satisfying for all x 2 X,
/ðxÞ � k
Z

X
/ðyÞKðx; yÞdy ¼ f ðxÞ: ð1Þ
Solving the Eq. (1) is an inverse problem of finding a function / which is mapped to f by the operator
I � kTK ;
where I denotes the identity operator and TK is the operator defined as
TKð/ÞðxÞ :¼
Z

X
/ðyÞKðx; yÞdy: ð2Þ
So a solution of the Eq. (1) is a function / such that
ðI � kTKÞð/Þ ¼ f :
Let CðXÞ denotes the space of continuous functions on X. When X is compact and K is continuous, then TK : CðXÞ ! CðXÞ is
compact and thus by the Fredholm Alternative Theorem [4, Section 1.3] for every k – 0 such that 1/k is not an eigenvalue
of the operator TK : CðXÞ ! CðXÞ and every f 2 CðXÞ, there exists a unique continuous solution / : X ! R of the Eq. (1). So
under latter assumptions, the inverse problem defined by I � kTK is well posed. Its solution has the form
/ðxÞ ¼ f ðxÞ � k
Z

X
Rk

Kðx; yÞf ðyÞdy; ð3Þ
where Rk
K : X � X is a continuous function called resolvent kernel (see Appendix A.1 in the Appendix).

Although the Fredholm Alternative Theorem gives a formula expressing the solution / of the Eq. (1), it may be of limited
practical use as numerical calculations based on the formula (3) are sometimes too computationally demanding (see Section
A.2 in the Appendix). Thus various approximate methods have been developed which require these calculations only in
certain collocation points [6, Chapter 11]. In all other points of the domain, merely approximations of values of the solution
are calculated using suitable surrogate models [5]. Such models are chosen in such a way that they provide functions
interpolating or closely approximating the numerically calculated values of the solution in collocation points. Traditional



G. Gnecco et al. / Applied Mathematics and Computation 218 (2012) 7481–7497 7483
surrogate models used for solutions of Fredholm equations have been formed by functions from linear subspaces of CðXÞ,
such as polynomials up to a certain degree.

Recently, alternative surrogate models in the form of perceptron [7] and Gaussian radial-basis function networks [9] were
explored experimentally [7,9]. It is important to guarantee that surrogate solutions approximate the solution given by the
formula (3) sufficiently well also in non collocation points. It is known that perceptron and Gaussian RBF networks are uni-
versal approximators (see, e.g., [16,17]). So any continuous function on a compact subset of Rd (in particular the solution /)
can be approximated arbitrarily well by input–output functions of these networks with sufficiently large numbers of units.
However, to evaluate efficiency of neural-network based surrogate modelling of solutions of Fredholm equations one has to
investigate the trade-off between model complexity (measured by the number of network units) and accuracy of approxi-
mation which such networks can provide.

3. Approximation from a dictionary

One-hidden layer networks with one linear output unit compute input–output functions from sets of the form
spannG :¼
Xn

i¼1

wigijwi 2 R; gi 2 G

( )
; ð4Þ
where the set G is sometimes called a dictionary [14] and n is the number of computational units in so called hidden layer. This
number can be interpreted as a measure of model complexity of the network. Approximation by sets of the form spannG is
called variable-basis approximation in contrast to traditional linear approximation, where a fixed linear ordering
fgnjn 2 Nþg of the set G is given and approximating families are n-dimensional subspaces of the form
spanfg1; . . . ; gng :¼
Xn

i¼1

wigijwi 2 R

( )
:

Often, dictionaries are parameterized families of functions modeling computational units, i.e., they are of the form
GKðX;YÞ :¼ fKð�; yÞ : X ! Rjy 2 Yg; ð5Þ
where K : X � Y ! R is a function of two variables, an input vector x 2 X # Rd and a parameter y 2 Y # Rs. When X = Y, we
write briefly GK(X) and when X ¼ Y ¼ Rd, we write merely GK. In some contexts, K is called a kernel. However, the above-
described computational scheme includes fairly general computational models, such as functions computable by percep-
trons, radial or kernel units, Hermite functions, trigonometric polynomials, and splines. For example, with
Kðx; yÞ ¼ Kðx; ðv ; bÞÞ ¼ rðhv ; xi þ bÞ;
where h�, �i denotes the Euclidean inner product on Rd, and r : R! R a sigmoidal function, the computational scheme (4)
describes one-hidden-layer perceptron networks. RBF units with an activation function b : R! R are modeled by the kernel
Kðx; yÞ ¼ Kðx; ðv ; bÞÞ ¼ bðvkx� bkÞ;
where b : R! R is an even function. A typical choice of b is the Gaussian function.
Estimates of model complexity of one-hidden layer networks can be obtained by inspection of upper bounds on rates of

decrease of errors in approximation of families of functions of interest by sets spannG with n increasing. Such rates have been
studied in mathematical theory of neurocomputing for various types of computational units and norms measuring approx-
imation errors such as Hilbert-space norms [18,10,19], Lp-norms, p 2 (1,1) [20], and the supremum norm [21,22]. Typically,
these estimates were derived for approximating sets of form
convnG :¼
Xn

i¼1

wigijwi 2 ½0;1�;
Xn

i¼1

wi ¼ 1; gi 2 G

( )
ð6Þ
and then extended to spannG.
To estimate accuracy of surrogate solutions of the Eq. (1) over the whole input domain X uniformly, we shall exploit an

upper bound on approximation error in the supremum norm, defined for a bounded function f on a set X as
kfksup :¼ sup
x2X
jf ðxÞj:
The next sup-norm estimate of rates of approximation is a slight reformulation of a theorem by Girosi [21]. It holds for
functions which can be represented as images of functions from the space
L1ðXÞ :¼ ff : X ! Rj
Z

X
jf ðxÞjdx <1g
under the operator TK. Girosi’s estimate is formulated in terms of the VC-dimension of the dictionary GK(X). Recall that the
Vapnik–Chervonenkis dimension (VC-dimension) of a set F of real-valued functions on a set X is the maximal cardinality h of a
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set of points {yi 2 Xji = 1, . . . ,h} that can be separated in all 2h possible ways into two classes H1 and H2 by means of functions
f(�) � a, with f 2 F and a 2 R, where a pair (f,a) classifies yi as belonging to H1 if f(yi) � a P 0 and to H2 if f(yi) � a < 0 [23].

For a function g in a normed linear space ðX ; k � kX Þ and a subset A of X we denote by kg � AkX :¼ inf f2Akg � fkX the dis-
tance of g from A. For c 2 R, we write cA :¼ {c fjf 2 A}.

Theorem 1. Let X # Rd, K : X � Y ! R be a bounded kernel, sK :¼ supx2X, y2YjK(x,y)j , h the VC-dimension of GK(X,Y), and g a
function on X such that g = TK(w) for some w 2 L1ðYÞ. Then for every positive integer n P h/2
1 It h
that we
F is of th
that the
kg � spannGKðX;YÞksup 6 g � kwkL1ðYÞconvnðGKðX;YÞ [ �GKðX;YÞÞ
��� ���

sup
6 4sKkwkL1ðYÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h ln 2en

h þ ln 4
n

s
:

In the next sections, we apply Theorem 1 to some dictionaries for which we estimate their VC-dimensions. We consider
dictionaries induced by Gaussian and degenerate kernels. We denote by Sd : Rd � Rd ! R the d-dimensional Gaussian kernel,
defined as
Sdðx; yÞ :¼ e�kx�yk2
and for every b > 0 we denote by Sb
d : Rd � Rd ! R the d-dimensional Gaussian kernel with the width b, defined as
Sb
dðx; yÞ :¼ e�bkx�yk2

:

Note that Fredholm integral equations of the second kind with Gaussian kernels arise, e.g., in image restoration problems [1].
Recall that a kernel K is called degenerate when it can be represented as
Kðx; yÞ ¼
Xm

j¼1

njðxÞgjðyÞ; ð7Þ
where m is finite and {nj} and {gj} are two sets of linearly-independent functions on X [24, Section 2.3]. Degenerate kernels
are of interest because every L2-kernel can be arbitrarily well approximated by a sequence of degenerate kernels (with m
increasing) [24, Section 2.6]. Some estimates of sup-norm differences between solutions of two Fredholm equations in
dependence on sup norm distance between kernels of these equations are given in [24, Section 2.6].

The next proposition gives bounds on the VC-dimensions of the dictionaries associated with Gaussian and degenerate
kernels.

Proposition 1. Let d be a positive integer and X # Rd. Then

(i) for every b > 0, the VC-dimensions of the dictionaries GSd
ðX;RdÞ and GSb

d
ðX;RdÞ are bounded from above by d + 1;

(ii) for every kernel K : X � Y ! R such that Kðx; yÞ ¼
Pm

j¼1njðxÞgjðyÞ, where {nj} is a linearly independent set of functions on X,
the VC-dimension of GK(X) is bounded from above by m + 1.
Proof

(i) Dudley [25] proved that the VC-dimension of the set of balls in Rd is equal to d + 1. Thus the VC-dimensions of the
dictionaries GSdðX;RdÞ and GSb

dðX;R
dÞ for all b > 0 are bounded from above by d + 1.

(ii) Let M :¼ {n1, . . . ,nm}. As {nj} is linearly independent, the dimension of spanM is equal to m. So by [26, Theorem 1],1 the
VC-dimension of spanM is bounded from above by m + 1. As GK(X) :¼ {K(�,y)jy 2 Y} # span M, also the VC-dimension of
GK(X) is bounded from above by m + 1. h

4. Accuracy estimates for dictionaries generated by kernels of integral equations

In this section, we estimate rates of approximation of solutions of Fredholm integral equation by networks with units
from dictionaries induced by kernels of the equations.

Theorem 2. Let X � Rd be compact, K : X � X ! R a continuous kernel, sK :¼ supx;y2X jKðx; yÞj;qK :¼
R

X supy2X jKðx; yÞjdx, k – 0

such that 1
k is not an eigenvalue of TK : CðXÞ ! CðXÞ; jkj < 1

qK
, and c1ðK; f ; kÞ ¼

4sK jkjkf kL1

1�jkjqK
. Then the solution / of the Eq. (1) with f

continuous satisfies
as to be remarked that in [26] the VC-dimension of a set F of functions is defined in a slightly different way. More specifically, referring to the definition
have given before Theorem 1, in [26] one has a = 0. Both definitions appear in the literature (e.g., they are both used in [23]) and are easily related when
e form spanM. Indeed, in such a case a can interpreted as a weight associated with a constant function, which can be included in the set M. This implies
upper bound on VC-dimension given in [26, Theorem 1] has to be increased by 1.
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(i) for the Gaussian kernel Sd and n P (d + 1)/2
k/� f � spannGSd
ðX;RdÞksup 6 c1ðK; f ; kÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdþ 1Þ lnð2enÞ þ ln 4

n

r
; ð8Þ
(ii) for a degenerate kernel K such that Kðx; yÞ ¼
Pm

j¼1njðxÞgjðyÞ for all x,y 2 X and n P (m + 1)/2
k/� f � spannGKðXÞksup 6 c1ðK; f ; kÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmþ 1Þ lnð2enÞ þ ln 4

n

r
: ð9Þ
Proof. By Proposition 1, in both cases (i) and (ii), the dictionaries have finite VC-dimensions bounded from above by d + 1
and m + 1, resp. Thus we can apply Theorem 1 to g = / � f and w = k/. As / satisfies the Eq. (1), for every x 2 X we have
j/ðxÞj 6 jkjk/kL1 sup
y2X
jKðx; yÞj þ jf ðxÞj:
Hence k/kL1 6 jkjqKk/kL1 þ kfkL1 and so k/kL1 ð1� jkjqKÞ 6 kfkL1 : This inequality is non trivial only when jkj < 1
qK

as we as-
sume. Thus we get
kwkL1 ¼ jkjk/kL1 6
jkjkfkL1

1� jkjqK
:

The statements (i) and (ii) follow then from Theorem 1, Proposition 1, and the upper bound h ln 2en
h

� �
6 h lnð2enÞ. h

Theorem 2 shows that surrogate solutions computable by networks with n kernel units can theoretically achieve accuracy

of approximation in all points of the domain X within c1ðK; f ; kÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdþ1Þ lnð2enÞþln 4

n

q
in the case of the Gaussian kernel and

c1ðK; f ; kÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmþ1Þ lnð2enÞþln 4

n

q
in the case of a degenerate kernel representable in terms of m linearly independent functions. For

a given Fredholm Eq. (1), the term c1(K, f,k) is a constant, while the terms
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdþ1Þ lnð2enÞþln 4

n

q
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmþ1Þ lnð2enÞþln 4

n

q
resp., converge

to zero with increasing number n of network units.
The estimates given in Theorem 2 hold when jkj is sufficiently small. Denoting by ld the Lebesgue measure on Rd, we get

qK 6 sKld(X). So Theorem 2 applies to every k satisfying jkj 6 1
sK ldðXÞ

6
1
qK

. For instance, in the case of the Gaussian kernel Sd

and X the unit ball in Rd, our estimates hold even for jkj growing with d exponentially fast. The constraint jkj < 1
qK

can be
removed at the cost of getting an upper bound on k/kL1 looser than

kfkL1

1�jkjqK
. Such an upper bound can be obtained starting

from the representation (3) of the solution / and proceeding as in Section 5 to obtain an upper bound on the quantity
supx;y2X jR

k
Kðx; yÞj.

Note that theoretical results on linear approximation of solutions of Fredholm equations by the method of successive
approximations (see, e.g., [24, Section 2.1]) assume an upper bound on jkj. More specifically, convergence of Neumann’s ser-
ies is proven provided that jkj < 1

kKkL2 ðX�XÞ
(see [24, Section 2.1, formulas (6) and (9)]).

Theorem 2 extends to other kernels whose associated dictionaries have finite VC-dimensions. Among such kernels, we cite
the ones considered in [9, Example 2] and in [27, Table 2, Examples I-III]. In particular, in Section 9 we shall give numerical
results for the kernels K(x,y) = e�2xy and
Kðx; yÞ ¼ e2x;0 6 y < 0:5;
e�2x;0:5 6 y 6 1

(

with X = [0,1], for which the VC-dimensions of the associated dictionaries GK(X) are bounded from above by 1 and 2, resp. For
instance for the kernel K(x,y) = e�2xy, by the monotonicity properties of the functions K(�,y), it is easy to show that any set of
two points can be separated in 3 < 22 possible ways into two classes H1 and H2 by means of functions K(�,y) � a, with a 2 R.
Note that the second kernel considered above is bounded but not continuous. However, when the solution / of the integral
Eq. (1) is continuous, the technique used to prove Theorem 2 works also for a bounded kernel which is not continuous.

5. Accuracy estimates for dictionaries generated by resolvent kernels

In this section, we derive an upper bound on decrease of approximation errors with increasing number of computational
units from dictionaries generated by resolvent kernels. For a continuous kernel K : X � X ! R on compact X # Rd and k – 0
such that 1

k is not an eigenvalue of TK, we denote by
GRk
K
ðXÞ :¼ fRk

Kð�; yÞjy 2 Xg ð10Þ
the dictionary induced by the resolvent kernel Rk
K (defined in the Eq. (36) in the Appendix).
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Theorem 3. Let X � Rd be compact, K : X � X ! R be a continuous degenerate kernel representable for every x,y 2 X as
Kðx; yÞ ¼

Pm
j¼1njðxÞgjðyÞ with {nj} and {gj} linearly independent sets of functions, k – 0 such that 1

k is not an eigenvalue of
TK : CðXÞ ! CðXÞ, and Rk

K the resolvent kernel associated with K. Then the solution / of the Eq. (1) with f continuous satisfies for
every positive integer n P (m + 1)/2
k/� f � spannGRk
K
ðXÞksup 6 4 sup

x;y2X
jRk

Kðx; yÞjjkjkfkL1ðXÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmþ 1Þ lnð2enÞ þ ln 4

n

r
: ð11Þ
Proof. To apply Theorem 1 to the representation
/ðxÞ � f ðxÞ ¼ k
Z

X
Rk

Kðx; yÞf ðyÞdy;
we have to verify that the VC-dimension of GRk
K
ðXÞ is finite and to estimate it from above. As the kernel K of the Eq. (1) is

degenerate, by [24, Section 2.3]) we get
Rk
Kðx; yÞ ¼ �

1
DðkÞ

Xm

k¼1

½D1;kðkÞg1ðyÞ þ D2;kðkÞg2ðyÞ þ � � � þ Dm;kðkÞgmðyÞ�nkðxÞ;
where Rk
K is defined in Eq. (36) in the Appendix and the Di,k(k) are coefficients depending on k (see, e.g., [24, pp. 56-57] for

their expressions for d = 1). By Proposition 1, the VC-dimension GRk
K
ðXÞ is bounded from above by m + 1. So the statement

follows by Theorem 1 and the upper bound h ln 2en
h

� �
6 h lnð2enÞ. h

Theorem 3 shows that accuracy of approximation of the solutions of the Fredholm Eq. (1) by networks with units gener-
ated by resolvent kernels depends on jkj, the L1-norm of f, the number m of functions in the spectral representation of the
degenerate kernel K, and on the supremum norm of the resolvent kernel Rk

K on X � X. Note that in contrast to Theorem 2, in
Theorem 3 there is no restriction on size of jkj.

The term most difficult to estimate is the supremum of Rk
K on X � X. The following proposition gives an upper bound in

terms of the eigenvalues of the operator TK.

Proposition 2. Let X � Rd be compact, K 2 L2ðX � XÞ symmetric and bounded with sK = supx, y2XjK(x,y)j, and 1/kj be the
eigenvalues of the operator TK : L2ðXÞ ! L2ðXÞ, and suppose that at most a finite number of eigenvalues are negative. Then for
every k – 0 such that 1

k is not an eigenvalue of TK
sup
x;y2X
jRk

Kðx; yÞj 6
P1

l¼0
jkjl
l! lðXÞlslþ1

K ðlþ 1Þ
1
2ðlþ1Þ

e
�k 2

R
X

Kðx;xÞdx�
PNu ðkÞ

j¼1
1
kj

� �QNuðkÞ
j¼1 1� k

kj

��� ���e k
kj

;

where Nu(k) is a positive integer such that for every j > NuðkÞ; k
kj
6

1
2.

Proof. By the formula (36) in the Appendix,
Rk
Kðx; yÞ ¼

N ðx; y; kÞ
DðkÞ :
First we estimate jN ðx; y; kÞj from above. By Hadamard’s theorem (see, e.g., [24, Appendix II]) we get
Z
X

Z
X

. . .

Z
X
K

x; n1; n2; . . . ; nl

y; n1; n2; . . . ; nl

	 

dn1dn2 . . . dnl 6 lðXÞlslþ1

K ðlþ 1Þ
1
2ðlþ1Þ

: ð12Þ
So
sup
x;y2X
jN ðx; y; kÞj ¼ sup

x;y2X

X1
l¼0

ð�kÞl

l!

Z
X

Z
X

. . .

Z
X
K

x; n1; n2; . . . ; nl

y; n1; n2; . . . ; nl

	 

dn1dn2 . . . dnl

�����
����� 6X1

l¼0

jkjl

l!
lðXÞlslþ1

K ðlþ 1Þ
1
2ðlþ1Þ

;

where the series converges by the ratio test [28, Section 6.2]. As K 2 L2ðX � XÞ; TK : L2ðXÞ ! L2ðXÞ is compact (see, e.g., [4,
Section 1.2]) and as K is symmetric, TK is self-adjoint. Thus by the spectral theorem, there exist a finite or infinite countable
orthonormal family {wj} of eigenfunctions of TK and corresponding eigenvalues 1

kj
such that for all x,y 2 X,
Kðx; yÞ ¼
XN

j¼1

1
kj

wjðxÞwjðyÞ ð13Þ
and for N infinite, limj!1
1
kj

��� ��� ¼ 0.
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To derive a lower bound on jDðkÞj, we take advantage of a representation of DðkÞ in terms of the eigenvalues of TK
DðkÞ ¼ eak
YN

j¼1

1� k
kj

	 

e

k
kj ; ð14Þ
where a :¼ �
R

X Kðx; xÞdx (see [28, Theorem 7, Chapter 6]). By (13) we have (see, e.g., [28, Corollary 2, p. 92] and [29, Theorem
2.10])
XN

i¼1

1
ki
¼
Z

X
Kðx; xÞdx: ð15Þ
When N is infinite, limj!1
1
kj
¼ 0 and so there exists a positive integer Nu(k) such that for every j > Nu(k) we have k

kj
6

1
2. So, a

simple calculation shows that for every j > Nu(k)
1� k
kj

P e
�2 k

kj : ð16Þ
If k
kj
> 2 for every j, let Nl(k) :¼ 1, otherwise define Nl(k) as the first index j such that k

kj
6 2. By combining (14)–(16) we get
jDðkÞjP eak
YNuðkÞ

j¼1

1� k
kj

���� ����e k
kj

Y1
j¼NuðkÞþ1

e
� k

kj ¼ e
�k 2

R
X

Kðx;xÞdx�
PNu ðkÞ

j¼1

1
kj

	 
 YNuðkÞ

j¼1

1� k
kj

���� ����e k
kj : ð17Þ
The lower bound (17) requires to compute the first Nu(k) � 1 eigenvalues of the operator TK.
If k < 0, then a looser but much simpler lower bound can be obtained, as
DðkÞP e�k
R

X
Kðx;xÞdxe

k
PN
i¼j

1
kj ¼ e�k

R
X

Kðx;xÞdxek
R

X
Kðx;xÞdx ¼ 1:
The statement then follows by combining (17) and (5) together with (13). h
6. Accuracy estimates for approximation by Gaussian RBF networks

In this section, we investigate approximation of solutions of Fredholm equations with sufficiently smooth kernels by
networks with Gaussian computational units with varying widths and centers. Such networks were used in [8,9] as surrogate
models to derive approximate solutions to the Fredholm Eq. (1).

We take advantage of integral representations from [30] of smooth functions in terms of such Gaussians. These represen-
tations were obtained by combining two integrals: the first one expresses a smooth function as a convolution of a Bessel po-
tential of a suitable degree and the second one expresses the Bessel potential as an integral of Gaussians with varying widths.

We denote by
Fdðx; ðv ; bÞÞ :¼ e�bkx�vk2
: Rd � ðRd � RþÞ ! R
the Gaussian kernel corresponding to the Gaussian computational unit (RBF) with parameters b 2 R and v 2 Rd representing
widths and centers, resp. So,
GFd
ðX;RdÞ :¼

[
b2Rþ

GSb
d
ðX;RdÞ
is the dictionary induced by Fd.
We denote the d-dimensional Fourier transform on L2ðRdÞ \ L1ðRdÞ by
Fðf ÞðsÞ :¼ f̂ ðsÞ ¼ 1

ð2pÞd=2

Z
Rd

eihx;sif ðxÞdx: ð18Þ
To prove the next theorem, we introduce some definitions and notations. For a positive integer d and r > 0, the Bessel potential
of the order r, denoted by br, is the function on Rd with the Fourier transform
b̂rðsÞ ¼ ð1þ ksk2Þ�r=2
:

For r > 0, br is non-negative, radial, exponentially decreasing at infinity, analytic except at the origin, and belongs to L1ðRdÞ
[31, p. 132]. The Bessel potential can be expressed by the integral formula
brðuÞ ¼ c1ðr;dÞ
Z 1

0
e�t=ð4pÞt�d=2þr=2�1e�ðp=tÞkuk2

dt; ð19Þ
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where
c1ðr; dÞ :¼ ð2pÞd=2ð4pÞ�r=2
=Cðr=2Þ
and for z > 0 we let CðzÞ :¼
R1

0 tz�1e�tdt the Gamma function (see [32, p. 296] or [31]). The factor (2p)d/2 occurs since our
choice of Fourier transform (18) includes the factor (2p)�d/2.

We denote by
Lr;1ðRdÞ :¼ ff : Rd ! Rjf ¼ w � br ;w 2 L1ðRdÞg;
the Bessel potential space of the order r, where ⁄ denotes convolution. The norm on Lr;1ðRdÞ is defined as
kfkLr;1 :¼ kwkL1ðRdÞ
for f = w ⁄ br.
For an open set X # Rd and a positive integer r, let Wr;1ðXÞ denote the Sobolev space of the order r, which is formed by

functions on X with iterated partial derivatives up to the order r in L1ðXÞ.
For X # Rd, we denote by int (X) the interior of the set X and by CrðXÞ the space of continuous functions on X with

continuous iterated partial derivatives up to the order r.
The following theorem estimates rates of approximation of solutions of Fredholm integral equations by Gaussian RBF

networks. It gives an upper bound on speed of decrease of approximation errors with increasing number of network units
formulated in terms of smoothness of the solution / expressed in terms of a function w 2 L1ðXÞ such that f � / = w ⁄ brjX.
So the result is merely existential.

Theorem 4. Let X � Rd be compact and such that int (X) is bounded and convex, r > d be a positive even integer, K 2 CrðX � XÞ a
kernel, and k – 0 such that 1

k is not an eigenvalue of TK : CðXÞ ! CðXÞ. Then there exists w 2 L1ðRdÞ such that the solution / of the
Fredholm integral Eq. (1) with f 2 CðXÞ satisfies f � / = w ⁄ brjX and for all n P (d + 1)/2
k/� f � spannGFd
ðX;RdÞksup 6 2�

d
2þ2 C r�d

2

� �
C d

2

� � kwkL1ðRdÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdþ 1Þ ln 2en

dþ1þ ln 4
n

s
: ð20Þ
Proof. As f 2 CðXÞ;/ 2 CðXÞ, and K 2 CrðX � XÞ, it follows by (1) that /� f 2 CrðXÞ. As X is compact, ð/� f ÞjintX 2 Wr;1ðintXÞ.
By Sobolev’s extension theorem [31, Theorem 5, p. 181 and Example 2, p. 189], the space Wr;1ðintXÞ can be extended to
Wr;1ðRdÞ by a bounded extension operator. As r is even, by [31, Remark 6.6 (b), p. 160] we have Wr;1ðRdÞ � Lr;1ðRdÞ. Thus
there exists w 2 L1ðRdÞ such that f � / = w ⁄ brjX.

So, by (19) for all x 2 X we get
f ðxÞ � /ðxÞ ¼ c1ðr; dÞ
Z

Rd

Z 1

0
wðyÞe�t=ð4pÞt�d=2þr=2�1e�ðp=tÞky�xk2

dydt:
Hence
f ðxÞ � /ðxÞ ¼ ð2pÞd=2ð4pÞ�r=2

Cðr=2Þ

Z
Rd

Z 1

0
Fdðx; ðy;�p=tÞÞKðt; yÞdtdy; ð21Þ
where
Kðt; yÞ :¼ e�t=ð4pÞt
r�d

2 �1wðyÞ:

It is easy to check that K 2 L1ðRþ � XÞ. Indeed as r > d we get
Z 1

0

Z
Rd
jKðt; yÞjdtdy ¼ ð4pÞðr�dÞ=2Cððr � dÞ=2ÞkwkL1ðRdÞ:
Thus
f ðxÞ � /ðxÞ ¼ 2�
d
2
C r�d

2

� �
C d

2

� � Z
Rd

Fdðx; ðy;�p=tÞÞdy: ð22Þ
By Proposition 1, the VC-dimension of GFd
ðX;RdÞ is bounded from above by d + 1. So, the statement follows by Theorem 1

applied to the integral representation (21). h

For r = d + 1 when d is odd or r = d + 2 when d is even, the coefficient C r�d
2

� �
=C d

2

� �
becomes C(1/2)/C(d/2) or 1/C(d/2), resp.

So, it decreases exponentially fast with d. Although the term kwkL1ðRdÞ is difficult to estimate, Theorem 4 suggests that even
quite large values of kwkL1ðRdÞ can be compensated by 2�d=2C 1

2

� �
=C d

2

� �
or 2�d=2=C d

2

� �
, resp. Note that the input dimension d is

often an important factor in estimates of accuracy of approximation by neural networks [33,34].
Inspection of the proof of Theorem 4 shows that, with the same assumptions on the set X, the estimate (20) can be

extended to nonlinear integral equations of the form
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/ðxÞ � k
Z

X
Kðx; y;/ðyÞÞdy ¼ f ðxÞ; ð23Þ
where f 2 CrðXÞ and K : X � X � R! R is bounded and of class CrðX � X � RÞ, provided that there exists a solution / 2 CðXÞ.
This holds, e.g., if there exists L > 0 such that K satisfies a Lipschitz condition of the form
jKðx; y; z1Þ � Kðx; y; z2Þj 6 Lkz1 � z2k
and jkj < 1
LvolðXÞ (where vol (X) denotes the volume of X), since under these conditions the existence of a (unique) continuous

solution follows by the Banach Contraction Mapping Theorem (see also [35] for this and other sufficient conditions for the
existence of a continuous solution to Eq. (23)).

7. Achieving the bounds

Theorems 2–4 guarantee existence of elements of spannGK(X), spannGRk
K
ðXÞ, and spannGFd

ðX;RdÞ, respectively, which
approximate with certain accuracies solutions to Fredholm Eq. (1). In this section, we consider a way to find networks that
achieve the bounds up to multiplicative constants independent of the number n of computational units. In particular, we
focus on the estimates provided by Theorem 2.

Let sK ¼ supx;y2X jKðx; yÞj;qK ¼
R

X supy2X jKðx; yÞjdx, and
c1ðK; f ; kÞ :¼ 4sK jkjkfkL1

1� jkjqK
:

The following theorem shows that a network achieving an accuracy of the order specified by Theorem 2 can be obtained by
minimizing the functional k(I � kTK)(�) � fksup over the set
!n :¼ ff þ gjg 2 c1ðK; f ; kÞconvnðGKðXÞ [ �GKðXÞÞg
of functions. For every e > 0, let
argmineðkðI � kTKÞð�Þ � fksup;!nÞ
:¼ f/n;e 2 !nj!nð/n;eÞ < inf

wn2!n

kðI � kTKÞðwnÞ � fksup þ eg
denote the set of e-near minimum points of the functional k(I � kTK)(�) � fksup over !n.

Theorem 5. Let X � Rd be compact, K : X � X ! R a continuous kernel, sK :¼ supx;y2X jKðx; yÞj; ;qK :¼
R

X supy2X jKðx; yÞjdx; k – 0

such that 1
k is not an eigenvalue of TK ; jkj < 1

qK
, and f continuous. Let c1ðK; f ; kÞ :¼ 4sK jkjkfkL1

1�jkjqK
; c1ðK; kÞ :¼ kI � kTKksup, and

c2(K,k):¼k(I � kTK)�1ksup. Then for every e > 0, every positive integer n, and every /n,e 2 argmine(k(I � kTK)(�) � fksup,!n) the
following hold.

(i) For the Gaussian kernel Sd : X � X ! R and n P (d + 1)/2
kðI � kTSd
Þð/n;eÞ � fksup 6 c1ðSd; kÞc1ðSd; f ; kÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdþ 1Þ lnð2enÞ þ ln 4

n

r
þ e;

k/� /n;eksup 6 c2ðSd; kÞ c1ðSd; kÞc1ðSd; f ; kÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdþ 1Þ lnð2enÞ þ ln 4

n

r
þ e

" #
:

(ii) For a degenerate kernel K : X � X ! R such that Kðx; yÞ ¼
Pm

j¼1njðxÞgjðyÞ for all x,y 2 X and n P (m + 1)/2
kðI � kTKÞð/n;eÞ � fksup 6 c1ðK; kÞc1ðK; f ; kÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmþ 1Þ lnð2enÞ þ ln 4

n

r
þ e;

k/� /n;eksup 6 c2ðK; kÞ c1ðK; kÞc1ðK; f ; kÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmþ 1Þ lnð2enÞ þ ln 4

n

r
þ e

" #
:

Proof. By compactness of TK : CðXÞ ! CðXÞ and the Fredholm Alternative Theorem, both (I � kTK) and (I � k TK)�1 are
bounded linear operators on CðXÞ. So, c1(K,k) and c2(K,k) are well-defined. We have
kðI � kTKÞð/n;eÞ � fksup < inf
w2!n

kðI � kTKÞðwÞ � fksup þ e ¼ inf
w2!n

kðI � kTKÞð/� wÞksup þ e 6 kI � kTKksup inf
w2!n

k/� wksup

¼ c1ðK; kÞ inf
w2!n

k/� wksup þ e 6 c1ðK; kÞk/� f � spannGKðXÞksup þ e
and
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k/� /n;eksup ¼ kðI � kTKÞ�1ðI � kTKÞð/� /n;eÞksup ¼ kðI � kTKÞ�1ððI � kTKÞð/n;eÞ � f Þksup

6 kðI � kTKÞ�1ksupkððI � kTKÞð/n;eÞ � f Þksup ¼ c2ðK; kÞkðI � kTKÞð/n;eÞ � fksup
So, (i) and (ii) follow by Theorem 2. h

For every e > 0, Theorem 5 estimates speed of convergence of e-near minimum points of the functional k(I � kTK)(�) � fksup

over !n to the solution of the Fredholm integral Eq. (1).
Theorem 5 requires to minimize a supremum norm. In practice, differentiability requirements make algorithms based on

the minimization of L2-norm much more appealing. The following theorem shows that networks with the same order of
accuracy can be obtained by minimizing over !n the L2- norm kðI � kTKÞð�Þ � fkL2ðXÞ.

Theorem 6. Let X � Rd be compact, K : X � X ! R a continuous kernel, sK :¼ supx;y2X jKðx; yÞj;qK :¼
R

X supy2X jKðx; yÞjdx; k – 0

such that 1
k is not an eigenvalue of TK ; jkj < 1

qK
, and f continuous. Let c1ðK; f ; kÞ :¼ 4sK jkjkfkL1

1�jkjqK
; c01ðK; kÞ :¼

ffiffiffiffiffiffiffiffiffiffiffi
lðXÞ

p
kI � kTKkL2ðXÞ, and

c02ðK; kÞ :¼ kðI � kTKÞ�1kL2ðXÞ. Then for every e > 0, every positive integer n, and every /n;e 2 argmineðkðI � kTKÞð�Þ � fkL2ðXÞ;!nÞ
the following hold.

(i) For the Gaussian kernel Sd : X � X ! R and n P (d + 1)/2
kðI � kTSd
Þð/n;eÞ � fkL2ðXÞ 6 c01ðSd; kÞc1ðSd; f ; kÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdþ 1Þ lnð2enÞ þ ln 4

n

r
þ e;

k/� /n;ekL2ðXÞ 6 c02ðSd; kÞ c01ðSd; kÞc1ðSd; f ; kÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdþ 1Þ lnð2enÞ þ ln 4

n

r
þ e

" #
:

(ii) For a degenerate kernel K : X � X ! R such that Kðx; yÞ ¼
Pm

j¼1njðxÞgjðyÞ for all x,y 2 X and n P (m + 1)/2
kðI � kTKÞð/n;eÞ � fkL2ðXÞ 6 c01ðK; kÞc1ðK; f ; kÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmþ 1Þ lnð2enÞ þ ln 4

n

r
þ e;

k/� /n;ekL2ðXÞ 6 c02ðK; kÞ c01ðK; kÞc1ðK; f ; kÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmþ 1Þ lnð2enÞ þ ln 4

n

r
þ e

" #
:

Proof. By compactness of TK on L2ðXÞ (see, e.g., [4, Section 1.2]) and the Fredholm Alternative Theorem, both (I � kTK) and
(I � kTK)�1 are bounded linear operators on L2ðXÞ. So, c01ðK; kÞ and c02ðK; kÞ are well-defined. The remaining of the proof
proceeds as the proof of Theorem 5, taking into account the relationship k � kL2ðXÞ 6

ffiffiffiffiffiffiffiffiffiffiffi
lðXÞ

p
k � ksup. h

Let us now investigate the relationship between the estimates from Theorems 5 and 6. The next theorem shows that the
supremum norm of the error associated with the suboptimal solutions can be bounded from above in terms of its L2ðXÞ-
norm. For simplicity of exposition, we take X equal to the hypercube � 1

2 ;
1
2

� �d but a similar result holds when X is any given

bounded domain (i.e., the closure of a bounded open connected set). We let c3ðK; f ; kÞ :¼ jkjkfkL1

1�jkjqK
.

Theorem 7. Let X ¼ � 1
2 ;

1
2

� �d
;K 2 C1ðX � XÞ; sK ¼ supx;y2X jKðx; yÞj;qK ¼

R
X supy2X jKðx; yÞjdx; k – 0 be such that 1

k is not an
eigenvalue of TK ; jkj < 1

qK
, and f 2 C1ðXÞ. Then there exists c4(K, f,k, d), c5(K, f,k,d) > 0 such that for every positive integer n and every

/n 2 !n one has
kðI � kTKÞð/nÞ � fksup 6 max c4ðK; f ; k;dÞkðI � kTKÞð/nÞ � fk
2

2þd

L2ðXÞ; c5ðK; f ; k;dÞkðI � kTKÞð/nÞ � fkL2ðXÞ


 �
: ð24Þ
Proof. The solution / of the Fredholm Eq. (1) is of class C1ðXÞ and its partial derivatives @/
@xi
; i ¼ 1; . . . ; d, satisfy the equation
@/ðxÞ
@xi

� k
Z

X

@Kðx; yÞ
@xi

/ðyÞdy ¼ @f ðxÞ
@xi

:

So we get
@/
@xi

���� ����
sup
6 jkj sup

x;y2X

@Kðx; yÞ
@xi

���� ����k/kL1ðXÞ þ
@f
@xi

���� ����
sup
6
jkjkfkL1

1� jkjqK
sup
x;y2X

@Kðx; yÞ
@xi

���� ����þ @f
@xi

���� ����
sup

¼ c3ðK; f ; kÞ sup
x;y2X

@Kðx; yÞ
@xi

���� ����þ @f
@xi

���� ����
sup
;
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hence / is Lipschitz continuous. Similarly, one can show that the functions /n 2 !n are of class C1ðXÞ and that for all i = 1, . . . ,d
@/n

@xi

���� ����
sup
6 c3ðK; f ; kÞ sup

x;y2X

@Kðx; yÞ
@xi

���� ����þ @f
@xi

���� ����
sup
: ð25Þ
Let �/n :¼ ðI � kTKÞð/nÞ þ f . By the definition of !n and (25), it follows that �/n is Lipschitz continuous, with Lipschitz constant
L :¼ LðK; f ; k;dÞ :¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXd

i¼1

c3ðK; f ; kÞ sup
x;y2X

@Kðx; yÞ
@xi

���� ����þ @f
@xi

���� ����
sup

 !2
vuut :
Then, for any point �x 2 X such that j�/nð�xÞj ¼ k�/nksup one has j�/nðxÞjP
k�/nksup

2 on the set B2;�x
k�/nksup

2L

� �
\ X, where B2;�x

k�/nksup
2L

� �
is the

closed ball of radius k
�/nksup

2L in the l2-norm, centered on �x. So,
k�/nkL2ðXÞ P
k�/nksup

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l B2;�x

k�/nksup

2L

 !
\ X

 !vuut : ð26Þ
For r > 0, let volðdÞ2 ðrÞ :¼ pd
2rdC�1 d

2þ 1
� �

denote the volume of the d-dimensional ball of radius r in the l2-norm [36, p. 304].
Simple geometric arguments concerning the intersection with minimum overlap between a hypercube and a sphere of var-
iable center and radius give the following estimates. We distinguish two cases:

1. k
�/nksup

2L 6
1
2. In this case, l B2;�x

k�/nksup
2L

� �
\ X

� �
P volðdÞ2

k�/nksup
2L

� �
(the equality holds if and only if �x is any vertex of � 1

2 ;
1
2

� �d);

2. k
�/nksup

2L P 1
2. In this case, l B2;�x

k�/nksup
2L

� �
\ X

� �
P volðdÞ2

1
2

� �
(the equality holds if and only if k

�/nksup
2L ¼ 1

2 and �x is any vertex of

� 1
2 ;

1
2

� �d).

Hence ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffivu8 9

k�/nkL2ðXÞ P

k�/nksup

2
min

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
volðdÞ2

k�/nksup

2L

 !vuut ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
volðdÞ2

1
2

	 
s8<:
9=; ¼ k�/nksup

2
min

pd
2
k�/nksup

2L

� �d

C d
2þ 1
� �uut ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pd

22�d

C d
2þ 1
� �s>><>>:

>>=>>;; ð27Þ
or, equivalently,
k�/nksup 6 max 2L
d

2þd
C d

2þ 1
� �� � 1

2þd

p d
4þ2d

k�/nk
2

2þd

L2ðXÞ;2
dþ2

2
C d

2þ 1
� �� �1

2

pd
4

k�/nkL2ðXÞ

8<:
9=;:
So, the bound (24) holds with
c4ðK; f ; k;dÞ :¼ 2L
d

2þd
C d

2þ 1
� �� � 1

2þd

p d
4þ2d
and
c5ðK; f ; k;dÞ :¼ 2
dþ2

2
C d

2þ 1
� �� �1

2

pd
4

: �
According to Theorem 7, for every /n 2 �n an upper bound on k(I � kTK)(/n) � fksup can be obtained via an upper bound on
kðI � kTKÞð/nÞ � fkL2ðXÞ:.
8. Accuracy estimates for network training

In the collocation method [6, Chapter 11], approximations of values of solutions to Fredholm integral equations are cal-
culated numerically merely in finitely many points from a subset of the domain X, typically a uniform grid
Xl :¼ fxð1Þ; . . . ; xðlÞg:
Let y(k) ’ /(x(k)) denote the approximation of the value of the solution in the point x(k) obtained by some numerical method of
calculation. Then the set z :¼ {(x(k),y(k))jk = 1, . . . , l} can be used as a training set of input–output pairs for a suitable neural net-
work. Various neural-network learning algorithms aim to minimize the empirical error
EzðwÞ :¼ 1
l

Xl

k¼1

ðwðxðkÞÞ � yðkÞÞ2 ð28Þ
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over the set f + spannG, where G is a dictionary and n is the number of computational units. Another method consists in min-
imizing directly the residual empirical error
Er;zðwÞ :¼ 1
l

Xl

j¼1

ððI � kTKÞðwÞðxðjÞÞ � f ðxðjÞÞÞ2 ð29Þ
over the set f + spannG, without requiring the preliminary approximate computation of /(x(k)) by other numerical methods.
Typical algorithms to minimize (28) and (29) are steepest descent, conjugate directions, quasi-Newton methods, etc. [37].
For example, in [7] the quasi-Newton BFGS (Broyden–Fletcher–Goldfarb–Shanno) method was implemented in the Matlab
optimization toolbox [38].

The next theorem provides theoretical insights into simulation results obtained in recent experimental works [7,9] on
approximations of solutions to Fredholm equations by neural networks. We consider X ¼ � 1

2 ;
1
2

� �d and Xl a uniform grid of
cardinality l :¼ (m + 1)d; so, m controls the distance 1

m between adjacent points of the grid. To simplify some formulas, we
assume that l is even.

Theorem 8. Let X ¼ � 1
2 ;

1
2

� �d
;K 2 C1ðX � XÞ; sK :¼ supx;y2X jKðx; yÞj;qK :¼

R
X supy2X jKðx; yÞjdx; k – 0 be such that 1

k is not an

eigenvalue of TK : L2ðXÞ ! L2ðXÞ; jkj < 1
qK
; f 2 C1ðXÞ, and c1ðK; f ; kÞ :¼ 4sK jkjkfkL1

1�jkjqK
. Let l be an even integer and Xl � X a uniform grid

of size l :¼ (m + 1)d. Then there exist a positive integer m⁄ and three positive constants c6(K, f,k, d), c7(K, f,k,d), c8(K, f,k, d) such that,
for every m P m⁄, every positive integer n, and every /n 2 !n
kðI � kTKÞð/nÞ � fksup 6 max c6ðK; f ; k;dÞDðK; k; l; d;nÞ
2

2þd; c7ðK; f ; k; dÞDðK; k;M;d;nÞ
n o

þ c8ðK; f ; k; dÞ
m

; ð30Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiq

where DðK; k; l; d;nÞ :¼ 1

l

Pl
j¼1ððI � kTKÞð/nÞðxðjÞÞ � f ðxðjÞÞÞ2:

Proof. Let �/n :¼ ðI � kTKÞð/nÞ þ f . By the definition of !n and (25), it follows that �/n is Lipschitz continuous, with Lipschitz
constant
L :¼ LðK; f ; k;dÞ :¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXd

i¼1

c3ðK; f ; kÞ sup
x;y2X

@Kðx; yÞ
@xi

���� ����þ @f
@xi

���� ����
sup

 !2
vuut ;
where c3ðK; f ; kÞ :¼ jkjkfkL1

1�jkjqK
. By the Lipschitz continuity of �/n and the regularity of the grid Xl, we get
k�/nksup 6 max
j¼1;...;l

�/nðxðjÞÞ
�� ��þ L sup

x2X
min
j¼1;...;l

kx� xðjÞk2 ¼ max
j¼1;...;l

�/nðxðjÞÞ
�� ��þ L

m
:

For any point �x 2 Xl such that j�/nð�xÞj ¼maxj¼1;...;lj�/nðxðjÞÞj, one has j�/nðxÞjP j�/nð�xÞj
2 on the set B1;�x

j�/nð�xÞj
2L

� �
\ Xl, where B1;�x

j�/nð�xÞj
2L

� �
is

the closed ball of radius j
�/nð�xÞj

2L in the l1-norm, centered on �x.

So,
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
l

Xl

j¼1

j�/nðxðjÞÞj2
vuut P

ffiffiffi
1
l

r
j�/nð�xÞj

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
card B1;�x

j�/nð�xÞj
2L

	 

\ Xl

	 
s
: ð31Þ
For r > 0, let volðdÞ1 ðrÞ :¼ 2drd

d!
denote the volume of the d-dimensional ball of radius r in the l1-norm [39, p. 3]. It is easy to see by

simple geometric arguments that the following two cases are possible (in the second one we exploit the assumption that m is
even):

1. if j
�/nð�xÞj

2L 6
1
2, then card B1;�x

j�/nð�xÞj
2L

� �
\ Xl

� �
P mdvolðdÞ1

1
m

mj�/nð�xÞj
2L

j k� �
þ 1;

2. if j
�/nð�xÞj

2L P 1
2, then card B1;�x

j�/nð�xÞj
2L

� �
\ Xl

� �
P mdvolðdÞ1

1
2

� �
þ 1.

Then
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
l

Xl

j¼1

j�/nðxðjÞÞj2
vuut P

ffiffiffi
1
l

r
j�/nð�xÞj

2
min

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mdvolðdÞ1

1
m

mj�/nð�xÞj
2L

� �	 

þ 1

s
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mdvolðdÞ1

1
2

	 

þ 1

s( )

¼
ffiffiffi
1
l

r
j�/nð�xÞj

2
min

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

mj�/nð�xÞj
2L

� �	 
d

þ 1

s
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
md

d!
þ 1

r8<:
9=;: ð32Þ
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Let m be sufficiently large, so that j�/nð�xÞjP 4L
m , and consequently mj�/nð�xÞj

2L

j k
P mj�/nð�xÞj

4L . By (32) we get
Table 1
Simulat

l = 10

Meth
Meth
j�/nð�xÞj 6 max 2
2þd

2 L
2d

4þ2d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
l

Xl

j¼1

j�/nðxðjÞÞj2
vuut0@ 1A

2
2þd

;2
2þd

2
ffiffiffiffi
d!
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
l

Xl

j¼1

j�/nðxðjÞÞj2
vuut

8><>:
9>=>;:
Then, the estimate (30) holds with c6ðK; f ; k; dÞ :¼ 2
2þd

2 L
2d

4þ2d; c7ðK; f ; k; dÞ :¼ 2
2þd

2
ffiffiffiffi
d!
p

, and c8(K, f,k,d) :¼ L(K, f,k,d). h
9. Numerical results

In this section we present some simulation results of numerical solutions of Fredholm integral equations of the second
kind. The simulations were performed using Matlab 7.7 on a personal computer with a 2.40 GHz Core2 Quad Q6600 CPU
and 2 GB of RAM.

Example 1. In the first example, we compared several methods for the approximate solution of the integral Eq. (1) with
X = [0,1], k = � 1, K(x,y) = e�2xy, and f ðxÞ ¼ e�2x þ e�ð2þ2xÞ�1

2ð1þxÞ . The example considered was the same as in [27, Table 2, Example I]
and its exact solution is /(x) = e�2x. The methods considered were:

1. the simplified Fredholm integral equation solver from [27,40] (see the Appendix for a short description);
2. the minimization of the residual empirical error
Er;zðwÞ :¼ 1
l

Xl

j¼1

ððI � kTKÞðwÞðxðjÞÞ � f ðxðjÞÞÞ2 ð33Þ
over the set f + spannG, investigated theoretically in the previous sections.

The dictionaries G considered in item (2) were G = GK and G ¼ GFdðX;RdÞ induced by the kernel of the integral equation and
the Gaussian kernel, resp.

In our simulations, likewise in [27], integrals of the form
R 1

0 Kðx; yÞwðyÞdy (resp.,
R 1

0 Rðx; yÞf ðyÞdy) were discretized and
approximated by finite summations of the form 1

l

Pl
j¼1Kðx; yjÞwðyjÞ (resp. 1

l

Pl
j¼1Rðx; yjÞf ðyjÞ), where the yj’s are the points of a

uniform grid on X = [0,1] made up of l points (the cases l = 100 and l = 1000 were considered). For the minimization of the
objectives in item (2), a multistart procedure was used, based on the quasi-Newton BFGS method, as implemented by the
function fminunc in the Matlab optimization toolbox [38].

The approximate solution ~w obtained by the simplified Fredholm integral equation solver has the form
~wðxÞ ¼ f ðxÞ � k
1
l

Xl

j¼1

eRk
Kðx; yjÞf ðyjÞ; ð34Þ
where eRk
Kðx; yÞ is an approximation of the resolvent kernel which is obtained by truncating the expansions (37) and (38) to

j = 13, likewise in [27]. In particular, formula (34) shows that for the uniform grid with l = 1000 (the one considered in the
simulations made in [27]), one has ~w 2 f þ spannGeRk

K

, where n = 1000. So, we consider the method in item (2) efficient when it
provides an accuracy similar to the one of the the simplified Fredholm integral equation solver, but with a significantly smal-
ler number of terms n. For instance, sparseness of the approximate solution is useful when evaluating it outside the grid.

For an approximation w of the solution /, the absolute error is defined as maxl
j¼1jwðxjÞ � /ðxjÞj, whereas the l2 error and

the l2 relative error are defined, resp., as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
l

Pl
j¼1ðwðxjÞ � /ðxjÞÞ2

q
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
l

Pl
j¼1
ðwðxjÞ�/ðxjÞÞ2

ð/ðxjÞÞ2

r
. Tables 1 and 2 show the results

obtained for the two methods described above. Note that in the numerical results from [27] only the l2 relative error was
provided.

We can see from the Table 1 that, for l = 100, method 2 with G = GK and n = 5 computational units was as good as the
method 1 (for this value of l, the two simulations were of similar time length). The difference is that the method 2 required
only 5 computational units, while the approximate solution obtained by the method 1 is expressed in terms of 100
computational units. For the same value of l, method 2 with G ¼ GFdðX;RdÞ performed even better than the method 1 in terms
of the l2 relative error. This required only 10 computational units but simulations of longer durations with respect to the case
ion results for the Example 1 with l = 100.

0 abs. err. l2 err. l2 rel. err.

od 1 4.3 � 10�5 3.6 � 10�5 1.2 � 10�4

od 2 4.2 � 10�5(GK,n = 5) 3.6 � 10�5(GK, n = 5) 1.2 � 10�4(GK,n = 5)

4:7 � 10�5ðGFdðX;RdÞ;n ¼ 10Þ 3:5 � 10�5ðGFdðX;RdÞ;n ¼ 10Þ 1:1 � 10�4ðGFdðX;RdÞ;n ¼ 10Þ



Table 2
Simulation results for the Example 1 with l = 1000.

l = 1000 abs. err. l2 err. l2 rel. err.

Method 1 4.3 � 10�7 3.6 � 10�7 1.2 � 10�6

Method 2 5.9 � 10�7(GK,n = 20) 3.9 � 10�7(GK,n = 20) 1.2 � 10�6(GK,n = 20)

1:3 � 10�5ðGFdðX;RdÞ;n ¼ 25Þ 6:7 � 10�6ðGFdðX;RdÞ;n ¼ 25Þ 2:2 � 10�5ðGFdðX;RdÞ;n ¼ 25Þ
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G = GK because of the larger number of parameters to be optimized (30 instead of 10). One may expect a reduction of
simulation times by adopting an incremental training technique similar as in [9]. For l = 1000, the method 2 with G = GK

provided similar results as the method 1 with only 20 computational units (compared with 1000 computational units used
by method 1), but this sparseness was obtained at the cost of a significantly longer simulation time. For l = 100 the two
methods obtained similar results. Moreover, for l = 1000 the choice G = GK provided better results than the one G ¼ GFdðX;RdÞ,
even with a smaller number of computational units. This may be caused by the fact that /(x) � f(x) has the integral
representation k

R
X /ðyÞKðx; yÞdy, which is expressed in terms of the kernel K with the possibility of knowing a priori an upper

bound on supy2Xj/(y)j, using the techniques of Sections 4 and 5 (the knowledge of this upper bound allows one to restrict the
search from f + spannG to f + jkjsupy2Xj/(y)jconvn(G [ � G)).
Example 2. In the second example, we considered the integral Eq. (1) with X = [0,1], k = � 1,
Table 3
Simulat

l = 1

Meth
Meth
Kðx; yÞ ¼ e2x; 0 6 y < 0:5;
e�2x; 0:5 6 y 6 1

(

and f(x) = c1e�2x � c2e2x, where c1 ¼ 1� 1

2 ðe�1 � e�2Þ, and c2 ¼ 1
2 ð1� e�1Þ. The example considered is the same as in [27, Table 2,

Example III] and its exact solution is /(x) = e�2x. Thanks to the form of this kernel K, one has spannGK = span2GK for every n P 2
and / � f 2 span2GK. For this reason, we expected a good performance of the method 2 with G = GK and n = 2, which was con-
firmed by the simulation results reported in Tables 3 and 4. As shown in these tables, the results for the method 2 were better
than the ones obtained by the method 1; the simulations made for the two methods required about the same running time.
Example 3. In the third example, we considered the integral Eq. (1) with X ¼ ½0;
ffiffiffiffi
p
p
� � ½0;

ffiffiffiffi
p
p
�; k ¼ �1=5;Kðx; yÞ ¼ cosðx1y1Þ

cosðx2y2Þ, and f ðxÞ ¼ 1� sinðx1Þ sinðx2Þ
5x1x2

. The example considered is the same as in [8, Example 2] and its exact solution is /(x) = 1.
The simplified Fredholm integral equation solver cannot be applied here (at least in its original formulation), since its exten-
sion to the case d > 1 has not yet been developed (see [27,40]). The Tables 7 and 8 show the results of the simulations in
terms of the absolute error and the l2 error (for this case, the l2 relative error is equal to the l2 error, as /(x) = 1). Our results
in terms of the absolute error were better than the ones reported in [8, Table 3] for the same problem (note that [8, Table 3]
reported only the absolute errors, not the l2 errors). Indeed, for the same choices of the number of Gaussian computational
units (4 and 9, resp.), the smallest absolute errors obtained therein were much larger than the smallest ones shown in the
Tables 5 and 6 (6.0 � 10�2 versus 6.3 � 10�4, and 1.2 � 10�2 versus 2.7 � 10�4, resp.). This may be ascribed to the fact that the
simulations reported in [8] employed fixed centers and widths for the Gaussian computational units, whereas in our simu-
lations the centers and widths of the Gaussians were among the tunable parameters.
Example 4. In the fourth example, we considered a nonlinear Fredholm integral equation of the second kind of the form (23),
and we searched for its approximate solution by minimining the residual empirical error (33) on f þ spannGFdðX;RdÞ. It has to be
remarked that, since here TK is a nonlinear operator, the simplified Fredholm integral equation solver cannot be applied (it
refers to linear integral equations). The equation considered is similar to the one of [7, Example 6.3] and is given by
/ðxÞ � 2
Z p

0
/2ðyÞdy ¼ f ðxÞ; ð35Þ
which is of the form (23) with K(x,y,/(y)) = /2(y); we chose f(x) = sin (x) � p. This equation has the two solutions /1(x) =
sin (x) and /2ðxÞ ¼ sinðxÞ þ 7

2p. For an approximate solution w, the performance indices are the absolute error
min max
l

j¼1
jwðxjÞ � /1ðxjÞj;max

l

j¼1
jwðxjÞ � /2ðxjÞj


 �
;

ion results for the Example 2 with l = 100.

00 abs. err. l2 err. l2 rel. err.

od 1 6.5 � 10�5 3.7 � 10�5 1.8 � 10�4

od 2 6.5 � 10�5(GK,n = 2) 3.7 � 10�5(GK,n = 2) 1.8 � 10�4(GK,n = 2)



Table 4
Simulation results for the Example 2 with l = 1000.

l = 1000 abs. err. l2 err. l2 rel. err.

Method 1 6.6 � 10�7 3.7 � 10�7 1.8 � 10�6

Method 2 6.5 � 10�7(GK,n = 2) 3.7 � 10�7(GK,n = 2) 1.7 � 10�6(GK,n = 2)

Table 5
Simulation results for the Example 3 with l = 100.

l = 100 abs. err. l2 err.

method 2 6:3 � 10�4ðGFdðX;RdÞ;n ¼ 4Þ 2:4 � 10�3ðGFdðX;RdÞ;n ¼ 4Þ

Table 6
Simulation results for the Example 3 with l = 225.

l = 225 abs. err. l2 err.

Method 2 2:7 � 10�4ðGFdðX;RdÞ;n ¼ 9Þ 1:3 � 10�3ðGFdðX;RdÞ;n ¼ 9Þ

Table 7
Simulation results for the Example 4 with l = 100.

l = 100 abs. err. l2 err.

Method 2 5:2 � 10�5ðGFdðX;RdÞ;n ¼ 5Þ 9:2 � 10�5ðGFdðX;RdÞ;n ¼ 5Þ

Table 8
Simulation results for the Example 4 with l = 1000.

l = 1000 abs. err. l2 err.

Method 2 8:2 � 10�6ðGFdðX;RdÞ;n ¼ 10Þ 2:7 � 10�6ðGFdðX;RdÞ;n ¼ 10Þ
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and the l2 error
min

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
l

Xl

j¼1

ðwðxjÞ � /1ðxjÞÞ2
vuut ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
l

Xl

j¼1

ðwðxjÞ � /2ðxjÞÞ2
vuut8<:

9=;:

We did not consider the l2 relative error, as one of the two solutions /1 and /2 has zeros on X = [0,p]. The Tables 7 and 8 show
the obtained results. Although this is not shown in these tables, good approximations of both the solutions /1 and /2 were
obtained via method 2, starting from different initial choices for the parameters.
10. Discussion

We have applied tools from nonlinear approximation theory to obtain a theoretical background for recent experimental
studies [7–9] of approximation of solutions to Fredholm integral equations by neural networks. We have derived estimates
of speeds of decrease of errors in approximation of solutions by kernel networks with increasing numbers of computational
units. The upper bounds are formulated in terms of the properties of dictionaries defined by kernels. In the estimates, both
the supremum norm and the L1-norm of the function f defining the integral equation /ðxÞ � k

R
X Kðx; yÞ/ðyÞdy ¼ f ðxÞ play

crucial roles. Our theoretical results provide some guidelines in the choice of radial and kernel-based approximators, for
which performance guarantees can be proved.
Appendix A

A.1. The resolvent kernel

For a continuous kernel K : X � X ! R on a compact set X � Rd and k – 0 such that 1
k is not an eigenvalue of TK, the

resolvent kernel Rk
K is defined as
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Rk
Kðx; yÞ ¼

N ðx; y; kÞ
DðkÞ ; ð36Þ
where
Nðx; y; kÞ :¼ �
X1
j¼0

ð�kÞj

j!

Z
X

Z
X

. . .

Z
X
K

x; n1; n2; . . . ; nj

y; n1; n2; . . . ; nj

	 

dn1dn2 . . . dnj ð37Þ
and
DðkÞ :¼ 1þ
X1
j¼1

ð�kÞj

j!

Z
X

Z
X

. . .

Z
X
K

n1; n2; . . . ; nj

n1; n2; . . . ; nj

	 

dn1dn2 . . . dnj ð38Þ
(see [41, Section 7.2] and [42]). For every positive integer j, the integrands in (37) and (38) have the expressions
K
x; n1; n2; . . . ; nj

y; n1; n2; . . . ; nj

	 

:¼ det

Kðx; yÞ Kðx; n1Þ . . . Kðx; njÞ
Kðn1; yÞ Kðn1; n1Þ . . . Kðn1; njÞ

. . . . . . . . . . . .

Kðnj; yÞ Kðnj; n1Þ . . . Kðnj; njÞ

0BBB@
1CCCA
and
K
n1; n2; . . . ; nj

n1; n2; . . . ; nj

	 

:¼ det

Kðn1; n1Þ . . . Kðn1; njÞ
. . . . . . . . .

Kðnl; n1Þ . . . Kðnj; nlÞ

0B@
1CA;
respectively. Both series definingNðx; y; kÞ andDðkÞ converge for every k 2 C, and Rk
Kðx; yÞ is a meromorphic function of k (i.e.,

in any bounded region of the complex plane, the only singularities are poles) [24, Section 2.5].
For large values of j and d, in general evaluating the integrals in (37) and (38) is computationally demanding. Indeed, tak-

ing into account the definition of the determinant and focusing for instance on the computation of the term
Z
X

Z
X

. . .

Z
X
K

x; n1; n2; . . . ; nj

y; n1; n2; . . . ; nj

	 

dn1dn2 . . . dnj ð39Þ
in formula (38), for every j this requires the evaluation of j! integrals, each of which has jd variables of integration.

A.2. On the simplified Fredholm integral equation solver

For d = 1 it was shown in [27] that the computation of (39) can be simplified by reducing it to the evaluation of a sum-
mation depending on j one-dimensional integrals, where the number of terms in the summation is equal to the number R(j)
of solutions of the equation
1z1 þ 2z2 þ � � � þ jzj ¼ j; ð40Þ
where (z1,z2 . . . ,zj) is a vector of natural numbers including 0. The solver based on this method was called ‘‘simplified Fred-
holm integral equation solver’’ in [40]. The number R(j) was computed in [27,40] for small values of j up to j = 8 but neither a
general expression of R(j) nor its asymptotic behaviour were investigated therein. However, one can see from the definition
that R(j) is equal to the number of distinct and order-independent ways in which j can be decomposed as the sum of natural
numbers. Therefore, it coincides with the so-called ‘‘partition function’’ p(j) in number theory [43], whose behavior is of the

form pðjÞ � 1
4j
ffiffi
3
p ep

ffiffiffi
2j
3

p
for j ? +1 [44]. Just to give two examples of this behaviour, p(100) = 190569292 and p(1000) is about

2.4 � 1031. So, the computation of each term (39) is demanding for large j, even under the simplification made in [27,40] (for
some integral equations arising from thermal engineering problems it was observed in [40] that a truncation of the series
(37) and (38) to j = 13, for which one has p(13) = 101, may be satisfactory). An extension of the simplified Fredholm integral
equation solver to the d-dimensional is under investigation (see [27,40]). For the computation of (39), this extension would
likely require the evaluation of a summation depending on j integrals with d variables of integration, where the number of
terms in the summation would be again R(j) = p(j).
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