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Abstract Surrogate solutions of Fredholm integral equations by feedforward neural
networks are investigated theoretically. Convergence of surrogate solutions com-
putable by networks with increasing numbers of computational units to theoretically
optimal solutions is proven and upper bounds on rates of convergence are derived.
The results hold for a variety of computational units, they are illustrated by examples
of perceptrons and Gaussian radial units.
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1 Introduction

Oneof successful applications of feedforward neural networks is surrogatemodelling
of functional relationships. It has been successfully used for modelling of empirical
functions, i.e., functions forwhichnomathematical formulas are knownand thus their
values can only be obtained experimentally. Often such experimental evaluations are
too expensive or time consuming and so they are performed merely for samples of
points in the domains of the empirical functions and the obtained values are used
for training feedforward networks. The networks trained on such training sets play
roles of surrogate models of these empirical functions. For example, input–output
functions of feedforward networks have been used in chemistry as surrogate models
of empirical functions assigning to compositions of chemicals measures of quality
of catalyzers produced by reactions of these chemicals, in biology as models of
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empirical functions classifying structures of RNA, and in economy as models of
functions assigning credit ratings to companies [1, 2]. It should be emphasized that
results obtained by surrogate modelling of empirical functions can only be used as
suggestions to be confirmed by additional experiments as no other than empirical
knowledge of the functions is available. Also suitable types of network architectures
and computational units have to be found experimentally.

In contrast to the case of empirical functions, for functions with known, although
complicated, analytical descriptions, there is a potential for theoretical analysis of
quality of surrogate models. When numerical computations of complicated analyt-
ical formulas are too time-consuming, relatively small samples of data obtained by
such numerical computations can be sufficient for training feedforward networks.
Investigation of mathematical properties of analytical formulas and their compari-
son with input-output functions of feedforward networks of various types can lead
to estimates of accuracies of approximations and their dependence on types of com-
putational units, their numbers, and input dimensions.

Many types of feedforward networks (including all standard types that are pop-
ular in applications as well as many others that may not have been considered by
experimentalists) are known to be universal approximators. It means that it is pos-
sible to adjust their parameters so that they approximate to any desired accuracy a
wide variety of mappings between subsets of multidimensional spaces. In particular,
the universal approximation property has been proven for approximation of continu-
ous functions on compact subsets of d-dimensional Euclidean spaces by one-hidden
layer networks with almost all types of reasonable computational units (see, e.g.,
[3, 4]). It should be emphasizes that the universal approximation property requires
potentially unlimited number of network units. Thus one can conclude that when
a function with a complicated analytical description is continuous, surrogate mod-
els formed by input–output functions of networks of various types converge with
increasing numbers of units to this function. However, a critical factor influencing
whether a given type of network units is suitable for the task is the speed of the
convergence. Such speed can differ considerably for various types of computational
units. For some choices of network units, a sufficient accuracy can be achievedwithin
a feasible bound on the number of network units, while for others, it might require
numbers of units that are too large for a practical implementation. In particular for
some high-dimensional tasks, the numbers of units of some types can grow with the
input dimension exponentially, while choice of other types can lead to quadratic or
even linear growth [5].

A large class of functions expressed by formulas, whose numerical calculations
are difficult, is formed by solutions of Fredholm integral equations. These equa-
tions play an important role in many problems in applied science and engineering.
They arise in image restoration, heat conduction, population modelling, potential
theory and elasticity, etc. (see, e.g., [6–8]). Mathematical descriptions of solutions of
Fredholm equations following from classical Fredholm theorem [9, p. 499] involve
complicated expressions in terms of infinite Liouville–Neumann series with coeffi-
cients in the forms of integrals. Thus numerical calculations of these expressions are
time consuming. Recently, several authors [10, 11] explored experimentally possi-
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bilities of surrogate modelling of solutions of Fredholm equations by perceptron and
kernel networks.Motivated by these experimental studies, Gnecco et al. [12] initiated
a theoretical analysis of surrogate solutions of Fredholm equations computable by
neural networks. In Refs. [12, 13], estimates of rates of approximation with increas-
ing numbers of network units were derived for networks with kernel units induced
by the same kernels as the kernels defining the equations and extended to certain
smooth kernels.

In this chapter, we investigate surrogate solutions of Fredholm integral equations
by networks with general computational units. Taking advantage of results from
nonlinear approximation theory and suitable integral representations of functions in
the form of “infinite” networks,we estimate howwell surrogate solutions computable
by feedforward networks can approximate exact solutions of Fredholm equations.
We derive estimates of approximation errors measured in L2-norm. The estimates
depend on relationships of kernels of the equations to types of computational units.
We apply general results to networks with the most common computational units—
sigmoidal perceptrons andGaussian radial units.Apreliminaryversionof this chapter
appeared in a conference proceedings [14].

The chapter is organized as follows. In Sect. 2, we describe approximation of
functions by feedforward neural networks. In Sect. 3, we introduce Fredholm integral
equations and recall theoretical approach to their solutions. In Sect. 4, we apply
some results from nonlinear approximation theory to approximation of solutions of
Fredholm equations by feedforward networks. We illustrate our results by examples
of surrogate solutions of Fredholm equations with the Gaussian kernel by networks
with perceptrons and with Gaussian radial units. Section5 is a discussion.

2 Approximation of Functions by Feedforward Neural Networks

A traditional approach to approximation of functions known only by samples of data
points was based on linear methods such as polynomial interpolation. For suitable
points x1, . . . , xm from the domain X ⊂ R

d of a function φ to be approximated, sam-
ples of empirically or numerically obtained approximations φ̄(x1), . . . , φ̄(xm) of its
values φ(x1), . . . ,φ(xm) are interpolated by functions from suitable n-dimensional
function spaces. Such spaces are often generated as linear spans

span{g1, . . . , gn} :=
{

n∑
i=1

wigi |wi ∈ R

}
, (1)

where the functions g1, . . . , gn are the first n elements from a set G = {gn | n ∈
N+} with a fixed linear ordering. Typical examples of linear approximators are
algebraic or trigonometric polynomials. They are obtained by linear combinations of
powers of increasing degrees or trigonometric functions with increasing frequencies,
respectively.
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Feedforward neural networks havemore adjustable parameters than linear models
as in addition to coefficients of linear combinations of basis functions, also inner
coefficients of computational units are optimized during learning. Thus they are
sometimes called variable-basis-approximation schemas in contrast to traditional
linear approximators which are called fixed-basis-approximation schemas. In some
cases, especially in approximation of functions of large numbers of variables, it was
proven that neural networks achieve better approximation rates than linear models
with much smaller model complexities [15, 16].

One-hidden-layer networks with one linear output unit compute input–output
functions from sets of the form

spann G :=
{

n∑
i=1

wigi |wi ∈ R, gi ∈ G

}
, (2)

where the set G is sometimes called a dictionary [17] and n is the number of hidden
computational units. This number can be interpreted as a measure of model com-
plexity of the network. In contrast to the case of linear approximation, the dictionary
G has no fixed ordering.

Often, dictionaries are parameterized families of functions modeling computa-
tional units, i.e., they are of the form

G F (X,Y ) := {F(·, y) : X → R | y ∈ Y } , (3)

where F : X × Y → R is a function of two variables, an input vector x ∈ X ⊆ R
d

and a parameter y ∈ Y ⊆ R
s . When X = Y , we write briefly G F (X). So one-

hidden-layer networks with n units from a dictionary G F (X,Y ) compute functions
from the set

spann G F (X,Y ) :=
{

n∑
i=1

wi F(x, yi ) |wi ∈ R, yi ∈ Y

}
.

In some contexts, F is called a kernel. However, the above-described compu-
tational scheme includes fairly general computational models, such as functions
computable by perceptrons, radial or kernel units, Hermite functions, trigonometric
polynomials, and splines. For example, with

F(x, y) = F(x, (v, b)) := σ(〈v, x〉 + b)

and σ : R → R a sigmoidal function, the dictionary G F (X,Y ) describes a set of
functions computable by perceptrons. Radial (RBF) units with an activation function
β : R → R are modelled by the kernel

F(x, y) = F(x, (v, b)) := β(v‖x − b‖).
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Typical choice of β is the Gaussian function. Kernel units used in support vector
machine (SVM) have the form F(x, y) where F : X × X → R is a symmetric
positive semidefinite function [9].

Various learning algorithms optimize parameters y1, . . . , yn of computational
units as well as coefficients w1, . . . , wn of their linear combinations so that network
input–output functions

n∑
i=1

wi F(., yi )

from the set spann G F (X,Y ) fit well to training samples {(xi , φ̄(xi ) |i = 1, . . . ,m}.

3 Fredholm Integral Equations

Solving an inhomogeneous Fredholm integral equation of the second kind on a
domain X ⊆ R

d for a given λ ∈ R \ {0}, K : X × X → R, and f : X → R

is a task of finding a function φ : X → R such that for all x ∈ X

φ(x) − λ

∫
X

φ(y)K (x, y) dy = f (x). (4)

The function φ is called solution, f data, K kernel, and λ parameter of the equa-
tion (4).

Fredholm equations can be described in terms of theory of inverse problems.
Formally, an inverse problem is defined by a linear operator A : X → Y between
two function spaces. It is a task of finding for f ∈ Y (called data) some φ ∈ X
(called solution) such that

A(φ) = f.

Let TK denotes the integral operator with a kernel K : X × X → R defined for
every φ in a suitable function space X as

TK (φ)(x) :=
∫
X

φ(y) K (x, y) dy (5)

and IX denotes the identity operator. Then the Fredholm equation (4) can be rep-
resented as an inverse problem defined by the linear operator IX − λ TK . So it is a
problem of finding for a given data f a solution φ such that

(IX − λ TK )(φ) = f. (6)
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The classical Fredholm alternative theorem from 1903 proved existence and
uniqueness of solutions of Fredholm equations for continuous one-variable functions
on intervals. A modern version holding for general Banach spaces is stated in the
next theorem from [9, p. 499]. Recall that an operator T : (X , ‖.‖X ) → (Y, ‖.‖Y )
between two Banach spaces is called compact if it maps bounded sets to precompact
sets (i.e., sets whose closures are compact).

Theorem 1 Let (X , ‖.‖X ) be a Banach space, T : (X , ‖.‖X ) → (X , ‖.‖X ) be
a compact operator, and IX be the identity operator. Then the operator IX + T :
(X , ‖.‖X ) → (X , ‖.‖X ) is one-to-one if and only if it is onto.

A straightforward corollary of Theorem 1 guarantees existence and uniqueness
of solutions of the inverse problem (6) when T is a compact operator and 1/λ is not
its eigenvalue (i.e., there is no φ ∈ X for which T (φ) = φ

λ ).

Corollary 1 Let (X , ‖.‖X ) be a Banach space, T : (X , ‖.‖X ) → (X , ‖.‖X ) be a
compact operator, IX be the identity operator, and λ 	= 0 be such that 1/λ is not an
eigenvalue of T . Then the operator IX − λT is invertible (one-to-one and onto).

If 1/λ is not an eigenvalue of T , then IX −λTK is one-to-one and so by Theorem
1 it is also onto. Thus for any data f , there is a unique solution φ of the equation
IX − λ TK )(φ) = f . Corollary 1 can be applied to a Fredholm integral equation
with a kernel K inducing a compact operator TK . The following proposition gives
conditions guaranteeing compactness of operators TK in spaces (C(X), ‖.‖sup) of
bounded continuous functions on X ⊆ R

d with the supremum norm ‖ f ‖sup =
supx∈X | f (x)| and in spaces (L2(X), ‖.‖L2) of square integrable functions with the

norm ‖ f ‖L2 = (∫
X f (x)2 dx

)1/2
. The proof is well-known and easy to check (see,

e.g., [18, p. 112]).

Proposition 1 (i) If X ⊂ R
d is compact and K : X × X → R is continuous, then

TK : (C(X), ‖.‖sup) → (C(X), ‖.‖sup) is a compact operator.
(ii) If X ⊂ R

d and K ∈ L2(X × X), then TK : (L2(X), ‖.‖L2) → (L2(X), ‖.‖L2)

is a compact operator.

So byCorollary 1, when the assumptions of the Proposition 1(i) or (ii) are satisfied
and 1/λ is not an eigenvalue of TK , then for every f in C(X) or L2(X), resp., there
exists a unique solution φ of the Eq. (4). It is known (see, e.g, [19]) that the solution
φ can be expressed as

φ(x) = f (x) − λ

∫
X

f (y) Rλ
K (x, y) dy , (7)

where Rλ
K : X × X → R is called a resolvent kernel. However, the formula express-

ing the resolvent kernel is not suitable for efficient computation as it is expressed as
an infinite Neumann series in powers of λ with coefficients in the form of integrals
with iterated kernels [20, p. 140]. So numerical calculations of values of solutions of
Fredholm equations based on (7) are quite computationally demanding. Thus various
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methods of finding surrogate solutions of (4) have been used [10, 11]. Traditional
methods employed polynomial interpolation. Recently, approximations of solutions
by feedforward networks were explored experimentally. Such networks were trained
on samples of input–output pairs {(x1, φ̄(x1)), . . . , (xm, φ̄(xm)}, where {x1, . . . , xm}
are selected points from the domain X and {φ̄(x1), . . . , φ̄(xm)} are numerically com-
puted approximations of values {φ(x1), . . . ,φ(xm)} of the solution φ. In these exper-
iments, one-hidden-layer networks with perceptrons and Gaussian radial units were
used. However, without a theoretical analysis, it is not clear how to choose a proper
type and number n of network units to guarantee that input–output functions approxi-
matewell the solution and the networks are not too large tomake their implementation
unfeasible.

4 Rates of Convergence of Surrogate Solutions

Estimates of numbers of network units needed to guarantee a required accuracies of
surrogate solutions of Fredholm equations by neural networks of various types can be
obtained from inspection of upper bounds on rates of variable-basis approximation.
Some such bounds have the form ξ(h,G)√

n
, where n is the number of network units

and ξ(h,G) depends on a certain norm of the function h to be approximated and the
dictionary G.

For our purposes we need a reformulation of this theorem in terms of a norm
tailored to the dictionary G. The norm is defined quite generally for any bounded
nonempty subset G of a normed linear space (X , ‖.‖X ). It is called G-variation,
denoted ‖.‖G , and defined for all f ∈ X as

‖ f ‖G,X := inf {c > 0 | f/c ∈ clX conv (G ∪ −G)} ,

where the closure clX is taken with respect to the topology generated by the norm
‖.‖X and conv denotes the convex hull. So G-variation depends on the ambient space
norm, butwhen it is clear from the context, wewritemerely ‖ f ‖G instead of ‖ f ‖G,X .

The concept of variational norm was introduced by Barron [21] for sets of char-
acteristic functions, in particular for the set of characteristic functions of half-spaces
corresponding to the dictionary of functions computable by Heaviside perceptrons.
Barron’s concept was generalized in [22, 23] to variation with respect to an arbitrary
bounded set of functions and applied to various dictionaries of computational units
such as Gaussian RBF units or kernel units [24].

The following theorem on rates of approximation by sets of the form spannG
is a reformulation from [23] of results by Maurey [25], Jones [26], Barron [27] in
terms of G-variation. For a normed linear space (X , ‖.‖X ), g ∈ X and A ⊂ X , we
denote by

‖g − A‖X := inf
f ∈A

‖g − f ‖X

the distance of g from A.
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Theorem 2 Let (X , ‖.‖X ) be a Hilbert space, G its bounded nonempty subset,
sG = supg∈G ‖g‖X , f ∈ X , and n be a positive integer. Then

‖h − spannG‖2X ≤ s2G‖h‖2G − ‖h‖2X
n

.

Theorem 2 guarantees that for every ε > 0 and n satisfying

n ≥
(

sG ‖h‖G

ε

)2

,

a network with n units computing functions from the dictionary G approximates the
function h within ε. So the size of G-variation of the function h to be approximated
is a critical factor influencing model complexities of networks with units from the
dictionary G approximating h. Generally, it is not easy to estimate G-variation.
However, the following theorem from [28] shows that for the special case of functions
with integral representations in the form of “infinite networks”, variational norms
are bounded from above by the L1-norms of “output-weight” functions of these
networks.

Theorem 3 Let X ⊆ R
d , Y ⊆ R

s , w ∈ L1(Y ), K : X × Y → R be such that
G K (X,Y ) = {K (., y) | y ∈ Y } is a bounded subset of (L2(X), ‖.‖L2), and h ∈
L2(X) be such that for all x ∈ X, h(x) = ∫

Y w(y) K (x, y) dy. Then

‖h‖G K (X,Y ) ≤ ‖w‖L1 .

In experiments with surrogate solutions of Fredholm equations [10, 11], common
computational units such as perceptrons and Gaussian RBFs were used to approx-
imate solutions of Fredholm equations with a variety of kernels K . Thus to apply
Theorem 3 to these cases, we need estimates of G-variations for dictionaries G
of general computational units in terms of G K -variations induced by various ker-
nels K . The next proposition from [29] describes a relationship between variations
with respect to two sets, G and F .

Proposition 2 Let (X , ‖.‖X ) be a normed linear space, F and G its bounded subsets
such that cG,F := supg∈F ‖g‖G∞. Then for all h ∈ X , ‖h‖G ≤ cG,F ‖h‖F .

Combining Theorems 2, 3, and Proposition 2, we obtain the next corollary on rates
of approximation of functions which can be expressed as h = TK (w) by one-hidden-
layer networks with units from a dictionary of computational units G.

Corollary 2 Let X ⊆ R
d , K : X × Y → R be a bounded kernel, and h ∈ L2(X)

such that h = TK (w) = ∫
Y w(y)K (., y) dy for some w ∈ L1(Y ), where G K (X,Y )
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is a bounded subset of L2(X). Let G be a bounded subset of L2(X) with sG =
supg∈G ‖g‖L2 such that cG,K = supy∈Y ‖K (., y)‖G is finite. Then for all n > 0,

∥∥h − spann G
∥∥L2 ≤ sG cG,K ‖w‖L1√

n
.

A critical factor in the estimate given in Corollary 2 is theL1-norm of the “output-
weight function” w in the representation of the function h to be approximated as an
“infinite network” with units from the dictionary G K in the form h(x) = TK (w) =∫

Y w(y) K (x, y) dy. We apply Corollary 2 to the representation

φ − f = TK (λφ) = λ

∫
X

φ(y)K (x, y) dy ,

where λφ plays the role of the “output-weight” function in the infinite network∫
X λφ(y) K (x, y) dy.

Theorem 4 Let X ⊂ R
d be compact, K : X × X → R be a bounded kernel such

that K ∈ L2(X × X), ρK = ∫
X supy∈X |K (x, y)|dx be finite, G be a bounded subset

of L2(X) with sG = supg∈G ‖g‖L2 such that cG,K = supy∈Y ‖K (., y)‖G is finite,

and λ 	= 0 be such that 1
λ is not an eigenvalue of TK and |λ| ρK < 1. Then the

solution φ of the Eq. (4) satisfies for all n > 0,

‖φ − f − spann G‖L2 ≤ sG cG,K |λ| ‖ f ‖L1

(1 − |λ| ρK )
√

n
.

Proof As φ − f satisfies the Fredholm equation (4), we have for every x ∈ X ,

|φ(x)| ≤ |λ| ‖φ‖L1 sup
y∈X

|K (x, y)| + | f (x)|.

Integrating over X we get

‖φ‖L1 ≤ |λ| ρK ‖φ‖L1 + ‖ f ‖L1

and so ‖φ‖L1 (1 − |λ| ρK ) ≤ ‖ f ‖L1 . This inequality is non trivial only when |λ| <
1

ρK
. Thus we get ‖w‖L1 = |λ|‖φ‖L1 ≤ |λ| ‖ f ‖L1

1−|λ| ρK
. The statement then follows from

Corollary 2. �

Theorem 4 estimates rates of approximation of the function

φ − f = λ

∫
X

f (y) Rλ
K (x, y) dy
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by functions computable by networks with units from a dictionary G. As f plays
a role of a constant function, we can consider a surrogate solution formed by an
input–output function of the network with n units from the dictionary G and one unit
assigning to an input x ∈ X the value f (x).

With an increasing number of network units, the upper bound on rate of approxi-
mation decreases with 1/

√
n. The speed of decrease depends on the L1-norm of the

function f representing data in the Fredholm equation, bound cG,K on G-variations
of functions from the dictionary G K and ρX depending on the size of the domain
X where the solution is approximated. For |λ| < 1

ρK
and any bounded dictionary G

with finite bound cG,K on G K (X)-variations on its elements, input–output functions
of networks with increasing numbers of units from G converge to the function φ− f .
When for a reasonable number n of network units, the upper bound from Theorem 4
is sufficiently small, the network can serve as a good surrogate model of the solution
of the Fredholm equation.

Note that the L1-norm of the data f does not depend on the choice of a dic-
tionary of computational units. Also ρK = ∫

X supy∈X |K (x, y)|dx is determined
by the Fredholm equation to be solved. It depends on the Lebesgue measure of the
domain X and properties of the kernel K of the equation. For large dimensions d,
choice of the domain has a strong effect on the upper bound from Theorem 4. For
example, the Lebesgue measure of the unit cube [0, 1]d is equal to 1 for all dimen-
sions d, while Lebesgue measures of cubes od sizes larger than 1 grow exponentially
with d increasing, and Lebesgue measures of the d-dimensional unit balls decrease
exponentially quickly to zero. The only factor that can be influenced by a choice of a
type of computational units is cG,K expressing a bound on G-variations of functions
induced by the kernel K of the equation.

To illustrate our results, consider approximation of Fredholm equations with the
Gaussian kernel

Kb(x, y) = e−b‖x−y‖

with the width b by surrogate solutions in the form of input–output functions of
networks with two types of popular units: sigmoidal perceptrons and Gaussian
radial units. Note that Fredholm equations with Gaussian kernels arise, e.g., in image
restoration problems [8]. Byμ is denoted the Lebesgue measure onRd and by Pσ

d (X)

the dictionary of functions on X computable by sigmoidal perceptrons.

Corollary 3 Let X ⊂ R
d be compact, b > 0, Kb(x, y) = e−b‖x−y‖2 , λ 	= 0 be such

that 1
λ is not an eigenvalue of TKb and |λ| < 1. Then the solution φ of the Eq. (4)

with f continuous satisfies for all n > 0

‖φ − f − spann G Kb (X)‖L2 ≤ μ(X) |λ| ‖ f ‖L1

(1 − |λ| μ(X) )
√

n

and

‖φ − f − spann Pσ
d (X)‖L2 ≤ μ(X) 2d |λ| ‖ f ‖L1

(1 − |λ| μ(X) )
√

n
.
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Proof It was shown in Ref. [30] that variation of the d-dimensional Gaussian
with respect to the dictionary formed by sigmoidal perceptrons is bounded from
above by 2d and thus by Proposition 2, cPσ

d ,Kb ≤ 2d. The statement then fol-
lows by Theorem 4, an estimate sG Kb

≤ μ(X) and equalities sPσ
d

= μ(X) and
ρKb = μ(X). �

5 Discussion

Taking advantage of results from mathematical theory of neurocomputing holding
for functions representable as “infinite neural networks” we derived estimates of
rates of convergence of surrogate solutions of Fredholm equations computable by
feedforward neural networks. Our estimates decrease with increasing number of
network units n, they are smaller than 1√

n
multiplied by a product of two factors, the

first one depending on the parameters of the equation f , K , λ and the domain X ,
and the second one depending on combination of the kernel K and the dictionary
of computational units G. Thus our results show that a proper choice of a type
of computational units can influence speed of convergence of surrogate solutions,
however for high dimensions, a choice of the domain can have a stronger impact.
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12. Gnecco, G., Kůrková, V., Sanguineti, M.: Bounds for approximate solutions of Fredholm
integral equations usingkernel networks. In:Honkela, T., et al. (eds.) LectureNotes inComputer
Science (Proceedings of ICANN 2011), vol. 6791, pp. 126–133. Springer, Heidelberg (2011)

13. Gnecco, G., Kůrková, V., Sanguineti,M.: Accuracy of approximations of solutions to Fredholm
equations by kernel methods. Appl. Math. Comput. 218, 7481–7497 (2012)
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24. Kainen, P.C., Kůrková, V., Sanguineti, M.: Complexity of Gaussian radial-basis networks
approximating smooth functions. J. Complexity 25, 63–74 (2009)

25. Pisier, G.: Remarques sur un résultat non publié de B. Maurey. In: Séminaire d’Analyse Fonc-
tionnelle 1980–1981, vol. I, no. 12, École Polytechnique, Centre deMathématiques, Palaiseau,
France (1981)

26. Jones, L.K.: A simple lemma on greedy approximation in Hilbert space and convergence rates
for projection pursuit regression and neural network training. Ann. Stat. 20, 608–613 (1992)

27. Barron, A.R.: Universal approximation bounds for superpositions of a sigmoidal function.
IEEE Trans. Inf. Theory 39, 930–945 (1993)
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