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Limitations of Shallow Networks

Věra Kůrková

Abstract Although originally biologically inspired neural networks were intro-
duced as multilayer computational models, shallow networks have been dominant
in applications till the recent renewal of interest in deep architectures. Experimental
evidence and successful applications of deep networks pose theoretical questions
asking: When and why are deep networks better than shallow ones? This chapter
presents some probabilistic and constructive results on limitations of shallow net-
works. It shows implications of geometrical properties of high-dimensional spaces
for probabilistic lower bounds on network complexity. The bounds depend on cover-
ing numbers of dictionaries of computational units and sizes of domains of functions
to be computed. Probabilistic results are complemented by constructive ones built
using Hadamard matrices and pseudo-noise sequences.

1 Introduction

Originally, biologically inspired neural networks were introduced as multilayer com-
putational models, but later one-hidden-layer (shallow) architectures became domi-
nant in applications (see, e.g., [18, 31] and the references therein). Although multi-
layer networks with sigmoidal and convolutional units used as filters were proposed
for pattern recognition tasks by LeCun [41, 42] already in 1990s, their training
by back-propagation was inefficient till the advent of fast graphic processing units
(GPU). While development of GPU was motivated commercially as a tool for com-
puter games, they enabled the revival of interest in multilayer architectures. Around
2006, a group of researchers from the Canadian Institute for Advanced Research
(Bengio, Hinton, LeCun) exploited them in training networks with several convo-
lutional and pooling layers (see, e.g., the survey article [43]). These networks were
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called deep [10, 20] to distinguish them from shallow ones with merely one hid-
den layer. Currently, deep networks are the state of the art in areas such as text
classification, musical genre recognition, speech recognition, time-series prediction,
object detection, localization, video and tomography images recognition, biomedical
image analysis, hyperspectral image analysis, and in combination with tree search
in automatic game playing (AlphaGO).

While experimental research of deep networks is rapidly evolving, theoretical
analysis complementing the empirical evidence is still in its early stages. There are
fundamental wide open questions related to the role of depth of network architectures:
Why should deep networks be better than shallow ones and under which conditions?

Bengio and LeCun, who revived the interest in deep networks, conjectured that
“most functions that can be represented compactly by deep architectures cannot be
represented by a compact shallow architecture” [9]. However, reservations about
overall lower complexity of deep networks over shallow ones have appeared. An
empirical study demonstrated that shallow networks can learn some functions previ-
ously learned by deep ones using the same numbers of parameters as the original deep
networks [4]. Mhaskar et al. [50] suggested that due to their hierarchical structure,
deep networks could outperform shallow networks in visual recognition of pictures
with objects of different scales. Characterization of functions, which can be com-
puted by deep networks of smaller model complexities than shallow ones, can be
derived by comparing lower bounds on numbers of units in shallow networks with
upper bounds on numbers of units in deep ones.

It has long been known that under mild conditions on types of computational units,
shallow networks have the universal representation property, i.e., they can exactly
compute any real-valued function on a finite domain [22]. However, the arguments
proving this property assume that the number of units in the last hidden layer is
potentially as large as the size of the domain. Obviously, not all functions require
networks with such high numbers of units. For shallow networks, various upper
bounds on numbers of hidden units needed for a given approximation accuracy in
dependence on their types, input dimensions, and types of functions to be computed
are known (see, e.g., [23] and the references therein).

Derivation of lower bounds is much more difficult than derivation of upper ones.
Poggio et al. [53] proposed as a potential tool for comparison of deep and shal-
low networks an application of the topological approach for obtaining lower bounds
on complexity of shallow networks exhibiting the “curse of dimensionality” (i.e.,
an exponential dependence on the number of parameters [8]) from [14]. However,
applicability of topological methods is limited only to classes of networks where best
or near best approximation of functions can be obtained by a continuous selection
of network parameters. We proved in [28–30] that in many common classes of net-
works such continuous selection is not possible due their nonlinear and non-convex
nature. Other lower bounds hold merely for types of computational units that are
not commonly used such as perceptrons with specially designed activation functions
[47] or the lower bounds merely prove existence of worst-case errors in Sobolev
spaces asymptotically [46].
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In this chapter, we survey recent results on complexity and sparsity of shallow
networks. Minimization of “l0-pseudonorm”, which formalizes the concept of net-
work sparsity measured by the number of hidden units in a shallow network, is a
difficult non convex optimization problem. Thus we focus on investigation of min-
ima of l1-norms of output-weight vectors. We present several arguments showing
that l1-norm is a good approximation of “l0-pseudonorm” (it approximates its con-
vexification, can be used as a stabilizer in weight-decay regularization [18], and is
related to variational norm tailored to a dictionary of computational units).

In practical applications, feedforward networks compute functions on finite
domains (formed, e.g., by pixels of pictures, discretized cubes, or scattered vectors
of data), which are often quite large. Functions on finite domains form linear spaces
which are isomorphic to Euclidean spaces of dimensions equal to sizes of domains.
Geometry of high-dimensional spaces has many counter-intuitive features, which
have consequences for correlations between functions on large domains. We show
that combination of concentration of measure property of high-dimensional spaces
with characterization of dictionaries of computational units in terms of their capacity
and coherence described by their covering numbers leads to lower bounds on varia-
tional norms and l1-norms of output-weight vectors of shallow networks. Applying
these estimates to dictionaries with power-type covering numbers, we conclude that
computation of almost any uniformly randomly chosen function on a large domain
requires either large number of units or is unstable as some output weights are large.
Finally, we illustrate the probabilistic results by a concrete construction of a class of
functions induced by matrices, which have large variational norms with respect to
the dictionary of signum perceptrons [36].

The chapter is organized as follows. Section 2 contains basic concepts and nota-
tions on feedforward networks and dictionaries of computational units. In Sect. 3,
various measures of network sparsity and their relationships are studied. In Sect. 4,
properties of high-dimensional spaces are applied to obtain estimates of correlations
between functions to be computed and computational units. In Sect. 5, lower bounds
on variational and l1-norms formulated in terms of covering numbers of dictionaries
and sizes of the domains are derived. In Sect. 6, some estimates of sizes of dictio-
naries of computational units popular in neurocomputing are presented. In Sect. 7
probabilistic results are complemented by constructive ones. Section 8 contains some
examples and Sect. 9 is a brief discussion.

2 Preliminaries

For X ⊂ R
d , we denote by

F (X) := { f | f : X → R}

the set of all real-valued functions on X . In practical applications, domains X ⊂
R

d are finite, but their sizes card X and/or input dimensions d can be quite large.
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Fixing a linear ordering {x1, . . . , xm} of elements of X we define an isomorphism
ι : F (X) → R

m as ι( f ) := ( f (x1), . . . , f (xm)) and thus we identify F (X) with
the finite dimensional Euclidean space R

m . On F (X) we denote the induced inner
product by

〈 f, g〉 :=
∑
u∈X

f (u)g(u),

the Euclidean norm ‖ f ‖2 := √〈 f, f 〉, and by S1(X) the unit sphere in F (X)

S1(X) = { f ∈ F (X) | ‖ f ‖ ≤ 1}.

By
B(X) := { f | f : X → {−1, 1}}

we denote the subset of F (X) formed by functions with values in {−1, 1}.
For any norm or “pseudonorm” ‖.‖ on R

d or F (X), we denote by

Br (‖.‖) = {w ∈ R
n | ‖w‖ ≤ r}

the ball of radius r in ‖.‖.
The set of input-output functions of a feedforward network with a single linear

output has the form

span G :=
{

n∑
i=1

wi gi

∣∣∣ wi ∈ R, gi ∈ G, n ∈ N

}
,

where w = (w1, . . . , wn) is the vector of output weights and G is a parameterized
family of functions called a dictionary. The dictionary depends on the network archi-
tecture and types of computational units. The simplest architecture is a shallow (one-
hidden-layer) network, where G is a parameterized family of functions computable
by a given type of computational units. In the case of a deep network with several hid-
den layers, G is formed by combinations and compositions of functions representing
units from lower layers. Formally, a dictionary can be described as

G(X) = Gφ(X, Y ) := {φ(·, y) : X → R | y ∈ Y } ,

where φ : X × Y → R is a function of two variables: an input vector x ∈ X ⊆ R
d

and a parameter vector y ∈ Y ⊆ R
s .

Popular computational units are perceptrons which compute functions of the form
ψ(v · x + b), where v ∈ R

d is a weight vector, b ∈ R a bias, and ψ : R → R is an
activation function (such as Heaviside, sigmoidal, rectified linear).

By

spann G :=
{

n∑
i=1

wi gi

∣∣∣ wi ∈ R, gi ∈ G

}
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we denote the set of functions computable by networks with at most n units in the last
hidden layer. Sets of the form spann G are invariant under multiplication by scalars,
i.e., cspann G = spann G for all c ∈ R. As for all c > 0

‖c f − spann G‖ = c ‖ f − spannG‖,

with proper choices of scalars, examples of functions with arbitrarily large or small
errors in approximation by sets spann G in any norm ‖.‖ can be obtained. So approx-
imation and representation of functions by networks with a linear output have to
be studied for cases when functions to be approximated and function from G have
the same norms, e.g., when all functions are normalized or in the case of binary
classification, they have values in {−1, 1} rather than in {−0, 1}.

3 Approximate Measures of Sparsity

It has long been known that many feedforward networks have the universal repre-
sentation property, i.e., they can exactly compute any function on a finite domain.
Ito [22] proved the following sufficient condition on a dictionary of computational
units that guarantees that shallow networks with units from the dictionary have the
universal representation property.

Theorem 1 Let m be a positive integer, X = {x1, . . . , xm} ⊂ R
d , and Gφ(X, Y ) =

{φ(·, y) : X → R | y ∈ Y } be such that there exist y1, . . . , ym ∈ Y for which the
m × m square matrix � defined as �i, j = φ(xi , y j ) is regular, then F (X) =
spanm Gφ(X, Y ).

Regularity of the matrix � implies that for any f : {x1, . . . , xm} → R, the family
of m linear equation

f (xi ) =
m∑

j=1

w jφ(xi , y j ), i = 1, . . . , m (1)

with m unknown has a solution. Any solution (w1, . . . , wm) can be used as an output-
weight vector of a representation of f as an input-output function of a network with
units from Gφ of the form

f (x) =
m∑

i=1

wiφ(x, yi ). (2)

Ito [22] verified that shallow networks with sigmoidal perceptrons satisfy the con-
dition of Theorem 1 and thus have the universal representation property. It is easy to
check that Theorem 1 also implies that this property is possessed by shallow networks
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with any positive definite kernel (e.g., Gaussian, Laplace). Positive definiteness of a
kernel guarantees that the matrix induced by the kernel with xi = yi , i = 1, . . . , m
is regular.

The parameters y1, . . . , ym , for which the matrix � is regular, as well as the
solution w1, . . . , wm of the family of m linear equations (1) need not to be unique.
Thus there might exist many representations of a function f as an input-output func-
tion of a shallow network with units from Gφ . However, potentially all w1, . . . , wm

might be nonzero. Thus for large domains X , networks whose existence is guar-
anteed by universality results such as Theorem 1 might be too large for efficient
implementations.

Many dictionaries popular in neurocomputing are linearly independent on infinite
domains (see, e.g., [1, 26, 27, 39, 57]). Representations of functions as input-output
functions of shallow networks with units from such dictionaries are unique up to
permutations of hidden units and, in some cases, also sign-flips. In contrast, such
dictionaries restricted to finite domains typically are linearly dependent. The con-
dition of being equal on the whole R

d or its sufficiently large compact subset is
much stronger than the condition requiring equality merely on its finite discrete sub-
set. In some literature, dictionaries which are not linearly independent are called
overcomplete. Such dictionaries allow multiple representations of functions.

For a function f ∈ F (X) and a dictionary G, we denote by

W f (G) := {w = (w1, . . . , wn) ∈ R
n | f =

n∑
i=1

wi gi , gi ∈ G, n ∈ N} (3)

the set of output-weight vectors of shallow networks with units from G representing
f . When G induces a class of shallow networks having the universal representation
capability, then sets W f (G) are nonempty for all f ∈ F (X). It follows from the
definition that sets W f (G) are convex.

Proposition 1 Let X ⊂ R
d , G ⊂ F (X), and f ∈ F (X), then W f (G) is convex.

It is desirable to find among all representations of f as an input-output function
of a shallow network with units from G the most sparse ones, i.e., in the set W f (G)

to find vectors with the smallest number of nonzero entries.
Formally, for a vector w ∈ R

n , the number of its non-zero entries is denoted
‖w‖0. It is called “l0-pseudonorm” in quotation marks as it is neither a norm nor a
pseudonorm. It satisfies the triangle inequality, but it does not satisfy the homogeneity
condition, which requires |λ| ‖w‖ = ‖λw‖ for all λ ∈ R. The values of ‖.‖0 are only
integers and its “balls” are not convex. “l0-pseudonorm” satisfies the equation

‖w‖0 =
n∑

i=1

w0
i
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and it is a limit
lim

p→∞ ‖w‖p = ‖w‖0

of l p-functionals.
W f (G) is convex and any continuous function on a convex set achieves its mini-

mum. But ‖.‖0 is not continuous. Minimization of “l0-pseudonorm” is a difficult non
convex problem which has been studied in signal processing (see, e.g, [15, 16]). It
was proven that in some cases, it is NP-hard [60].

Due to its non homogeneity, “l0-pseudonorm” is invariant under multiplication by
scalars. In contrast, any norm can be made arbitrarily large or small by multiplying a
function by a suitable scalar. Thus investigation of relationships of “l0-pseudonorm”
to various norms has sense only for functions from restricted ambient sets. The
following proposition from [52] shows that when the ambient set is the unit ball
in l2-norm, then the ball of radius

√
r in the l1-norm (hyperoctahedron) is a good

approximation of the convexification of the “ball” of radius r in “l0-pseudonorm”.

Proposition 2 For every positive integer m and every r > 0, balls in ‖.‖0, ‖.‖1, and
‖.‖2 in R

d satisfy

conv (Br (‖.‖0) ∩ B1(‖.‖2)) ⊂ B√
r (‖.‖1) ∩ B1(‖.‖2) ⊂ 2 conv (Br (‖.‖0) ∩ B1(‖.‖2)) .

In neurocomputing, instead of “l0-pseudonorm”, l1 and l2-norms have been used
as stabilizers in weight-decay regularization techniques [18]. Acting as a stabilizer,
l2-norm penalizes even a small number of large output weights but it can tolerate
many small ones, while l1-norm stabilizers penalize many small output weights as
well as few large ones. This can be illustrated by a simple example of a weight vector
w ∈ R

m , with wi = c
m for all i = 1, . . . , m. Then ‖w‖1 = c, while ‖w‖2 = c√

m
. So

their difference increases with growing dimension m. Networks with large l1-norms
of output-weight vectors have either large numbers of units or some of their output
weights are large. None of these properties is desirable: implementation of networks
with large numbers of units might not be feasible, while large output weights might
lead to an instability of computation.

In addition to approximating the convexification of “l0-pseudonorm” and penal-
izing many small output weights, l1-norm have several other properties which make
it a good approximate measure of sparsity. We denote

W f (G)∗1 := {w∗ ∈ W f (G) | ‖w∗‖1 = minw∈W f (G)‖w‖1}

and

W f (G)∗2 := {w∗ ∈ W f (G) | ‖w∗‖2 = minw∈W f (G)‖w‖2}

the subsets of W f (G) formed by output-weight vectors of minimal l1 and l2-norms,
resp.
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Proposition 3 Let X ⊂ R
d , f ∈ F (X), and G = {g1, . . . , gk} ⊂ F (X). If W f (G)

is non empty, then W f (G)∗1 is non empty and convex.

Proof l1-norm is continuous and every continuous function on a convex set achieves
its minimum, so W f (G)∗ is non empty. Its convexity follows from the definition. �

Note that l2-norm does not satisfy an analogy to Proposition 3, namely the set
W f (G)∗2 of vectors with minimal l2-norms contains only one point. Indeed, the strict
convexity of l2-norm implies that

‖aw1 + (1 − a)w2‖2 < a‖w1‖2 + (1 − a)‖w2‖2

for all a ∈ (0, 1). Thus Proposition 3 shows another advantage of l1-norm over l2-
norm.

Moreover, the minimal value of the l1-norm of an output-weight vector of a net-
work computing a function f can be expressed in terms of a norm generated by a
dictionary G called G-variation. It is defined for a bounded subset G of a normed
linear space (X, ‖.‖) as

‖ f ‖G := inf
{

c ∈ R+
∣∣∣ f/c ∈ clX conv (G ∪ −G)

}
,

where − G := {− g | g ∈ G}, clX denotes the closure with respect to the topology
induced by the norm ‖ · ‖X, and conv is the convex hull. If the set over which the infi-
mum is taken is empty, then ‖ f ‖G := ∞. So G-variation is the Minkowski functional
of its unit ball clX conv (G ∪ −G).

Variation with respect to Heaviside perceptrons (called variation with respect to
half-spaces) was introduced in [6] and extended to general dictionaries in [34]. It
was shown in [37] that infimum in the definition of G-variation can be replaced with
minimum.

The next proposition shows that ‖ f ‖G bounds the minimum of values of l1-
norms of output-weight vectors of networks with units from G computing f . Its
proof follows directly from the definition.

Proposition 4 Let X ⊂ R
d , G be a bounded subset of F (X), and f ∈ F (X) such

that ‖ f ‖G is finite. Then ‖ f ‖G ≤ ‖w‖1 for all w ∈ W f (G). When G is finite, then
‖ f ‖G = ‖w∗‖1 for all w∗ ∈ W f (G)∗1.

Besides of being a lower bound on approximate measure of sparsity expressed
in terms of l1-norm, G-variation is also a critical factor in upper bounds on rates
of approximation by networks with increasing “l0-pseudonorms” of output-weight
vectors. The following theorem is a special case holding for the Hilbert space F (X)

of the Maurey–Jones–Barron Theorem [7] as reformulated in terms of a variational
norm in [35, 37].
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Theorem 2 Let X ⊂ R
d be finite, G be a subset of F (X), sG = maxg∈G ‖g‖2, and

f ∈ F (X). Then for every n,

‖ f − spann G‖2 ≤ sG ‖ f ‖G√
n

.

By Theorem 2 there exist functions computable by shallow networks with at most
n hidden units from the dictionary G (networks with output-weight vectors with
“l0-pseudonorms” at most n) approximating f within sG‖ f ‖G√

n
.

4 Correlation and Concentration of Measure

As mentioned above, l2-errors in approximation by families of the form spann G can
only be compared when functions to be approximated and elements of dictionaries
G have the same l2-norms (e.g., when all functions are normalized). The Euclidean
distance of normalized functions on the unit sphere S1(X) in F (X) is related to the
angular pseudometrics ρ on S1(X) defined as

ρ( f, g) = arccos |〈 f, g〉|.

Note that ρ is not metrics, it is merely a pseudometrics, because the distance between
f and − f is zero. It is related to the l2-metrics by the formula

‖ f − g‖2 = 2 sin(α/2) where ρ( f, g) = α.

It can be described in terms of correlation defined as the inner product 〈 f, g〉. The
more correlated functions are, the better they can approximate each other.

As F (X) is isometric to the Euclidean space R
card X , with increasing size of the

domain X , effects of high-dimensional geometry become apparent. In particular on
high-dimensional spheres, inner products with any fixed function tend to concentrate
around their median. Let

C(g, ε) = { f ∈ Sm−1 | 〈 f, g〉 ≥ ε} (4)

denotes the spherical cap centered at a fixed vector g, which contains all vectors
f which have the angular distance from g at most α = arccos ε or equivalently the
inner product 〈 f, g〉 is at least ε (see Fig. 1).

Using classical calculus (integration in spherical polar coordinates), one can com-
pute the relative area of the unit sphere Sm−1 in the m-dimensional Euclidean space
R

m , which is occupied by the spherical cap

μ(C(g, ε)) ≤ e− mε2

2 (5)
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Fig. 1 Spherical cap

g

α

(see, e.g., [5]). For a fixed angle α, with increasing dimension m the normalized
surface area μ of such cap decreases exponentially fast to zero. When ε is small, the
complement of C(g, ε) ∪ C(−g, ε) contains vectors which are nearly orthogonal to
g. The upper bound (5) implies that most of the area of a high-dimensional sphere
is concentrated around its “equator”.

The exponential decrease of sizes of “polar caps” (5) is the very essence of two
properties of high-dimensional spaces called the curse of dimensionality and the
blessing of dimensionality. While there are only m exactly orthogonal unit vectors
in R

m , for a fixed ε > 0, the number of ε-quasiorthogonal vectors (with absolute
values of inner products at most ε) grows with m exponentially. So the number of
highly uncorrelated functions grows with the size of their domain exponentially.
On the other hand, (5) implies the phenomenon of concentration of measure. The
upper bound (5) on the size of a spherical cap can be rephrased as follows: inner
products of a fixed vector in the sphere Sm−1 with uniformly randomly chosen vectors
concentrate around zero. A generalization obtained by replacing the inner product
with a sufficiently smooth (Lipschitz) function on the sphere leads to the Lèvy Lemma
[44]. It states that almost all values of a Lipschitz function on a high-dimensional
sphere are close to their median.

Recall that on a metric space (S, ρ) a function h : S → R is called Lipschitz with
a constant c if for all x, y ∈ S, |h(x) − h(y)| ≤ cρ(x, y). For a probability measure
P on Sm−1 and a function F : Sm−1 → R, the median of F is defined as

med(F) := sup{t ∈ R | P[F(x) ≤ t] = 1/2}

and it satisfies P[F(x) < med(F)] = 1/2 and P[F(x) > med(F)}=1/2 [49, p. 337].

Theorem 3 (Lévy Lemma) Let m be a positive integer, P be the uniform probability
measure (normalized surface measure) on Sm−1, F : Sm−1 → R be a function, and
ε ∈ [0, 1]. Then
(i) for F continuous with modulus of continuity ω

P[| F(x) − med(F) | > ω(ε)] ≤ 2e− mε2

2 ;
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(ii) for F 1-Lipschitz.

P[| F(x) − med(F) | > ε] ≤ 2e− mε2

2 .

Note that the median of a Lipschitz function is related to its mean value E[F] =∫
Sm−1 F(x) dP(x) as follows [49, p. 338].

Proposition 5 Let m be a positive integer, P be the uniform probability measure
(normalized surface measure) on Sm−1 and F : Sm−1 → R be 1-Lipschitz. Then

|med(F) − E[F]| ≤ 12√
m

.

Thus on high-dimensional spheres, Lipschitz functions are almost constant. This
property of high-dimensional spheres is a special case of properties called the concen-
tration of measure phenomenon. Similar property was also discovered in probability
theory, where it has been studied in terms of bounds on large deviations of sums
of random variables by Hoeffding [21], Chernoff [11], and Azuma [3]. Concen-
tration of measure is also the essence of the proof of the Johnson–Lindenstrauss
Flattening Lemma [49, p. 358]. It guarantees a possibility of dimension reduction
of d-dimensional data by a random projection to a lower dimension bounded from
below by 8

ε
log d such that the projection is a near-isometry (preserves distances

within a multiplicative factor 1 ± ε).

5 Probabilistic Lower Bounds on Approximate Measures of
Sparsity

Concentration of measure phenomenon has implications for correlations of functions
on large domains with functions from dictionaries of computational units. They
play a crucial role in estimating variational norms and the minima of l1-norms of
output-weight vectors of networks. Here, we state a special case of a geometric
characterization of G-variation proven in [37]. Its proof is based on Hahn-Banach
Theorem on separation of a point from convex set by a hyperplane. By G⊥ is denoted
the orthogonal complement of G in the Hilbert space F (X).

Theorem 4 Let X be a finite subset of R
d and G be a bounded subset of F (X).

Then for every f ∈ F (X) \ G⊥, ‖ f ‖G ≥ ‖ f ‖2

supg∈G |〈g, f 〉| .

Theorem 4 gives a geometric insight into the concept of variational norm. It implies
that functions which are “nearly orthogonal” to all elements of a dictionary have
large variations and thus cannot be computed by networks having “small” l1-norms
of output-weigh vectors (see Fig. 2).
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Fig. 2 Function nearly
orthogonal to G

f

G

The next Corollary gives a lower bound on probability that a uniformly randomly
chosen normalized function on X is in the “polar cap”

C(g, ε) = { f ∈ S1(X) | 〈 f, g〉 ≥ ε}

of angle arccos ε around a given g in the space F (X) (we use the same notation
C(g, ε) as for “polar cap” in Sm−1).

Corollary 1 Let X ⊂ R
d be finite with card X = m, g ∈ S1(X), and ε ∈ [0, 1]. Then

for f uniformly randomly chosen in S1(X)

P[| 〈 f, g〉| > ε] ≤ 2e
−mε2

2 .

Proof Let Fg : S1(X) → R be defined as Fg( f ) = 〈 f, g〉. By the Cauchy–Schwartz
Inequality |Fg( f1) − Fg( f2)| ≤ ‖g‖2 ‖ f1 − f2‖2. Thus Fg is 1-Lipschitz. By sym-
metry, its median is zero. So the statement follows from the Lévy Lemma
(Therom 3). �

Corollary 1 shows that for a fixed normalized function g on a large domain X ,
most of the area of S1(X) (the complement of the union of the two “polar caps”
formed by functions close to g and −g, formally { f ∈ S1(X) | 〈 f, g〉| > ε} ∪ { f ∈
S1(X) | 〈 f, g〉| > ε}), contains functions which are nearly orthogonal to g.

It implies that if a dictionary G is not large enough to outweigh the factor 2e
−mε2

2 ,
then most functions in S1(X) have inner products with all elements of G at most ε.
It means that for a large domain X , most functions in S1(X) are nearly orthogonal to
all elements of G and thus by Theorem 4, they have G-variation larger than 1

ε
(see

Fig. 3). Combining Corollary 1 and Theorem 4, we obtain for a finite dictionary the
following probabilistic lower bound on G-variation.

Theorem 5 Let d be a positive integer, X ⊂ R
d with card X = m, P be a uniform

probability measure on S1(X), b > 0, and G ⊂ S1(X) be finite with card G = k.
Then for f uniformly randomly chosen in S1(X)
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Fig. 3 Spherical caps
around elements of G

P[‖ f ‖G ≥ b] ≥ 1 − 2k e− 2m
b2 .

Theorem 5 estimates probability that a uniformly randomly chosen function on
S1(X) has G-variation at least b. Hence by Proposition 4, any representation of such
function as an input-output function of a shallow network with units from G has
l1-norm of output-weight vector larger than b, too.

Similar estimate holds for dictionaries of binary-valued functions. Its proof in [38]
uses a discrete version of concentration of measure in the form of Chernoff-Hoeffding
Bound on sums of independent variables.

Theorem 6 Let d be a positive integer, X ⊂ R
d with card X = m, P be a uniform

probability measure on cB(X), b > 0, and G ⊂ B(X) be finite with card G = k.
Then for f uniformly randomly chosen in B(X)

P (‖ f ‖G ≥ b) ≥ 1 − k e− m
2b2 .

Estimates from Theorem 5 can be extended also to networks with units from
infinite dictionaries. Their “sizes” can be described in terms of covering and packing
numbers. They were introduced in [32] as a way to measure sizes of subsets of
metric spaces using as measuring units small balls. For ε > 0, an ε-net in G is a set
{g1, . . . , gn} ⊆ G such that the family of the closed balls Bε(gi ) of radii ε centered
at gi covers G. The ε-covering number denoted Nε(G) of a subset G of a metric
space S is the cardinality of a minimal ε-net in G, i.e.,

Nε(G) := min
{
n ∈ N+ | (∃ f1, . . . , fm ∈ G) (G ⊆

n⋃
i=1

Bε( fi ))
}
.

When the set over which the minimum is taken is empty, thenNε(G) := +∞. Note
that all covering numbers of a compact set are finite. Packing number Mε(G) is
defined as the maximal number of disjoint balls that fit in a set, i.e.,
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Mε(G) := min
{
n ∈ N+ | (∃ f1, . . . , fm ∈ G) (

n⋃
i=1

Bε( fi ) ⊆ G)
}
.

Packing numbers are closely related to covering numbers as

M2ε(G) ≤ Nε(G) ≤Mε(G).

In the following theorem, we assume that the covering numbers of subsets
G of S1(X) are considered with respect to the angular pseudometrics ρ( f, g) =
arccos |〈 f, g〉|.
Theorem 7 Let d be a positive integer, X ⊂ R

d with card X = m, P be a uniform
probability measure on S1(X), b > 0, and G ⊂ S1(X) has finite covering numbers.
Then for f uniformly randomly chosen in S1(X)

P[‖ f ‖G ≥ b] ≥ 1 − 2Narccos(2/b)(G) e− 2m
b2 .

Proof For g ∈ S1(X) and ε > 0, let C(g, ε) = { f ∈ S1(X) | 〈 f, g〉 ≥ ε}. Let
α = arccos(2/b) and {g1, . . . , gn} be a minimal α-net in G in the angular pseu-
dometrics ρ. Then by the triangle inequality

⋃n
i=1(C(gi , 2/b) ∪ C(−gi , 2/b)) ⊇⋃

g∈G C(g, 1/b). By Theorem 4, ‖ f ‖G(X) ≥ 1
supg∈G |〈 f,g〉| . Thus { f ∈ S1(X) | ‖ f ‖G ≥

b} ⊇ S1(X) \ ⋃
g∈G C(g, 1/b) ⊇ S1(X) \ ⋃n

i (C(gi , 2/b) ∪ C(−gi , 2/b)). By Cor-

ollary 1, P[ f ∈ C(g, 1/b)] ≤ 2e− 2m
b2 . Thus P[ f ∈ S1(X) \ ⋃n

i=1(C(gi , 2/b) ∪
C(−gi , 2/b))] ≥ 1 − 2Nα(G)e− 2m

b2 and so the statement holds. �

Combining Theorem 7 with Proposition 4 we obtain the following lower bound on
the l1-norm of the output-weight vector of any network with units from G computing
a uniformly randomly chosen real-valued function on X .

Corollary 2 Let d be a positive integer, X ⊂ R
d with card X = m, P be a uniform

probability measure on S1(X), b > 0, G ⊂ S1(X) has finite covering numbers, and f
be a function uniformly randomly chosen from S1(X). Then for f uniformly randomly
chosen in S1(X)

P
[
(∀w ∈ W f (G)) (‖w‖1 ≥ b)

] ≥ 1 − 2Narccos(2/b)(G) e− 2m
b2 .

For example for b = m1/4, Theorem 7 and Corollary 2 give the lower bound

1 − 2Narccos(2m−1/4)(G) e−2
√

m

on probability that a uniformly randomly chosen normalized function f on X has
G-variation and l1-norm of output-weight vector of any network with units from G
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computing f are at least m1/4. If a dictionary G is “relatively small” (in the sense that
its covering numberNarccos(2m−1/4)(G) do not outweigh the factor e−2

√
m , then almost

any uniformly randomly chosen normalized function on X has G-variation larger than
m1/4. Covering numbers are called power-type if there exists c > 0 and a positive
integer s such that Nε(G) ≤ (

c
ε

)s
. So our results apply to dictionaries with power-

type covering numbers. In particular, for X = {0, 1}d the d-dimensional Boolean
cube and a power-type dictionary, our estimates imply for almost any uniformly
randomly chosen function in S1({0, 1}d) the lower bound 2d/4 on the l1-norms of all
output-weight vectors of networks computing such function.

6 Sizes of Dictionaries of Computational Units

Our analysis of approximate measures of sparsity of networks with units from a
dictionary G shows that when covering numbers of G grow only polynomially with
the size of the domain X , then for almost any uniformly randomly chosen function
on a sufficiently large X , l1-norms of output-weight vectors of all networks with units
from G computing f must be large. Such networks have large numbers of units or
some of their output weights must be large. Both are not desirable.

Some estimates of covering numbers of dictionaries are known for shallow net-
works, where dictionaries are formed by functions computable by basic computa-
tional units. Much more complicated dictionaries formed by compositions of func-
tions which are used in deep networks are less understood.

For finite dictionaries G, all covering numbers are bounded from above by card G.
For some values of ε, covering numbers of finite dictionaries can even be smaller
than their sizes. This can happen when a dictionary is highly coherent. Finite dic-
tionaries are either formed by functions with finite ranges or functions with finite
sets of parameters. Examples of dictionaries formed by binary-valued functions are
dictionaries of Heaviside or signum perceptrons. Estimates of their sizes follow from
the upper bound 2 md

d! on the number of linearly separable dichotomies of m points
in R

d proven by Schläfli already in the 19th century (see [54]).
The dictionary of signum perceptrons

Pd(X) := {sgn(v · x + b) : X → {−1, 1} | v ∈ R
d , b ∈ R}

occupies a relatively small subset of the set B(X) of all functions on X with values
in {−1, 1}. The following upper bound is a direct consequence of an upper bound on
the number of linearly separable dichotomies of m points in R

d from [13] combined
with a well-known estimate of partial sum of binomials (see [40]).

Theorem 8 For every d and every X ⊂ R
d with card X = m,

card Pd(X) ≤ 2
md

d! .
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Thus the size of the dictionary Pd(X) of signum perceptrons grows with the size of
the domain X ⊂ R

d with cardX = m only polynomially with the polynomial degree
equal to d, while the size 2m of the setB(X) of all functions from X to {−1, 1} grows
with m exponentially. Estimate of the size of the dictionary of signum perceptrons
combined with Theorem 6 gives the following bounds.

Theorem 9 Let d be a positive integer, X ⊂ R
d with card X = m, P be a uniform

probability measure on B(X), f uniformly randomly chosen in B(X), and b > 0.
Then

P
(‖ f ‖Pd (X) ≥ b

) ≥ 1 − 4
md

d! e− m
2b2 .

Thus for large domains X , almost any uniformly randomly chosen function from
X to {−1, 1} has large variation with respect to signum perceptrons and so it cannot be
l1-sparsely represented by a shallow network with signum perceptrons. In particular,
for card X = 2d and b = 2

d
4 , Theorem 9 implies the following corollary.

Corollary 3 Let d be a positive integer, X ⊂ R
d with card X = m, P be a uniform

probability measure on B(X), and f uniformly randomly chosen in B(X). Then

P
(
‖ f ‖Pd (X) ≥ 2

d
4

)
≥ 1 − 4

2d2

d! e−(2
d
2 −1).

Covering numbers of the whole set S1(X) of all normalized functions on a finite
set X are growing exponentially with card X . This follows from estimates of the
quasiorthogonal dimension dimε m of R

m . It is defined for ε ∈ [0, 1] as the maximal
number of unit vectors such that each pair of distinct ones has inner product at most
ε, i.e.,

dimε m = max{card U ⊂ Sm−1 | (∀u, v ∈ U, u �= v)(|u · v| ≤ ε)}.

Quasiorthogonal dimension can be expressed as the packing number of Sm−1. It was
proven in [25] that for a fixed ε > 0, the quasiorthogonal dimension dimεm grows
exponentially with the dimension m as

�e
mε2

2 � ≤ dimε m

(for arguments based on graph theory see [24]).
Let λ(t) = 0 for t ≤ 0 and λ(t) = t for t ≥ 0 and let L(X) denote the dictionary

L(X) := {λ(e · . + b) : X → R | e ∈ Sd−1, b ∈ R}.
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The dictionary L(X) has infinite range, but has the same size equal to the number of
characteristic functions of half-spaces of X ⊂ R

d .
Some dictionaries with infinite ranges have finite sets of parameters and thus they

are finite. For X finite, let
K (X) := {Ky | y ∈ X},

where K : X × X → R is a symmetric positive definite kernel and Ky(x)=K (x, y).
Such dictionaries are used in SVM and their sizes are equal to card Y [2, 51].

Covering numbers of dictionaries Gφ(X, Y ), for which the function Tφ : Y →
F (X) defined as Tφ(y)(x) = φ(x, y) is Lipschitz can be derived from covering
numbers of the set of parameters Y .

Covering numbers in the angular pseudometrics are related to covering numbers
in l2. Indeed, for f, g ∈ S1(X), with ρ( f, g) = α, we have ‖ f − g‖2 = 2 sin(α/2).
Various estimates of covering numbers in l2-norm are known. For example, any
subset G of the set of functions on a finite domain X with range {0, 1} which has a
finite VC-dimension has power-type covering numbers in l2 [19]. It was shown in
[48] that for any Lipschitz continuous sigmoidal function, L2-covering numbers of
the dictionary of sigmoidal perceptrons on any bounded domain � ⊂ R

d grow as(
1
ε

)β
, where β > 0.

7 Constructions of Functions with Large Variations

By Theorem 4, functions which are nearly orthogonal to all elements of a dictionary
G have large G-variations. To construct an example of a class of functions with
large variation with respect to signum signum perceptrons, we consider functions on
square domains of the form

X = {x1, . . . , xn} × {y1, . . . , yn} ⊂ R
d .

Such functions can be represented by square matrices. For a function f on X =
{x1, . . . , xn} × {y1, . . . , yn} we denote by M( f ) the n × n matrix defined as

M( f )i, j = f (xi , y j ).

An n × n matrix M induces a function fM on X such that

fM(xi , y j ) = Mi, j .

The inner product of two functions f and g on a square domain X = {x1, . . . ,

xn} × {y1, . . . , yn} is equal to the sum of entries of the matrices M( f ) and M(g),
i.e.,
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〈 f, g〉 =
n∑

i, j

M( f )i, j M(g)i, j .

Thus it is invariant under permutations of rows and columns performed jointly on
both matrices M( f ) and M(g). So to estimate inner products of functions represented
by matrices we can reorder rows and columns whenever it is convenient.

An advantage of square domains is that on such domains matrices M(g) repre-
senting signum perceptrons g ∈ Pd(X) can be reordered in such a way that each row
and each column of the reordered matrix starts with a segment of −1’s followed by
a segment of +1’s as stated in the next lemma from [38].

Lemma 1 Let d = d1 + d2, {xi | i = 1, . . . , n} ⊂ R
d1 , {y j | j = 1, . . . , n} ⊂ R

d2 ,
and X = {x1, . . . , xn} × {y1, . . . , yn} ⊂ R

d . Then for every g ∈ Pd(X) there exists a
reordering of rows and columns of the n × n matrix M(g) such that in the reordered
matrix each row and each column starts with a (possibly empty) initial segment of
−1’s followed by a (possibly empty) segment of +1’s.

Proof Choose an expression of g ∈ Pd(X) as g(z) = sign(a · z + b), where z =
(x, y) ∈ R

d1 × R
d2 , a ∈ R

d = R
d1 × R

d2 , and b ∈ R. Let al and ar denote the left
and the right part, resp, of a, i.e., ali = ai for i = 1, . . . , d1 and ari = ad1+i for
i = 1, . . . , d2. Then sign(a · z + b) = sign(al · x + ar · y + b). Let ρ and κ be per-
mutations of the set {1, . . . , n} such that al · xρ(1) ≤ al · xρ(2) ≤ · · · ≤ al · xρ(n) and
ar · yκ(1) ≤ ar · yκ(2) ≤ · · · ≤ ar · yκ(n).

Denote by M(g)∗ the matrix obtained from M(g) by permuting its rows and
columns by ρ and κ , resp. It follows from the definition of the permutations ρ and
κ that each row and each column of M(g)∗ starts with a (possibly empty) initial
segment of −1’s followed by a (possibly empty) segment of +1’s. �

The reordering assembling −1’s and +1’s in the matrix representing a signum
perceptron (guaranteed by Lemma 1) reduces estimation of their inner products with
functions f : X → {−1, 1} to estimation of differences of −1’s and +1’s in subma-
trices of M( f ).

A class of matrices whose submatrices have relatively small differences of −1’s
and +1’s is the class of Hadamard matrices. A Hadamard matrix of order n is an
n × n square matrix M with entries in {−1, 1} such that any two distinct rows (or
equivalently columns) of M are orthogonal. It follows directly from the definition
that this property is invariant under permutations of rows and columns and sign flips
of all elements in a row or a column. Note that Hadamard matrices were introduced
as extremal ones among all n × n matrices with entries in {−1, 1} as they have the
largest determinants equal to

√
n. The well-known Lindsay Lemma bounds from

above differences of +1’s and −1’s in submatrices of Hadamard matrices (see, e.g.,
[17, p. 88]).

Lemma 2 (Lindsay) Let n be a positive integer and M be an n × n Hadamard
matrix. Then for any subset I of the set of indices of rows and any subset J of the set
of indices of columns of M,
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∑
i∈I

∑
j∈J

Mi, j

∣∣∣∣∣∣ ≤ √
n card I card J .

Constructing a partition of a matrix induced by a signum perceptron into sub-
matrices, which have all entries either equal to +1 or all entries equal to −1, and
applying the Lindsay Lemma to a corresponding partition of a Hadamard matrix, one
obtains the following lower bound on variation with respect to signum perceptrons
for functions induced by Hadamard matrices (for details of the proof see [38]).

Theorem 10 Let d = d1 + d2, {xi | i = 1, . . . , n} ⊂ R
d1 , {y j | j = 1, . . . , n} ⊂ R

d2 ,
X = {xi | i = 1, . . . , m} × {y j | j = 1, . . . , m} ⊂ R

d , and fM : X → {−1, 1} be
defined as fM(xi , y j ) = Mi, j , where M is an n × n Hadamard matrix. Then

‖ fM‖Pd (X) ≥
√

n

�log2 n� .

Theorem 10 combined with Proposition 4 implies the following corollary.

Corollary 4 Let d = d1 + d2, {xi | i = 1, . . . , n} ⊂ R
d1 , {y j | j = 1, . . . , n} ⊂ R

d2 ,
X = {xi | i = 1, . . . , n} × {y j | j = 1, . . . , n} ⊂ R

d , and fM : X → {−1, 1} be
defined as fM(xi , y j ) = Mi, j , where M is an n × n Hadamard matrix. Then fM can-
not be computed by a shallow signum perceptron network having both the number
of units and absolute values of all output weights depending on log2 n polynomially.

Corollary 4 shows that functions induced by Hadamard matrices cannot be com-
puted by shallow signum or Heaviside perceptrons with numbers of units and sizes
of output weights considerably smaller than sizes of their domains. Numbers of units
and sizes of output weights in these networks cannot be bounded by polynomials of
log2 of the sizes of their domains. Theorem 10 can be applied to domains contain-
ing sufficiently large squares, for example domains representing pictures formed by
two-dimensional squares with 2k × 2k pixels or digitized d-dimensional cubes.

Corollary 5 Let k be a positive integer and fM : {0, 1}k × {0, 1}k → {−1, 1} be
defined as fM(xi , y j ) = Mi, j , where M is a 2k × 2k Hadamard matrix. Then

‖ fM‖Pd ({0,1}2k ) ≥ 2k/2

k
.

Functions generated by 2k × 2k Hadamard matrices cannot be computed by shallow
signum perceptron networks with the sum of the absolute values of output weights
bounded by a polynomial of k. This implies that the numbers of units and absolute
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values of all output weights in these networks cannot be bounded by any polynomial
of k. Similarly, functions defined on 2k-dimensional discretized cubes of sizes s2k =
sk × sk cannot be computed by networks with numbers of signum perceptrons and
output weights smaller than

sk/2

�k log2 s� . (6)

8 Examples

An example of a class of functions with variation with respect to Gaussian kernel
units with centers in the Boolean cube {0, 1}d increasing with d exponentially is the
class of d-dimensional parities. Let

G K ,a = G K ,a({0, 1}d) := {e−a‖·−y‖2 | y ∈ {0, 1‖d}

denotes the dictionary of Gaussian kernel units with centers in {0, 1}d and pd :
{0, 1}d → {−1, 1}, where

pd(v) := −1v·u,

for all u = (1, . . . , 1) ∈ {0, 1}d is the parity function. The following lower bound
from [38] shows that G K ,a-variation of pd grows with d exponentially.

Theorem 11 For every positive integer d and every a > 0,

‖pd‖G K ,a({0,1}d ) > 2d/2.

Proof By Theorem 4,

‖pd‖G K ,a ≥ ‖pd‖
supg∈G K ,a({0,1}d ) |〈pd , g〉| .

Let g0 be the Gaussian centered at (0, . . . , 0), then 〈pd , g0〉 = ∑d
k=0(−1)k

(d
k

)
e−ak .

By the binomial formula,

〈pd , g0〉 =
d∑

k=0

(−1)k

(
d

k

)
e−ak = (1 − e−a)d .

Using a suitable transformation of the coordinate system, we obtain the same value
of the inner product with pd for the Gaussian gx centered at any x ∈ {0, 1}d such that
pd(x) = 1. When the Gaussian gx is centered at x with pd(x) = −1, we get the same
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absolute value of the inner product by replacing pd with −pd and by a transformation
of the coordinate system. As ‖pd‖ = 2d/2, we get ‖pd‖G K ,a ≥ 2d/2

(1−e−a)d > 2d/2. �
Applying Corollary 4 to a variety of types of Hadamard matrices one obtains many

examples of functions which cannot be computed by shallow perceptron networks
with numbers of units and sizes of output weights bounded by

p(log2 card X),

where p is a polynomial and X is the domain of the function.
Recall that if a Hadamard matrix of order n > 2 exists, then n is divisible by 4

(see, e.g., [45, p. 44]). It is conjectured that there exists a Hadamard matrix of every
order divisible by 4. Various constructions of Hadamard matrices are known, such as
Sylvester’s recursive construction of 2k × 2k matrices, Paley’s construction based on
quadratic residues, as well as constructions based on Latin Squares, and on Steiner
triples.

Two Hadamard matrices are called equivalent when one can be obtained from the
second one by permutations of rows and columns and sign flips of all entries in a row
or a column. Listings of known constructions of Hadamard matrices and enumeration
of non-equivalent Hadamard matrices of some orders can be found in [56].

The oldest construction of a class of 2k × 2k matrices with orthogonal rows and
columns was discovered by Sylvester [58]. A 2k × 2k matrix is called Sylvester-
Hadamard and denoted S(k) if it is constructed recursively starting from the matrix

S(2) =
(

1 1
1 −1

)

and iterating the Kronecker product

S(l + 1) = S(2) ⊗ S(l) =
∣∣∣∣ S(l) S(l)

S(l) −S(l)

∣∣∣∣
for l = 1, . . . , k − 1. Corollary 5 implies that functions generated by 2k × 2k

Sylvester-Hadamard matrices cannot be represented by shallow signum perceptron
networks with numbers of units and sizes of output weights smaller than 2k/2

k .
The following theorem from [38] shows that model complexities of signum

or Heaviside perceptron networks computing functions generated by
Sylvester-Hadamard matrices can be considerably decreased when two hidden layers
are used instead of merely one hidden layer.

Theorem 12 Let S(k) be a 2k × 2k Sylvester-Hadamard matrix, hk : {0, 1}k ×
{0, 1}k → {−1, 1} be defined as hk(u, v) = S(k)u,v. Then hk can be represented by a
network with one linear output and two hidden layers with k Heaviside perceptrons
in each hidden layer.

An interesting class of functions with large variations with respect to perceptrons
can be obtained by applying Theorem 10 to a class of circulant matrices with rows
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formed by shifted segments of pseudo-noise sequences. These sequences are deter-
ministic but exhibit some properties of random sequences. They have been used in
acoustics [55].

An infinite sequence a0, a1, . . . , ai , . . . of elements of {0, 1} is called kth order
linear recurring sequence if for some h0, . . . , hk ∈ {0, 1}

ai =
k∑

j=1

ai− j hk− j mod 2

for all i ≥ k. It is called k-th order pseudo-noise (PN) sequence (or pseudo-random
sequence) if it is kth order linear recurring sequence with minimal period 2k − 1.
PN-sequences are generated by primitive polynomials. A polynomial

h(x) =
m∑

j=0

h j x
j

is called primitive polynomial of degree m when the smallest integer n for which
h(x) divides xn + 1 is n = 2m − 1.

PN sequences have many useful applications because some of their properties
mimic those of random sequences. A run is a string of consecutive 1’s or a string
of consecutive 0’s. In any segment of length 2k − 1 of a kth order PN-sequence,
one-half of the runs have length 1, one quarter have length 2, one-eighth have length
3, and so on. In particular, there is one run of length k of 1’s, one run of length k − 1
of 0’s. Thus every segment of length 2k − 1 contains 2k/2 ones and 2k/2 − 1 zeros
[45, p. 410].

An important property of PN-sequences is their low autocorrelation. The auto-
correlation of a sequence a0, a1, . . . , ai , . . . of elements of {0, 1} with period 2k − 1
is defined as

κ(t) = 1

2k − 1

2k−1∑
j=0

−1a j +a j+t . (7)

For every PN-sequence and for every t = 1, . . . , 2k − 2,

κ(t) = − 1

2k − 1
(8)

[45, p. 411].
Let τ : {0, 1} → {−1, 1} be defined as

τ(x) = −1x
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(i.e., τ(0) = 1 and τ(1) = −1). We say that a 2k × 2k matrix Lk(α) is induced by a
k-th order PN-sequence α = (a0, a1, . . . , ai , . . .) when for all i = 1, . . . , 2k , Li,1 =
1, for all j = 1, . . . , 2k , L1, j = 1, and for all i = 2, . . . , 2k and j = 2, . . . , 2k

Lk(α)i, j = τ(Ai−1, j−1)

where A is the (2k − 1) × (2k − 1) circulant matrix with rows formed by shifted
segments of length 2k − 1 of the sequence α. The next proposition following from
the Eqs. (7) and (8) shows that for any PN-sequenceα the matrix Lk(α)has orthogonal
rows.

Proposition 6 Let k be a positive integer, α = (a0, a1, . . . , ai , . . .) be a kth order
PN-sequence, and Lk(α) be the 2k × 2k matrix induced by α. Then all pairs of rows
of Lk(α) are orthogonal.

Applying Theorem 10 to the 2k × 2k matrices Lk(α) induced by a kth order PN-
sequence α we obtain a lower bound of the form 2k/2

k on variation with respect to
signum perceptrons of the function induced by the matrix Lk(α). So in any shallow
perceptron network computing this function, the number of units or sizes of some
output weights depend on k exponentially.

9 Discussion

Although current hardware allows to implement networks with large numbers of
parameters, reducing network complexity is highly desirable as it can considerably
improve efficiency of computation. Various studies show that also brain has sparse
connectivity (each neuron is connected to only a limited number of other neurons).
To obtains some theoretical understanding to limitations of shallow architectures,
we investigated lower bounds on complexity of shallow networks.

As minimization of “l0-pseudonorm” (which measures the number of hidden units
in a shallow network) is a difficult non convex problem, we focused on approximate
measures of network sparsity. We presented several arguments for using l1-norm
of output weight vectors as an approximate measure of network sparsity: Balls in
l1-norm are good approximations of convexifications of intersections of “balls” in
“l0” with unit balls in the ambient Euclidean metric, in contrast to l2-norm, acting
as a stabilizer l1 penalizes even large number of output weights, l1 has been used
in weight-decay regularization [18], in statistical learning in the Lasso method [59],
and is related to variational norm tailored to dictionary of computational units.

Applying geometrical properties of high-dimensional Euclidean spaces (the
concentration of measure) we derived probabilistic lower bounds on minima of
variational and l1-norms of output-weight vectors in terms of covering numbers
of dictionaries. As for many types of dictionaries used in shallow networks, covering
numbers are power-type, the bounds imply that almost any uniformly randomly cho-
sen normalized function on a large domain is highly uncorrelated with all elements
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of such dictionaries. Covering numbers of dictionaries formed by compositions of
computational units characterizing deep networks are much less understood, but it
is likely that they have much larger covering numbers than simple dictionaries used
in shallow networks.

Although probabilistic results prove that there are many functions with large vari-
ations, it is not easy to find concrete constructions of such functions. There is an inter-
esting analogy with the central paradox of coding theory. This paradox is expressed in
the title of the article “Any code of which we cannot think is good” [12]. It was proven
there that any code which is truly random (in the sense that there is no concise way to
generate the code) is good (it meets the Gilbert–Varshamov bound on distance versus
redundancy). However despite sophisticated constructions for codes derived over the
years, no one has succeeded in finding a constructive procedure that yields such good
codes. Similarly, computation of “any function of which we cannot think” (truly ran-
dom) by shallow perceptron networks might be untractable. The results presented
in this chapter indicate that computation of functions exhibiting some randomness
properties by shallow perceptron networks is difficult in the sense that it requires
networks of large complexities. Some of such functions can be constructed using
deterministic algorithms and have many useful applications. For example, properties
of pseudo-noise sequences were exploited for constructions of codes, interplanetary
satellite picture transmission, precision measurements, acoustics, radar camouflage,
and light diffusers. These sequences permit designs of surfaces that scatter incoming
signals very broadly making reflected energy “invisible” or “inaudible” [55].

It should be emphasized that Theorem 7 and Corollary 2 assume uniform probabil-
ity distribution of functions to be computed. The assumption of uniform distribution
of computational tasks (sometimes implicit) is quite common. For example, in the No
Free Lunch Theorem [61], it is assumed that all functions are equally likely. However
in real tasks, relevance of functions for a give application area are far from being
uniform. Recently, we derived some estimates of complexity of networks computing
randomly chosen functions from nonuniform probability distributions [33].

Acknowledgements This work was partially supported by the Czech Grant Foundation grant
GA18-23827S and institutional support of the Institute of Computer Science RVO 67985807.

References

1. Albertini, F., Sontag, E.: For neural networks, function determines form. Neural Netw. 6(7),
975–990 (1993)

2. Anguita, D., Ghio, A., Oneto, L., Ridella, S.: Selecting the hypothesis space for improving the
generalization ability of support vector machines. In: IEEE International Joint Conference on
Neural Networks (2011)

3. Azuma, K.: Weighted sums of certain dependent random variables. Tohoku Math. J. 19, 357–
367 (1967)



vera@cs.cas.cz

Limitations of Shallow Networks 153

4. Ba, L.J., Caruana, R.: Do deep networks really need to be deep? In: Ghahramani, Z. et al. (eds.)
Advances in Neural Information Processing Systems, vol. 27, pp. 1–9 (2014)

5. Ball, K.: An elementary introduction to modern convex geometry. In: Levy, S. (ed.) Flavors of
Geometry, pp. 1–58. Cambridge University Press, Cambridge (1997)

6. Barron, A.R.: Neural net approximation. In: Narendra, K.S. (ed.) Proceedings of the 7th Yale
Workshop on Adaptive and Learning Systems, pp. 69–72. Yale University Press (1992)

7. Barron, A.R.: Universal approximation bounds for superpositions of a sigmoidal function.
IEEE Trans. Inf. Theory 39, 930–945 (1993)

8. Bellman, R.: Dynamic Programming. Princeton University Press, Princeton (1957)
9. Bengio, Y., LeCun, Y.: Scaling learning algorithms towards AI. In: Bottou, L., Chapelle, O.,

DeCoste, D., Weston, J. (eds.) Large-Scale Kernel Machines. MIT Press, Cambridge (2007)
10. Bengio, Y.: Learning deep architectures for AI. Found. Trends Mach. Learn. 2, 1–127 (2009)
11. Chernoff, H.: A measure of asymptotic efficiency for tests of a hypothesis based on the sum of

observations. Ann. Math. Stat. 23, 493–507 (1952)
12. Coffrey, J.T., Goodman, R.Y.: Any code of which we cannot think is good. IEEE Trans. Inf.

Theory 25(6), 1453–1461 (1990)
13. Cover, T.: Geometrical and statistical properties of systems of linear inequalities with applica-

tions in pattern recognition. IEEE Trans. Electron. Comput. 14, 326–334 (1965)
14. DeVore, R.A., Howard, R., Micchelli, C.: Optimal nonlinear approximation. Manuscr. Math.

63, 469–478 (1989)
15. Donoho, D.: For most large underdetermined systems of linear equations the minimal �1-norm

solution is also the sparsest solution. Commun. Pure Appl. Math. 59, 797–829 (2006)
16. Donoho, D.L., Tsaig, Y.: Fast solution of 1-norm minimization problems when the solution

may be sparse. IEEE Trans. Inf. Theory 54, 4789–4812 (2008)
17. Erdös, P., Spencer, H.: Probabilistic Methods in Combinatorics. Academic, Cambridge (1974)
18. Fine, T.L.: Feedforward Neural Network Methodology. Springer, Berlin (1999)
19. Haussler, D.: Sphere packing numbers for subsets of the Boolean n-cube with bounded Vapnik-

Chervonenkis dimension. J. Comb. Theory A 69(2), 217–232 (1995)
20. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural

Comput. 18, 1527–1554 (2006)
21. Hoeffding, W.: Probability inequalities for sums of bounded random variables. J. Am. Stat.

Assoc. 58, 13–30 (1963)
22. Ito, Y.: Finite mapping by neural networks and truth functions. Math. Sci. 17, 69–77 (1992)
23. Kainen, P.C., Kůrková, V., Sanguineti, M.: Dependence of computational models on input

dimension: tractability of approximation and optimization tasks. IEEE Trans. Inf. Theory 58,
(2012)
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39. Kůrková, V., Kainen, P.C.: Comparing fixed and variable-width Gaussian networks. Neural
Netw. 57(10), 23–28 (2014)
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