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Abstract. We investigate an integral transform with kernel induced
by perceptrons with the Heaviside activation function. Representation
theorems are given expressing sufficiently smooth functions as “infinite
Heaviside perceptron networks.” The representation is exploited to ob-
tain estimates of rates of approximation of these functions by networks
with increasing numbers of units.

1 Introduction

Integral transforms play an important role in many branches of applied science
such as medical imaging, astronomy, seismology, material science, turbulence,
multiscale segmentation (see, e.g., [1],[2, pp. 567–569, pp. 591–593]). In addition
to these traditional applications, the mathematical theory of neurocomputing
utilizes them as a powerful tool to investigate function approximation by net-
works. An important class of integral operators has the form

TK(w)(x) :=

∫
A

w(a)K(x, a)da, (1)

where K is a function of two variables, the kernel, and w is a weight function.
The term “kernel,” derived from the German word “kern,” was introduced

by Hilbert in 1904 [3, p.291]. Many well-known kernels are named for the mathe-
maticians who introduced them - e.g., Weierstrass, Abel, Laplace, Poisson, Szegő.

Functions computable by units used in neurocomputing also depend on two
vector variables, an input vector and a parameter vector, and thus formally they
can be considered as kernels. Note that for each appropriate choice of a kernel
K, TK is a linear operator on some normed linear space of functions. Artificial
neural networks were introduced as multilayer computational models, but later
one-hidden-layer architectures became dominant in applications of feedforward
networks (see, e.g., [4, 5] and the references therein). Networks with one hidden
layer of computational units, called shallow, compute finite linear combinations
of functions from parameterized families called dictionaries of computational
units. Deep networks with several hidden layers are mentioned in the last section.



A network with one hidden layer of computational units from the dictionary

GK := {K(., a) | a ∈ A}

and a single linear output computes input-output functions of the form

n∑
i=1

wiK(x, ai), (2)

where wi are output weights and n is the number of hidden units.
One can view an integral ∫

A

f(a)K(x, a)da

as an “infinite shallow neural network” with units from the dictionary GK and
output weights f(a). Thus operators TK map “infinite output-weight vectors” to
input-output functions. On the other hand, quadratures of integral with kernels
corresponding to computational units generate one-hidden-layer networks.

Originally, computational units, called perceptrons, were inspired by a simpli-
fied model of a neuron [6]. A perceptron applies an activation function (typically
sigmoidal) to a weighted sum of its inputs to which is added a bias. So mathemat-
ically, it can be described as the composition of an activation function applied
to an affine function. Geometrically, functions computable by perceptrons have
the form of plane waves which are very useful in mathematical physics, as noted
by Courant and Hilbert [7, p. 676]:

...representations as linear functionals of the data not only lead to
many attractive formal relations, but, what is perhaps more important,
they allow a study of specific properties. They are based on the decom-
position of solutions, and, for that matter, other arbitrary functions, into
plane waves. But always the use of plane waves fails to exhibit clearly the
domains of dependence and the role of characteristics. This shortcoming,
however, is compensated by the elegance of explicit results.

Later, alternative types of computational units were introduced due to their
good mathematical properties. Some of these units compute spherical waves
and can be highly localized. Nevertheless, perceptrons still remain widely used
computational units because of their conceptual and practical advantages.

In this chapter, we explore the analogy between neural networks and integral
transforms and show how this provides a conceptual tool for the analysis of shal-
low networks, which, moreover, can be applied, layer by layer, to deep networks
with several layers of computational units. We describe an integral represen-
tation of smooth-enough functions in the form of infinite Heaviside perceptron
networks that we derived jointly with Vladik Kreinovich [8].

Proof of the theorem was based on Vladik’s original idea to employ the
derivative of the Heaviside activation function, which is the Dirac delta function,



and to express the d-dimensional delta function with d odd as an integral of one-
dimensional delta functions.

In the 20 years since our collaboration with Vladik on the topic of integral
formulas, neural networks, and the Heaviside function, we have learned a few
additional facts and extended the formula and method to cover even dimensions
as well. Further, we substantially weakened some of the constraints. Together
with A. Vogt in [9], we proved a version of the integral representation which
includes all our previous versions as well as other related work by Ito [10] and
Carroll and Dickenson [11]. We review these extensions and sketch their proof
techniques.

Further, we review applications of integral representations in the form of infi-
nite networks to estimates of complexity of networks needed for a given accuracy
of approximation of functions represented by integral formulas. We describe the
concept of variational norm tailored to computational units. Applying the rep-
resentation in the form of Heaviside plane waves, we derive upper bounds on
variation with respect to half-spaces, which plays a role of a critical factor in
estimates of network complexity.

The chapter is organized as follows. Section 2 contains an exposition of basics
and notation, including distribution theory. Section 3 begins with a brief sum-
mary of the proof outline and describes an integral representation for sufficiently
smooth functions in the form of Heaviside plane waves. It sketches an argument
based on the integral representation of the d-dimensional Dirac delta function. In
Section 4, extension to wider classes of functions as well as even dimensions are
given. Section 5 is devoted to applications of integral representations to network
complexity and Section 6 contains some concluding remarks.

2 Preliminaries

Computational units (such as perceptrons, radial or kernel units) compute func-
tions of two vector variables representing inputs and parameters (e.g., weights,
biases, centroids). So formally computational units can be described as mappings

K : X ×A→ R,

where X ⊆ Rd is a set of variables and A ⊆ Rs is a set of (inner) parameters.
Let

GK = GK(A) = GK(X,A) := {K(., a) | a ∈ A}

denote the parameterized set of functions on X induced by K. We use the shorter
notation GK or GK(A) when the sets X or A are clear from the context. The
set GK(X,A) is called a dictionary of computational units.

If b ∈ R and v ∈ Rd and σ : R → R is any function, then the perceptron
with activation function σ is the function Kσ : Rd × Rd+1 → R defined for
(x, (v, b)) ∈ Rd × (Rd × R) = Rd × Rd+1 by

Kσ(x, (v, b)) := σ(v · x+ b). (3)



Typically, activation functions are assumed to be sigmoidals - that is, to be mono-
tonic with limits 0 and 1, resp., as the input goes to −∞ or +∞. However, the
universal approximation property holds for shallow networks with perceptrons
with any sufficiently smooth nonpolynomial activation function [12].

An important type of activation function is the indicator function for the
nonnegative reals, called the Heaviside function ϑ : R → R defined as ϑ(t) = 0
for t < 0 and ϑ(t) = 1 for t ≥ 0. (This function is named for Oliver Heaviside
(1850-1925), who used it to construct a quite sophisticated, though heuristic,
theory of analysis which has turned out to be accurate. Heaviside’s scientific
contributions included an explanation for anomalies in radio transmission; he
hypothesized an ionized layer in the Earth’s atmosphere which is now known to
exist.)

A function f : Rd → R is called a plane wave if it can be represented as
f(x) = α(v · x), where α : R → R is any function of one variable and v ∈ Rd is
any nonzero vector. Plane waves are constant along hyperplanes

Hv,b := {x ∈ Rd | v · x = −b}.

Perceptrons with an activation function σ compute plane waves of the form
σb(v · x), where σb(t) = σ(t + b). If σ = ϑ, then Kϑ(·, (v, b)) is the indicator
function of the half-space {x ∈ Rn | v · x + b ≥ 0}. Let Sd−1 denote the unit
sphere in Rd. We denote

Gϑ = Gϑ(Sd−1 × R, X) := {ϑ(e · −+ b) : X → R | e ∈ Sd−1, b ∈ R},

the dictionary of perceptrons with the Heaviside activation function.
A shallow network with a single linear output and with n computational units

from a dictionary GK(A) computes input-output functions from the set

spannGK(A) :=

{
n∑
i=1

wiK(·, ai) |wi ∈ R, ai ∈ A

}
.

A network unit computing a function K : X × A → R induces an integral
operator. The operator depends on a measure µ on A. For a function w : A→ R
in a suitable space of functions on A such that for all x ∈ X the integral (4)
exists, we denote by TK,µ the operator defined as

TK,µ(w)(x) :=

∫
A

w(a)K(x, a)dµ(a). (4)

When µ is the Lebesgue measure, we drop µ from the notation. Metaphorically,
the integral on the right-hand side of the equation (4) can be interpreted as a
one-hidden-layer neural network with infinitely many units computing functions
from a dictionary

GK := {K(., a) | a ∈ A}.
So the operator TK,µ transforms output-weight functions w : A → R of infinite
networks with units from the dictionary GK to input-output functions

TK,µ(w) : X → R.



Recall (see e.g., [13]) that for a unit vector e ∈ Sd−1 and a real-valued
function f on Rd, the directional derivative of f in the direction e is defined by

(Def)(y) := lim
t→0

f(y + te)− f(y)

t

and the k-th directional derivative is inductively defined by

(D(k)
e f)(y) = De(D

(k−1)
e f)(y).

It is well-known (see e.g., [13, p.222] that

(Def)(y) = e · ∇f(y),

where ∇ = (∂1, . . . , ∂d) is the vector of partial derivatives w.r.t. the variables.
The k-th order directional derivative is a weighted sum of the corresponding
k-th order partial derivatives, where the weights are polynomials in the coordi-
nates of e multiplied by multinomials (see e.g., [14, p.130]). Hence existence and
continuity of the partials ∂i implies the same for directional derivatives.

By Cd(Rd) we denote the space of continuous functions on Rd with continuous
derivatives up to order d, while C∞(Rd) denotes the space of continuous func-
tions on Rd with continuous derivatives of all orders. The Schwartz class S(Rd)
consists of all functions from C∞(Rd) which, together with all their derivatives,
are rapidly decreasing [15, p.251]).

Let D := D(Rk) denote the linear space of test functions which is the inter-
section of C∞(Rk) and the linear space of compactly supported functions on Rk.
The space D is nonempty; see, e.g., [16], for the definition of the topology on D.

A distribution is a continuous linear functional on the space of test functions.
Let D′ := D′(Rd) denote the space of all distributions. The Dirac delta function
δk is the distribution on Rk given by evaluation at zero

δk(φ) := φ(0).

When k = 1, we merely write δ.
A function f on Rk is called locally integrable if the integral

∫
C
f(x)dx exists

for any compact C ⊂ Rk. Every locally integrable function f then defines a
distribution Tf whose value on the test function φ is

〈Tf , φ〉 :=

∫
Rd
f(x)φ(x)dx.

The convolution f ∗ g of a compactly supported f and a distribution g on
Rn, is defined by

(f ∗ g)(x) :=

∫
Rn
f(y)g(x− y)dy.

The distributional derivative T ′ of a distribution T is defined by the equation

〈T ′, φ〉 := −〈T, φ′〉. (5)

As 〈ϑ′, φ〉 = −〈ϑ, φ′〉 = −
∫∞
−∞ ϑ(x)φ′(x)dx = −φ(∞) + φ(0) = 〈δ, φ〉, ϑ′ = δ

(see, e.g., [16, p.47]. Thus,

δ is the distributional derivative of ϑ.



3 Infinite Heaviside Perceptron Networks

In this section, we give a representation of compactly supported functions from
Cd(Rd), with d odd, as infinite Heaviside perceptron networks, which we found
with V. Kreinovich [8] and published in 1997. Quoting from the abstract:

We estimate variation with respect to half-spaces in terms of ”flows
through hyperplanes”. Our estimate is derived from an integral represen-
tation for smooth compactly supported multivariable functions proved
using properties of the Heaviside and delta distributions. Consequently
we obtain conditions which guarantee approximation error rate of order
O(n1/2) by one-hidden-layer networks with n sigmoidal perceptrons.

While our understanding has improved, with 20 years of additional work, we
may use the abstract as an outline. Our goal was to find an upper bound on the
rate of neural-network approximation.

The Maurey-Jones-Barron Theorem (see Section 5, just before Theorem 3)
translates a geometric parameter called ”variation with respect to half-spaces”
(Section 5), for a suitable target function f , into an upper bound on the least
number of Heaviside units used in a one-layer approximation of f (its “rate
of approximation”). Variation of f can in turn be estimated using an integral
formula expressing f as an integral combination of Heaviside functions. The
weighting function for the integral formula (4) corresponds to the “outer” (i.e.,
linear) output weights in the neural network, while the “inner” variables deter-
mine the parameters of the Heaviside units. The weight functions turn out to be
the numeric integrals of iterated directional derivatives across the hyperplanes
defining the Heavisides.

We derive our representation by exploiting the distributional derivative of the
Heaviside function, which is the Dirac delta function, expressing a test function
of d variables as its convolution with the d-dimensional delta function, which
can be written as an integral of derivatives of 1-dimensional delta functions.

For a positive integer k, δk is the identity w.r.t. convolution; that is, every
f ∈ D(Rk) satisfies the following equation (e.g., [16])

f(x) = (f ∗ δk)(x) :=

∫
Rk
f(z)δk(x− z)dz. (6)

For d odd, the delta distribution δd can be expressed as an integral over the
unit sphere of the d− 1-st distributional derivatives δ1

(d−1) of δ1 in the form

δd(x) = ad

∫
Sd−1

δ
(d−1)
1 (e · x) de, (7)

where
ad := (−1)(d−1)/2(1/2)(2π)1−d (8)

see, e.g., [7, p. 680]. For e ∈ Sd−1 and b ∈ R, we denote hyperplanes and half-
spaces by

He,b := {y ∈ Rd | e · y + b = 0}, and H−e,b := {y ∈ Rd | e · y + b ≤ 0}, (9)



resp. The following theorem from [17] describes an integral representation of a
smooth compactly supported function as an uncountably infinite neural network
with Heaviside perceptrons.

Theorem 1. Let d be an odd integer and f ∈ Cd(Rd) be compactly supported.
Then for all x ∈ Rd

f(x) =

∫
Sd−1×R

wf (e, b)ϑ(e · x+ b) de db,

where wf (e, b) = ad
∫
He,b

(D
(d)
e f)(y) dy and ad is as in (8).

Proof. The proof is based on the relationship between the Heaviside threshold
function ϑ and the Dirac delta distribution δ1. We prove the statement for a
test function f . Extension to all compactly supported functions with continuous
partial derivatives of order d follows from a basic result of distribution theory:
each continuous compactly supported function can be uniformly approximated
on Rd by a sequence of test functions (see e.g., [16, p. 3]).

First, we replace the d-dimensional delta distribution with its integral repre-
sentation in terms of one-dimensional delta distributions as in (7),

δd(x− z) = ad

∫
Sd−1

δ1
(d−1)(e · x− e · z)de.

One then obtains from (6) and an application of Fubini’s theorem

f(x) = ad

∫
Sd−1

∫
Rd
f(z)δ1

(d−1)(x · e− z · e)dzde.

Rearranging the inner integration, we get for the Lebesgue measure dH on He,b

f(x) = ad

∫
Sd−1

∫
R

∫
He,b

f(y)δ1
(d−1)(x · e+ b)dHy db de.

Setting u(e, b) = ad
∫
He,b

f(y)dHy, we obtain

f(x) =

∫
Sd−1

∫
R
u(e, b)δ1

(d−1)(x · e+ b)db de. (10)

By definition of the distributional derivative, for every e ∈ Sd−1 and x ∈ Rd,∫
R
u(e, b)δ1

(d−1)(e · x+ b)db = (−1)d−1
∫
R

∂d−1u(e, b)

∂bd−1
δ1(e · x+ b)db.

Using integration by parts on the right-hand integral, as d is odd and the
distributional derivative of ϑ is δ1, it follows that for every e ∈ Sd−1 and x ∈ Rd∫

R
u(e, b)δ1

(d−1)(e · x + b)db = −
∫
R

∂du(e, b)

∂bd
ϑ(e · x+ b)db.



Differentiating w.r.t. b is orthogonal to hyperplane He,b and so it is in the direc-
tion e. Hence,

∂du(e, b)

∂bd
= ad

∂d

∂bd

∫
He,b

f(y)dy = ad

∫
He,b

D(d)
e f(y)dy.

From (10) we obtain the integral representation of f in the form

f(x) = ad

∫
Sd−1×R

(∫
He,b

(
D(d)
e f

)
(y)dy

)
ϑ(e · x+ b) db de.

2

4 Generalizing the Integral Formula

In this section, we explain how one can weaken the conditions for the integral
formula to hold and include all dimensions, odd and even.

This entails some additional concepts regarding distributions and analysis.
As test functions on Rn are infinitely differentiable in each of n coordinates, we
use operator notation

∂ir :=
( ∂

∂xr

)i
.

For multi-index α ∈ (N0)n, α = (α1, . . . , αn), the differential operator

∂α := ∂α1
1 . . . ∂αnn

indicates differentiating αi ≥ 0 times w.r.t. xi, for i = 1, . . . , n.
The definition of derivative of a distribution is the same adjoint relationship

described in (5). So if T is a distribution in D′(Rn) and φ is a test function, then

〈∂α(T ), φ〉 := (−1)|α|〈T, ∂αφ〉.

where |α| := α1 + · · ·+ αn, which is the total number of differentiations.
A linear differential operator L is a linear combination of the form

a∂α + b∂β + c∂γ + · · · .

A particularly useful example, the Laplacian operator, is given by

∆ := ∂21 + · · ·+ ∂2n.

It turns out that a key step in our generalization involves finding integral for-
mulas for (iterated) Laplacian operators.

We need the notion of a Green’s function. A Green’s function associated
with a linear operator L is a function G such that L(G) = δ. For example,
in dimension 1, differentiation is a linear operator; the Heaviside function is a
Green’s function for differentiation.



If T is a compactly supported distribution, having a Green’s function G for
L, one can find a distribution S satisfying the equation

L(S) = T.

Indeed, by letting S be the convolution of T and G, S := T ∗G, and using the
fact that differentiation can be applied to either factor of a convolution, we have

L(S) = 〈L, T ∗G〉 = T ∗ LG = T ∗ δ = T.

To define the large class of functions for which our most general integral
formula holds, we need one more technical notion. A real-valued function f on
Rd vanishes to order r ∈ R (at ∞), f(x) = o (‖x‖−r), if

lim
‖x‖→∞

f(x)‖x‖r = 0.

The order of g, ord f , is the supremum of the set of all r ∈ R such that f
vanishes to order r.

Put kd := 2dd+1
2 e, so kd = d + 1 for d odd and kd = d + 2 for d even. A

function f : Rd → R is of controlled decay if both of the following hold:
(i) f is kd-times continuously differentiable, and

(ii) ∀ multi-index α with |α| ≤ kd, ord
(
∂αf

)
> |α|.

The functions of controlled decay include almost all suitably differentiable,
“rapidly vanishing” functions and, in particular, those of compact support. Let

α(u) := −u log(|u|) + u

for u 6= 0, with α(0) = 0. For f of controlled decay and d a positive integer, let

wf (e, b) := ad

∫
Rd

(
ϑ(−e · y − b)

)rd(
α(e · y + b)

)1−rd(
∆

(kd)

2 f
)

(y)dy, (11)

where e ∈ Sd−1, b ∈ Rd, and the various functions of d are defined below. We
can now express every function of controlled decay by an integral formula.

Theorem 2. Let d be a positive integer and let f be a function of controlled
decay on Rd. Then for the measure d(e, b) induced by Lebesgue measure on Rd+1

f(x) =

∫
Sd−1×R

wf (e, b)ϑ(e · x+ b)d(e, b). (12)

To define the (0/1) exponent rd and the real number ad, which appear in
(11), we introduce several functions which depend on d:

r := rd := d− 2b(d/2)c =

{
1, if d is odd,

0 if d is even;



s := sd := 2d(d/2)e − 2 =

{
(d− 1)/2, if d is odd,

(d− 2)/2 if d is even;

t := td := 2− kd =

{
1− d, if d is odd,

−d if d is even.

Then for all positive integers d

ad := (1/2)r(−1)s(2π)t =

{
(−1)(d−1)/2(1/2)(2π)1−d, if d is odd,

(−1)(d−2)/2(2π)−d if d is even;
(13)

The ϑ term is present in wf iff d is odd, while the α term is present iff d
is even. Hence, for d odd, in wf one integrates an iterated Laplacian of f over
the negative half-space H−e,b defined in (9) while for d even, one integrates an

iterated Laplacian of f , multiplied by the factor α(e · y + b), over all y in Rd.
See [9] where it is shown that Theorem 2 implies previous results some of which
hold under slightly different conditions. s For d odd, f : Rd → R is of weakly
controlled decay [9] if
(i) f is d-times continuously differentiable,
(ii) for all α with |α| < d, ord (∂αf) ≥ 0, and
(iii) for all α with |α| = d, ord (∂αf) > d+ 1.

Note that the weakly controlled decay is different notion of a “nice” functions
than controlled decay. The first two conditions (i) and (ii) are weaker but the
third condition is stronger than for controlled decay. However, controlled decay
is defined for even d as well.

In the following, we briefly outline the proof, from [9], of the general version
of the integral representation in terms of Heaviside perceptron networks.

We first show that both ‖x‖ and log(‖x‖) are integrals of plane waves. If de
denotes the measure on Sd−1 induced by Lebesgue measure on Rd and ωd is the
measure of the sphere Sd−1, then one has the following key lemmas:

‖x‖ = sd

∫
Sd−1

|e · x|de; where sd := 2ωd−1/(d− 1), d ≥ 3, x ∈ Rn (14)

log(‖x‖) = bd + (1/ωd)

∫
Sd−1

log |e · x|de; d ≥ 1, x ∈ Rn, x 6= 0, (15)

where bd is a constant. There is an explicit role for the Laplacian:

log(‖x‖) = bd + (1/ωd)∆
(∫

Sd−1

β(e · x)de
)

; d ≥ 1, x ∈ Rn, x 6= 0, (16)

where β(u) := (1/2)u2 log |u|−(3/4)u2 for u 6= 0, β(0) := 0. Then β′(u) = −α(u)
for all u and β′′(u) = log |u| for u 6= 0. The argument for (16) uses calculus.



The theorem is then proved by writing a function of controlled decay as the
convolution of its iterated Laplacian with a Green’s function, which is in turn
represented as an integral combination of plane waves, which are expressed as
integral combinations of characteristic functions of half-spaces.

Using Lebesgue dominated convergence, wf is shown to be both well-defined
and continuous. We then find Green’s functions for the iterated Laplacians in
both the odd and even cases, and the integrability of wf is also proved for both
cases. Finally, we show that the integral formula (12) does hold.

An integral formula involves real-valued functions on a measure space. In [18]
this was generalized to functions with values in a Banach space. In this setting,
Bochner integrals replace Lebesgue integration. See, e.g., [19] or [20]. We proved
in [18] that the Bochner integral

∫
wΦ is convergent if w is in L1 and Φ is

essentially bounded. Bochner integrals may allow approximation of nonlinear
operators as in [21–23].

5 Network Complexity

In this section, we derive the consequences of Theorem 1 for the number of com-
putational units needed to approximate with a given accuracy smooth functions.

The same integral representation as the one presented in Theorem 1 was
derived by Ito [10]. He used a different proof technique based on the inverse
Radon transform. Discretizing the integral representation, he proved that smooth
functions can be approximated with an arbitrary accuracy by Riemann sums
in the form of finite linear combinations of perceptrons. Thus he proved that
shallow perceptron networks have the universal approximation property. As with
all universality type results, this approximation capability of shallow perceptron
networks is obtained assuming that the number of units in the approximating
network is potentially infinite.

In practical applications, various constraints on numbers and sizes of ntwork
parameters limit feasibility of implementations. Thus it is important to describe
classes of functions which can be computed or sufficiently well approximated by
networks with reasonably bounded numbers of units.

Let

f =

m∑
i=1

wigi (17)

be a representation of a function f as an input-output function of a shallow
network with units from a dictionary G. The “l0-pseudonorm” of a vector w ∈
Rm, denoted ‖w‖0, is the number of nonzero entries in the vector (see, e.g., [24–
26]). So if a neural network with m hidden units calculates f as in (17), then
‖w‖0 is the number of computational units with a nonzero output weight. Thus,
one can measure the sparsity of a neural network by the “l0-pseudonorm” of its
output weight vector.

However, “l0-pseudonorm” is neither a norm nor even a pseudonorm. The
quantity ‖w‖0 is always an integer and thus ‖·‖0 does not satisfy the homogeneity



property of a norm (‖λx‖ = |λ|‖x‖ for all λ). Moreover, the “unit ball” {w ∈
Rn | ‖w‖0 ≤ 1} is nonconvex and unbounded as it is equal to the union of all
one-dimensional subspaces of Rm. For any r > 0, the ball of radius r is equal
to spankRm, where k = brc. Minimization of “l0-pseudonorm” of the vector
of output weights is a difficult nonconvex optimization task which, for some
dictionaries, is NP-hard [27].

In neurocomputing, instead of “l0-pseudonorm”, l1 and l2-norms of output
weight vectors w = (w1, . . . , wm) have been minimized in weight-decay regu-
larization techniques [4]. In particular, l1-norm plays an important role, as so-
lutions with small l1-norms can be well approximated by networks with small
“l0-pseudonorm”s; see, e.g., [25].

The l1-norms of output-weight vectors of all networks with units from a
dictionary G are minimized by a norm tailored to G. This norm, called G-
variation, is defined for bounded subsets G of normed linear spaces (X , ‖.‖) as

‖f‖G := inf

{
c ∈ R+

∣∣∣ f
c
∈ clX conv (G ∪ −G)

}
. (18)

In (18) “clX ” denotes closure with respect to the topology induced by the norm
‖ · ‖X , “conv” is the convex hull, and “−G” means {− g | g ∈ G}. It was shown
in [28] that in the definition of G-variation, inf can be replaced with min.

A special case of variational norm is variation with respect to Heaviside per-
ceptrons, also called variation with respect to half-spaces as Heaviside perceptrons
are the indicator functions for (closed affine) half-spaces. It was introduced by
Barron [29] and extended to general dictionaries by Kůrková [30].

A use for G-variation is to estimate the rate of approximation by a shallow
network. The next upper bound is a reformulation of a theorem by Maurey [31],
Jones [32], Barron [33] in terms of G-variation (see [30, 34]).

Theorem 3. Let (X , ‖.‖X ) be a Hilbert space, G its bounded nonempty subset,
sG = supg∈G ‖g‖X , f ∈ X , and n be a positive integer. Then

‖f − spannG‖2X ≤
s2G‖f‖2G − ‖f‖2X

n
;

It was shown in [35] that for every n, the set spannGϑ([0, 1]d) of input-output
functions of a shallow network with n Heaviside perceptrons is “approximatively
compact” (see below for a definition) and hence best approximations (i.e., as
close as possible) always exist in spannGϑ([0, 1]d) to any suitably nice function
f . In particular, by Theorem 3, for every function f ∈ L2([0, 1]d) there exists a
function fn computable by a shallow network with n Heaviside perceptrons with

‖f − fn‖L2([0,1]) = ‖f − spannGϑ([0, 1]d)‖L2([0,1]) ≤
‖f‖Gϑ([0,1]d)√

n
. (19)

So accuracy of approximation of functions from L2([0, 1]d) by networks with
n Heaviside perceptrons depends on their variations with respect to half-spaces.



Fig. 1. Variation with respect to half-spaces and total variation

It follows from the definition that, for d = 1, variation with respect to half-spaces
is, up to a constant, equal to the concept of total variation [14, 36] (see Fig. 1).

To estimate variation with respect to half-spaces, we employ the integral
representation of smooth functions as infinite Heaviside perceptron networks. It
is easy to see [28, p.164] that for each f ∈ spanG

‖f‖G ≤ min

{
‖w‖1

∣∣∣ f =

m∑
i=1

wigi

}
. (20)

So G-variation equals the minimum of the l1-norms of the output-weight vectors
w over all shallow networks (with units from G) which compute f .

A similar upper bound on GK-variation holds for functions which can be
expressed as

f(x) = TK,µ(w) =

∫
A

w(a)K(x, a)dµ(a).

Under mild conditions on K [23, 28], the following upper bound holds

‖f‖GK,µ(A) ≤ ‖w‖L1(A,µ) (21)

Note that for every continuous sigmoid σ (i.e., a non decreasing σ : R→ R with
limt→−∞ σ(t) = 0 and limt→∞ σ(t) = 1)

‖.‖Gϑ(Ω) = ‖.‖Gσ(Ω),

in Lp(Ω) with p ∈ (1,∞) and Ω compact [8]. Hence, estimates of variation with
respect to half-spaces apply also to variation with respect to perceptrons with
any continuous sigmoidal function.

Theorem 2 provides an integral representations in terms of infinite Heavi-
side networks for functions of weakly controlled decay. This class consists of all
functions on Rd which have sufficiently many continuous derivatives and which
vanish sufficiently rapidly at infinity and it contains both the compactly sup-
ported functions from Cd(Rd) and the Schwartz class S(Rd). As the Gaussian
function belongs to the Schwartz class, it is of weakly controlled decay.

The following corollary estimates rates of approximation of smooth functions
by shallow perceptron networks. The value of ad is as in (8).

Corollary 1. Let d be an odd positive integer, Ω ⊂ Rd have finite Lebesgue
measure λ(Ω), σ : R → R be a continuous sigmoidal function, and f ∈ Cd(Rd)



be a function of weakly controlled decay. Then for all n,

‖f |Ω − spannGσ(Ω)‖L2(Ω) ≤
λ(Ω)‖wf‖L1(Sd−1×R)√

n
,

where wf (e, b) = a(d)
∫
He,b

(D
(d)
e (f))(y)dy and a(d) = (−1)(d−1)/2(1/2)(2π)1−d.

Another consequence is the following upper bound on the half-space variation
of the d-dimensional Gaussian γd(x) := exp(−‖x‖2); see [17, Cor. 6.2].

Corollary 2. Let d and n be positive integers with d odd. If Ω ⊂ Rd has finite
measure λ, then

‖γd − spannGϑ(Ω)‖L2(Ω) ≤ (2πd)3/4λ1/2/
√
n.

Note that versions of the above results hold in sup norm [17, 9].
We now recall some concepts related to best approximation as mentioned

above. Let M ⊂ X, where (X , ‖ · ‖) is a normed linear space. For the following
concepts, see, e.g., [37]. Let 2M denote the set of all subsets of M . The mapping

PM : X → 2M

is called the metric projection of X to M if, for all g ∈ PM (f), ‖f−g‖ = ‖f−M‖.
The subset M is proximinal if PM (f) is nonempty for all f ∈ X. Thus, M is
proximinal iff every element in X has at least one best approximant in M .

If f ∈ X and the sequence (gi)
∞
i=1 ⊂M satisfies

‖f −M‖ = lim
i→∞

‖f − gi‖,

then (gi) is called a distance-minimizing sequence for f in M . The subset M
is approximatively compact if, for each f ∈ X and each distance-minimizing
sequence (gi) for f in M , there is a subsequence (gi′) which converges to some
g0 ∈M . For subsets, approximatively compact⇒ proximinal⇒ closed. A closed
convex subset of a Banach space is approximatively compact. For Hilbert space,
unique best approximation to a closed linear subspace is obtained via orthogonal
projection to such a subspace.

A function β from X to M is called a continuous best approximation if β is
continuous and for every f ∈ X, β(f) ∈ PM (f). For ε > 0, β is a continuous
ε-near-best approximation if β is continuous and for all f ∈ X,

‖f − β(f)‖ ≤ ‖f −M‖+ ε.

A Banach space is strictly convex if the line segment joining any two distinct
points on the unit sphere intersects the sphere only in its endpoints. For instance,
X = Lp(Ω) is strictly convex iff 1 < p <∞. The following theorem is from [38].



Theorem 4. Let X be strictly convex. If M is either not closed or not convex,
then there does not exist a continuous best approximation from X to M .

As spannG is not convex for n > 1, it is not possible to continuously choose a
best approximation from L2(Ω) to the input-output functions given by a neural
network, no matter what type of units are employed for the computation. This
result is strengthened in [39], [40] to show that it is not even possible to find
an ε-near-best approximation. However, a noncontinuous and nonunique choice
of best approximant does exist when M = spannGϑ [35] as implied by the
following.

Theorem 5. For n, d positive integers and every p ∈ [1,∞), spannGϑ is an
approximatively compact subset of (Lp([0, 1]d), ‖ · ‖).

This theorem can be extended to any compact convex subset of Rd (not just
the unit cube [0, 1]d). Another interesting question is how to find, for a given f
in L2([0, 1]d), some choice of g1, . . . , gn ∈ Gϑ such that the linear subspace they
determine contains a best L2-approximant to f in spannG, which must then be
the orthogonal projection of f onto this subspace.

6 Discussion

One-hidden-layer networks with many common types of computational units
are capable of emulating any reasonable function; i.e., they have the so-called
“universal approximation” property. Recently, deep networks with several con-
volutional and pooling layers have become state of the art in computer vision
and speech recognition tasks largely due to a progress of hardware (computers
with graphic processing units strongly accelerate computation, see the survey
article [41] and the references therein). But shallow (one-hidden-layer) networks
are still widespread and in some cases can perform the same tasks as deep ones
with the same numbers of parameters [42]. Theoretical analysis, complementing
the experimental evidence, obtained by some comparisons of deep and shallow
networks solving the same tasks, is still in its early stages. While there do exist
particular problems where multilayer designs outperform single-layer nets with
similar numbers of computational units [43], cost per unit might be lower in shal-
low architectures. In particular, training or learning is more difficult with more
layers as responsibilities become blurred. Another advantage of shallow networks
is that the computation might be implementable via physics-based operators, for
example, in photonic and quantum computers.
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261–270

31. Pisier, G.: Remarques sur un résultat non publié de B. Maurey. In: Séminaire
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