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Abstract. An interval approach to the concept of dimension is pre-
sented. The concept of quasiorthogonal dimension is obtained by relax-
ing exact orthogonality so that angular distances between unit vectors
are constrained to a fixed closed symmetric interval about π/2. An ex-
ponential number of such quasiorthogonal vectors exist as the Euclidean
dimension increases. Lower bounds on quasiorthogonal dimension are
proven using geometry of high-dimensional spaces and a separate argu-
ment is given utilizing graph theory. Related notions are reviewed.

1 Introduction

The intuitive concept of dimension has many mathematical formalizations. One
version, based on geometry, uses “right angles” (in Greek, “ortho gonia”), known
since Pythagoras. The minimal number of orthogonal vectors needed to specify
an object in a Euclidean space defines its orthogonal dimension.

Other formalizations of dimension are based on different aspects of space. For
example, a topological definition (inductive dimension) emphasizing the recur-
sive character of d-dimensional objects having d−1-dimensional boundaries, was
proposed by Poincaré, while another topological notion, covering dimension, is
associated with Lebesgue. A metric-space version of dimension was developed by
Hausdorff, Besicovitch, and Mandelbrot; the new concept of fractal dimension
can take nonintegral values.

This chapter presents a geometric concept of dimension, using an interval
approach. We define as in [31, 32, 38], the ε-quasiorthogonal dimension of Rn,

dimε(n) := max{|X| : X ⊂ Sn−1, x 6= y ∈ X ⇒ |x · y| ≤ ε} (1)

to be the maximum number of unit vectors in Rn with pairwise-dot-products
in the interval [−ε, ε] or, equivalently, the maximum number of nonzero vectors
whose pairwise angles lie in the interval [arccos(ε), arccos(−ε)] centered at π/2.

Interval analysis was introduced by Moore in 1962 [51] and replaces real
numbers by intervals. Kreinovich contributed substantially to its modern refor-
mulation as interval computation (see Kearfott and Kreinovich [35]), and has
been the creator and maintainer of the Interval Computation website [37].



Replacing a “crisp” number by a nontrivial (closed) interval has a pro-
found impact on orthogonal dimension. There are exactly n pairwise-orthogonal
nonzero vectors in Rn, but for fixed ε > 0, dimε(n) grows exponentially with n.

Quasiorthogonality has found numerous applications, including word-space
models for semantic classification (Hecht-Nielsen [28], Kaski [33]), selection of
input parameters for neural networks (Gorban, Tyukin, Prokhorov, and Sofeikov
[22]), estimates of covering numbers (Kůrková and Sanguineti [39]), and predic-
tion of consumer financial behavior (Lazarus [40]).

The chapter is organized as follows. In Section 2 quasiorthogonal dimen-
sion is defined and its growth is estimated via geometrical properties of high-
dimensional spaces. Section 3 presents a graph theory approach and includes
some new results. In Section 4, quasiorthogonal vectors in Hamming cubes are
examined. Section 5 describes concrete constructions utilizing sparse ternary vec-
tors. The application of quasiorthogonality to context vectors and computational
semantics is in Section 6. The final section includes a number of classical and
recent generalizations which are related to quasiorthogonality in other domains.

2 Orthogonal and Quasiorthogonal Geometry

Let Rn denote the n-dimensional Euclidean space, Sn−1 := {h ∈ Rn : ‖h‖ = 1}
is the unit sphere in Rn, and x ·y :=

∑n
i=1 xiyi is the inner product of x, y ∈ Rn.

Hecht-Nielsen introduced prior to 1991 (see [21]) the concept of what was
later called a quasiorthogonal set (Kůrková and Hecht-Nielsen [38]). For ε ∈ [0, 1),
a subset T of Sn−1 is an ε-quasiorthogonal set if

x 6= y ∈ T ⇒ |x · y| ≤ ε.

A set of nonzero vectors is ε-quasiorthogonal if and only if the corresponding set
of normalized vectors is ε-quasiorthogonal.

Thus, the ε-quasiorthogonal dimension of Rn, dimε(n), is the maximum car-
dinality of an ε-quasiorthogonal subset of Rn, i.e., We consider the two cases:
(i) ε “small” or (ii) ε “large” w.r.t. arcsin(1/n) ∼ 1/n.

In the first case (i), when all pairwise angular measurement errors are small
(strictly less than arcsin(1/n)), it was shown (Kainen [31], Kainen and Kůrková
[32]) that quasiorthogonal dimension equals orthogonal dimension n.

To have a quasiorthogonal set with more than n members in n-dimensional
Euclidean space, some pair of the vectors must be at an angle which deviates
from π/2 by at least arcsin(1/n). For instance, for n = 2, at least one of the
measurements must be in error by at least 30 degrees, corresponding to 1/12-th
of a circle. Hence, one can trust an estimate of orthogonal dimension made in a
fixed finite-dimensional space if the error is small enough; i.e., precise accuracy
in orthogonal dimension is achieved when angular error is sufficiently small.

In the second case (ii), assume that ε ∈ (0, 1) is fixed and n increases. It
was conjectured in [38] and [28] that ε-quasiorthogonal dimension grows expo-
nentially as n increases. We proved the existence of such exponentially large



quasiorthogonal sets using geometry of high-dimensional Euclidean spaces [31]
and graph theory [32]), giving the same lower bound on the rate of growth.

We will review both of these approaches, starting with the geometric one.
Let E be any set and F any family of subsets of E; F is a packing if its elements
are pairwise-disjoint and F is a cover if its union is E.

For real-valued f and g, we write f(n) & g(n) and f(n) ∼ g(n) to mean

lim
n→∞

f(n)/g(n) ≥ 1 and lim
n→∞

f(n)/g(n) = 1.

A simple argument for the existence of large quasiorthogonal sets comes from
packing spherical caps into the surface of Sn−1. The caps consist of all points on
the sphere within a fixed angular distance from some center point.

More precisely, let g ∈ Sn−1 and let ε > 0. Put

C(g, ε) := {h ∈ Sn−1 | 〈h, g〉 ≥ ε}.

Then C(g, ε) is the set of all unit vectors within angular distance α = arccos(ε)
from g (see Fig. 1), i.e., the α-ball in the angular metric. As ε → 0+, arccos(ε)
approaches π/2 from below; that is, the cap is nearly a hemisphere.

Fig. 1. Spherical cap

Theorem 1. Let 0 < ε < 1. Then for all integers n ≥ 2,

dimε(n) ≥ enε
2/2.

Proof. Let µ be the rotationally symmetric uniform probability measure on
Sn−1 obtained by normalizing Lebesgue measure. Determining the area of a cap
in Lebesgue measure is well-known (Ball [4, p.11])

µ(C(g, ε)) ≤ exp
(
− nε2/2

)
. (2)

Hence, any family of such caps which covers Sn−1 has at least enε
2/2 members.

Kolmogorov and Tikhomorov [36] showed that the cardinality of a minimum
covering by balls of radius r bounds from below the size of a maximum packing
by balls of radius r/2 but the latter equals dimε(n) [31, Theorem 2.3]. 2



These properties of quasiorthogonality were already implicit in earlier litera-
ture on packing spherical caps (Rankin [53] in 1955 and Wyner [63] in 1967) as
described in [31] which includes a few other early references not given here.

The upper bound in (2) is quite counter-intuitive since for any fixed ε, the
bound becomes very small as n increases. Hence, in high dimension, most of the
area of the sphere lies very close to its “equator”.

This is a special case of the phenomenon of concentration of measure, which
states that for large dimensions most of the values of Lipschitz continuous func-
tions concentrate closely around their medians (see, e.g., Matousek [47, p.337]).

Due originally to Levy [42] and Schmidt [60], see also Boucheron, Lugosi,
and Massart [7, p. 4], concentration of measure had remained obscure for two
decades until it was used by Milman in 1971 to prove a theorem of Dvoretzky
which led to the development of the asymptotic theory of normed linear spaces
(Milman and Schechtman [49], Ball [4, pp. 41, 47].

Quasiorthogonality is also a special case of the Johnson-Lindenstrauss Lemma
[30] on linear projections from spaces of high dimensions to lower-dimensional
subspaces that approximately preserve distance on a given finite set.

A function f from RD to Rd is called an ε-isometry w.r.t. a subset A ⊆ RD
if for all a, a′ ∈ A, f changes square-distances by a multiplicative factor of at
most 1± ε - i.e., for all a, a′ ∈ A, with ‖ · ‖ denoting Euclidean norm,

(1− ε)‖a− a′‖2 ≤ ‖f(a)− f(a′)‖2 ≤ (1 + ε)‖a− a′‖2

One has the following result from [7, pp. 39–42] .

Lemma 1 (Johnson-Lindenstrauss) Let A be an n-element subset of RD
with ε, δ ∈ (0, 1). Suppose a random linear mapping W : RD → Rd is con-
structed by choosing the dD entries of the standard representing matrix to be
normal random variables, centered at zero with variance 1. Then with proba-
bility at least (1 − δ), the function W changes the pairwise distances between
distinct members of A by a multiplicative factor of at most 1± ε (that is, W is
an ε-isometry w.r.t. A) provided that

d ≥ κε−2 log
(
nδ−1/2

)
.

The result is essentially sharp and κ is a universal constant which is not larger
than 20 [7, p. 41]. Lemma 1 implies that, with high probability, any orthonormal
basis of RD will be projected to an η-quasiorthogonal set, where η = ε(2 + ε).
So in particular dimη(d) ≥ D.

A slightly stronger result was given by Dasgupta and Gupta [11], who showed
that the following lower bound suffices to guarantee the existence of a linear map
W which is an ε-isometry w.r.t. a set of cardinality n.

d ≥ 4(ε2/2− ε3/3)−1 log(n). (3)



They also cited other short proofs of the Johnson-Lindenstrauss Lemma and
noted a result [2] of N. Alon showing that (3) is essentially best-possible. Bour-
gain gave a similar result [9] related to embeddings in Hilbert space. A connec-
tion with graphs was exploited by Linial, London, and Rabinovich [44] to obtain
bounds on multicommodity flow.

Although the original arguments are nonconstructive, Engebert, Indyk, and
O’Donnell [15, Lemma 2] obtain projections by a deterministic algorithm and
show that when S ⊂ Sn−1, the image of S under the random projection W is
an ε-orthogonal set if the projection does not decrease distances in S.

To project, as in Lemma 1, from a high to low-dimensional space, we used
a matrix. If the matrix is nearly orthogonal, then distances will be nearly pre-
served. As quasiorthogonal sets are very common, one can choose the matrix ran-
domly - e.g., with each entry determined by a Gaussian distribution (centered at
zero). However, Achlioptas [1] proposed replacing the Gaussian by a discretized
distribution taking values {−1, 0, 1} with probabilities (1/6, 2/3, 1/6); Bingham
and Mannila [6] found that such sparse random projection is more efficient, but
continues to approximately preserve distance. Li et al. [43] recommend using
a much sparser form of Achiloptas’ construction where probabilities for each
nonzero value are much smaller, and claim a substantial boost to efficiency. For
the latest comparisons, see Knoll’s thesis [34, p. 46] which considers the similar
problem of norm-preservation within a multiplicative factor of 1± ε.

3 Graph Theoretic Aspects of Quasiorthogonality

A graph G is a symmetric, irreflexive relation (called adjacency) on a nonempty
set V ; equivalently, G = (V,E), where V = V (G) is the set of vertices and
E = E(G) is the set of edges. See, e.g., Harary [27] or Diestel [13] for basic
graph theory. For any graph G, a clique is a maximal complete subgraph of G
and the clique number ω(G) is the largest number of vertices in any clique. If
G is connected, then the number of edges in a shortest v-w-path in G defines a
distance on V (G). The diameter diam(G) of a connected graph G is the greatest
distance between any pair of points. The degree of a vertex is the number of
adjacent vertices. A graph is r-regular if all vertices have degree r.

Quasiorthogonality defines a graph by letting adjacency of vertices corre-
spond to quasiorthogonality of vectors. Indeed, let ∅ 6= V ⊆ Sn−1 and let
ε ∈ [0, 1). Define the ε-orthogonality graph G(V, ε) by requiring that

∀v, w ∈ V = V (G(V, ε)), vw ∈ E(G(V, ε)) ⇐⇒ |v · w| ≤ ε.

Call H an orthogonality graph if H is isomorphic to some G(V, ε).
What are the basic properties of orthogonality graphs? We provide several

such properties below and also show how orthogonality graphs both resemble
and differ from random graphs. The first result is in [31] and follows from the
strict orthogonality case ε = 0, where it holds by linear algebra - hence the
condition on n. Let Γ (n, ε) := G(Sn−1, ε). Then ω(Γ (n, ε)) = dimε(n).



Theorem 2. If n ≥ 3, then Γ (n, ε) has diameter 2.

If |V | is finite, the diameter-2 condition may not hold. Typically, one would
expect the diameter to be quite small [31] but if one chose V to be a finite set
of points all very close to a fixed point, then V would induce an edgeless graph.

For any r-regular graph G with p vertices, let

ζ := ζ(G) := r/(p− 1),

which is the frequency with which any vertex v is adjacent to the other vertices;
ζ is the density of the graph. The same notion of density also applies to the
orthogonality graph Γ with vertex-set Sn−1 by setting ζ(Γ ) := µ(W ), where W
is the set of neighbors of v and µ is the probability measure on Sn−1 obtained
by normalizing the Lebesgue measure. By equation (2), we have

Theorem 3. Let ε ∈ (0, 1). Then for η := exp(−nε2/2),

ζ(Γ (n, ε)) ∼ 1− 2η. (4)

In fact, the same density bound holds for the orthogonality graph induced
by the bipolar n-vectors from 0 to {−1,+1}n; see Theorem 6 below.

Given a positive integer n and ζ ∈ (0, 1), let R(n, ζ) denote the random
graph with n vertices in which the existence of edge vw occurs independently
with probability ζ for each distinct pair v, w in V . How close is the n-vertex
random graph with probability ζ = 1− 2η to an orthogonality graph?

By Theorem 2, orthogonality graphs have diameter equal to 2 in many cases
and otherwise small. The following result says that a random graph of the same
density has very small probability of point-pairs at distance at least 3.

Theorem 4. Let v 6= w ∈ V (R(n, ζ)) where ζ = 1− ϑ with ϑ ∼ 0. Then

Prob(dist(v, w) ≥ 3) = ϑ(2ϑ)n−2.

Proof. To have distance at least 3 in R, v and w must already be non-adjacent,
which has probability ϑ. If u is any vertex other than v and w, then to prevent
the existence of a path vuw, not both of vu ∈ E and uw ∈ E can hold, which
has probability 1− (1− ϑ)2 ∼ 2ϑ. Further, this must hold for every such vertex
u. As edges occur independently, we get the result. 2

Thus, orthogonality graphs are rather like dense random graphs in terms
of diameter. But orthogonality graphs don’t fit the random graph model since
adjacency becomes more probable as n increases. One might then expect that
with the same number of vertices and the same density, clique number for or-
thogonality graphs should be larger than for random graphs. However, the next
result is in the opposite direction.



Matula [48] proved (in 1976) a very strong clique-size concentration result
for random graphs (see also Spencer [61, p. 51]): the clique number is one of two
consecutive integer values. In the formulation of Bollobas and Erdős [8], the size
ω of a maximum clique in any random graph on n vertices with density ζ is

ω(R(n, ζ)) ∼ 2 log(n)/ log(1/ζ). (5)

Theorem 5. For ζ = 1− 2η and η = e−nε
2/2,

ω(R(n, ζ)) . log(n) dimε(n).

Proof. We evaluate log(1/ζ). As ζ = 1 − 2η, 1/ζ ∼ 1 + 2η. But log(1 + t) ∼ t
for t ∼ 0. Hence, the denominator in (5) is ∼ 2η. Therefore, one has

ω(R(n, ζ)) ∼ 2 log(n)/2η = log(n)enε
2/2 ≤ log(n) dimε(n);

the last inequality is Theorem 1. But f(n) ∼ g(n) ≤ h(n)⇒ f(n) . h(n). 2

4 Quasiorthogonal Sets in Hamming cubes

Hamming, a founder of information theory, noted that random sets of bipolar
vectors (i.e., entries in {−1,+1}) are almost surely orthogonal [26, p. 188]:

“For sufficiently large n, there are almost 2n almost perpendicular lines.”

Hamming may have meant that the vectors from the origin to the set of all
bipolar vectors in n-space form a probabilistic clique of size 2n in the sense that

With probability ∼ 1, any pair of bipolar vectors is almost orthogonal.

Hecht-Nielsen and Kůrková, in 1992, conjectured [38] that exponential growth
holds for the maximum size of a strict clique in which all pairs of distinct vectors
are approximately orthogonal and introduced the phrase “quasiorthogonal sets”.

A proof for exponential growth in the number of pairwise ε-quasiorthogonal
vectors in the Hamming cube Hn := {−1, 1}n, including its rate, was given in
1993 [32]. The argument, sketched after the proof of Theorem 6, uses the Hajnal-
Szemeredi Theorem [24] and further guarantees the existence of a large family
of such quasiorthogonal sets. Also Theorem 6 follows from Theorem 1.

Recall the notion of graph complement. If H is a graph, then the complement
H is the graph on the same set of vertices as H in which two distinct vertices
determine an edge in H iff they are not adjacent in H, so H and H partition the
edges of the complete graph on VH . Under graph complement, cliques correspond
to independent sets of vertices in which no two vertices are adjacent. Let β(H)
denote the largest cardinality of any independent set in a graph H so β(H) =

ω(H). Note also that H = H; that is, complement is an involution.



A lower bound on β(H) follows from elementary facts about graph coloring
as we now show. A vertex coloring of a graph H is a partition of its vertices
into independent sets. The chromatic number χ(H) of G is the smallest number
of parts in such a partition; equivalently, χ(H) is the least number of “colors”
which can be assigned to the vertices of H in such a way that no two vertices of
the same color are adjacent.

Recall that for 0 ≤ ε < 1, let G(n, ε) and Γ (n, ε) denote the orthogonality

graph determined by V = Hn = {±1}n and V = Sn−1, resp. If dimε(n) ∼ enε2/2,
then both inequalities below are asymptotic equalities.

Theorem 6. dimε(n) = ω(Γ (n, ε)) ≥ ω(G(n, ε)) & enε
2/2.

Proof. (Sketch) The equality is by definition and the first inequality follows
from monotonicity of clique number. The second inequality is asymptotic.

For any graph H it is well-known that χ(H) ≤ 1 + ∆(H), where ∆(H)
denotes the maximum degree of any vertex of H. As the p vertices of H are
partitioned into χ(H) independent sets, at least one of these independent sets
has ≥ dp/(1 +∆(H))e vertices.

We apply this to the complement of the bipolar orthogonality graph, H :=
G(n, ε), where independent sets of vertices correspond to quasiorthogonal sets
of Hamming vectors. For any two vertices, v and w, there is an isomorphism
of H sending v to w so all vertices have the same degree. So we can take v =
(1, 1, . . . , 1) and in the non-orthogonality graph, the degree of v is a sum of
binomial coefficients, which can be evaluated by a classical result in information
theory (Ash [3, p. 114]) and is ∼ 2nH, where H is the entropy function. Using
Taylor’s theorem, one gets the result. See [32] for the details. 2

Several refinements to this logic can be made.
Let β′(G) denote the minimum size of a maximal independent set of a graph

G. Clearly, β(G) ≥ β′(G). A theorem of Berge [5, p. 278] states that β′(G) ≥
dp/(1+∆(G))e. So any greedy algorithm which finds a maximal quasiorthogonal
set will necessarily produce one of size at least dp/(1 +∆(G))e.

In another generalization, Erdős conjectured [5, p. 280] and Hajnal-Szemeredi
proved [24] that one can arrange for each of the 1 + ∆(G) independent sets in
the coloring to have cardinality either dp/(1 +∆(G))e or bp/(1 +∆(G))c. This
is called an equitable coloring as color classes differ in size by at most one.

For Hn with ε = 1/5, there are 2s, s ≈ 0.97n pairwise-disjoint maximal
cliques of size 2t, t ≈ 0.03n. Is it possible to use this abundance of cliques?

5 Construction of Sparse Ternary Quasiorthognal Sets

In spite of the large number of elements in a quasiorthognal set, one might
prefer a specific construction, even of polynomial cardinality, especially if it is
an efficient procedure. We will sketch a simple method to achieve this.

A vector is sparse if most of its coordinates are zero; we call a vector ternary
if its entries are −1, 0, and +1. The weight of a ternary vector is the number of



nonzero entries. Sparse ternary vectors are used in studying the co-occurrence of
words in models of text semantics. Another application for sparse ternary vectors
is in recommender systems, where each vector consists, e.g., of a particular user’s
ratings of movies which are mostly neutral (zero) with a few being +1 or −1.

A vector in Rn is said to have length n and is called an n-vector. Given any
k-element subset T of [n] := {1, . . . , n} (briefly, k-set in [n]), if 2 ≤ ` < k is
an integer, let τ(T, `) be a maximum size family of ternary n-vectors which are
nonzero exactly in the k coordinates in T such that |v · w| ≤ ` − 1 if v 6= w ∈
τ(T, `). Let t(k, `) := |τ(T, `)|. If T = {1, 2, 3}, ` = 2 and n = 6, then (cf. [31])

τ(T, `) = {(1, 1, 1, 0, 0, 0), (−, 1,−, 0, 0, 0), (1,−,−, 0, 0, 0), (−,−, 1, 0, 0, 0)},

where “−” denotes “−1”.

Start with a maximum family M of k-sets contained in [n] such that each
`-set is in at most one k-set, supposing 2 ≤ ` < k < n; equivalently, no two
members of M overlap in more than ` − 1 elements. Let m(n, k, `) denote the
cardinality ofM. According to a 1963 conjecture of Erdős and Hanani [16] which
was proved by Rődl [55] in 1985, for k > ` ≥ 2 fixed, as n→∞,

m(n, k, `) ∼
(
n

`

)/(k
`

)
. (6)

As in [31], let T (n, k) denote the set of all length-n ternary vectors of weight k.
Let T (n, k, `) be the ε-orthogonality graph with vertex set T (n, k) and ε = `−1

k .

Theorem 7. Let 2 ≤ ` < k be integers. For ε = k/(`− 1),

dimε(n) ≥ ω(T (n, k, `)) ≥ t(k, `)
(
n

`

)/(k
`

)
.

Proof. As k−1/2 T (n, k, `) ⊂ Γ (n, ε), the first inequality holds. The second
inequality follows from (6). Indeed, for M as above, put W :=

⋃
T∈M τ(T, `).

Then W is a clique in T (n, k, `) and has the given number of elements. 2

For concreteness, let F be the family consisting of all 10-sets contained in
[1000]; |F| ≈ 2.63×1023. A subfamilyM0 of F in which the 10-sets are pairwise
disjoint (` = 1) contains at most 100 elements by the Pigeonhole Principle. But
using k = 10, ` = 3, according to (6), a maximum subfamily M2 ⊆ F with
pairwise overlaps of at most 2 elements has over one million elements.

There exists a 12 × 12 Hadamard matrix, so t(10, 3) ≥ 12. Replacing each
10-set by t(10, 3) sparse ternary vectors,M2 generates a clique containing more
than 16.6 × 106 vectors whose pairwise normalized dot products do not exceed
1/5 (hence, the pairwise-angles are between 78 and 102 degrees).



6 Vector Space Models of Word Semantics

The following is a very brief and incomplete account of one of the first scientific
areas to utilize quasiorthogonality.

The problem of analyzing word-meaning has taken new significance in the
current environment where large amounts of textual information is available
online along with powerful computational engines capable of handling a billion-
word corpus (Pennington, Socher, and Manning, [52]). A conceptual paradigm,
with philosophical roots going back to Wittgenstein, is to group words by their
common neighbors. A widely quoted version is “You shall know a word by the
company it keeps,” due to Firth, a British linguist [18], in 1957.

In order to construct an abstract space, where words can live and in which
they can be distributed, vector space (“word space”) models with angular dis-
tance have been widely used since the SMART (System for the Mechanical Anal-
ysis and Retrieval of Text) information retrieval system was developed at Cornell
University in the 1960s; see Manning, Raghavan, and Schűtze [46].

Other possibilities could certainly be considered for the analysis of word
streams - including graphs, hypergraphs, category-theoretic diagrams, and prob-
abilistic metric-space models - but the vector space approach dominates.

Underlying word-space models is the Distributional Hypothesis (cf. Sahlgren
[58]), Words are similar in meaning if their normalized context vectors are close.

Context vectors can be formed based on the family of all other words (other
than very common and uninformative words such as “and” or “the”) or context
vectors may utilize multi-word segments (e.g., documents).

If w denotes the number of words and c the number of contexts, then the
information structure required is the w × c co-occurrence matrix whose entries
can be counts of co-occurrence or normalized frequencies (e.g., how often two
words appeared together).

Different techniques can be used to reduce column-dimensionality such as
singular value decomposition (SVD), principle components analysis (PCA), or
independent component analysis (ICA). However, Sahlgren [57] notes three dis-
advantages of such techniques: (i) they tend to be computationally infeasible for
larger examples, (ii) they need to be repeated each time new data is encountered,
and (iii) the initial very-large co-occurrence matrix must still be constructed.

In Random Indexing, one assigns sparse ternary vectors to each context and
then the context vectors are summed for each context in which a word appears.
This might have significance for classification problems if the nonzero coordi-
nates correspond to some attribute which is either strongly positive or strongly
negative. For instance, if the attribute were “connected with animals”, then
“puppy” would get a +1 while “rock” gets −1.

Random projection, as in the Johnson-Lindenstrauss Lemma, has also been
used in machine learning and gave results slightly inferior to SVD but with much
less effort (Fradkin and Madigan [20] and Li, Hastie, and Church [43]).



7 Some Variants of Orthogonality

The relation of “orthogonality” is important in various fields of mathematics -
for example, in combinatorics and functional analysis - not just in geometry.

For n a positive integer, an n×n array of elements all taken from some fixed
n-element set is called a Latin Square if each row and each column contains no
repeated element. Two order-n Latin Squares A,B are called (LS)orthogonal if
the ordered superposition

{(A(i, j), B(i, j)) | i, j = 1, . . . , n}

contains n2 distinct elements. Note that A and B may utilize different n-sets for
their elements. See, e.g., Dénes and Keedwell [12] and Ryser [56].

Orthogonal Latin Squares were first used for the design of efficient statistical
experiments. The largest number of order-n pairwise-orthogonal LS is n−1 and,
further, the upper bound is achieved when n ≥ 3 is a prime power; this is also
related to the existence of projective planes [56, pp. 79–89].

A notion of “almost orthogonal” LS is described by Mohan in [50] which notes
that Horton [29] found two 6×6 Latin Squares whose ordered superposition con-
tains 34 distinct pairs. As Tarry has proved Euler’s claim that no pair of order-6
LS is orthogonal, 36 is not achievable. Other ways to weaken orthogonality of
LS might also be formulated; see also [12].

Quite different applications of orthogonality and its generalizations occur
within analysis. Two measurable functions mapping a measure space (S, µ) to
the real numbers are called orthogonal if the µ-integral over S of their pairwise-
products is zero . As orthogonality implies linear independence, sets of pairwise-
orthogonal functions form highly convenient bases for function spaces and are
essential to analysis.

Typically, one takes S = Rn and defines µ by means of a weighting function.
For example, the vector space of polynomials defined on the real line has, in
addition to the usual basis of powers,

{1 = x0, x, x2, x3, . . .},

a much more useful basis, the Hermite polynomials Hn, which are pairwise-
orthogonal with respect to the Gaussian function; that is, for a 6= b ∈ N+,∫ ∞

−∞
Ha(x)Hb(x) exp(−x2)dx = 0;

see, e.g., Lebedev [41, p. 65].
A notion of quasiorthogonality exists in the case of polynomial functions and

was introduced by M. Riesz in 1923. Weakening the condition of orthogonality
for infinite sets may still permit partial satisfaction of certain special properties
of orthogonal sets of polynomials such as existence of 3-term recursions and
locations of zeros. See Brezinsky, Driver, and Redivo-Zaglia [10].



An application of quasiorthogonality in information theory to space-time
block codes involves concepts simultaneously related to both of the above types
of orthogonality; see Farkhani [17] and Su and Xia [62].

A notion of “almost orthogonal” in normed linear spaces is due to Yoshida
[65, p. 84], attributed there to F. Riesz in 1918. Let ‖x−A‖ := infa∈A ‖x− a‖.

Theorem 8. Let (X, ‖ ·‖) be a normed linear space with M 6= X a closed linear
subspace. Then ∀ε ∈ (0, 1), ∃x ∈ X with ‖x‖ = 1 and ‖x−M‖ ≥ 1− ε.

Yoshida calls x “nearly orthogonal” to M . As a consequence, he gives a short
argument for compactness of unit balls in finite dimensional normed linear spaces
provided the induced metric is complete in the Cauchy sense, i.e., when (X, ‖ ·‖)
is a Banach space.

In a Hilbert space (X, ·), with a real inner product, there always exists an
orthonormal basis, and every such basis has the same cardinality Schaefer and
Wolff [59, p.44], so vector space dimension (largest size of a linearly independent
set) equals orthogonal dimension (largest size of a set of pairwise-orthogonal
nonzero vectors). Indeed, pairwise-orthogonal sets of nonzero vectors are inde-
pendent Deutsch [14, p. 8], while the Gramm-Schmidt orthogonalization proce-
dure [14, pp. 51-52] shows that any linear basis can be converted to an orthonor-
mal basis, so linear and orthogonal dimension coincide.

However, there is a finite quasiorthogonal dimension for the Hilbert sphere
due to Rankin [54] in 1955. He proved that one can pack only finitely many
spherical caps of radius ρ ∈ (π/4, π/2) into the set of unit-norm points in Hilbert
space; Rankin gives an explicit formula for their number. For a more general
approach, applying to Banach spaces, see, e.g., Yan [64]. We conjecture that
these packing constants supply bounds on computation which are independent
of input dimension.

Following the spherical cap-packing formulation, Zhang [66] uses quasiorthog-
onality to “develop a fast detection method for a low-rank structure in high-
dimensional Gaussian data without using the spectrum information.” He bounds
spurious correlation which occurs when explanatory variables greatly outnum-
ber observations. This situation, where a fixed finite set of data is mapped into
increasingly high dimension hypothesis space, is claimed to typically fit a geo-
metric model where data points are vertices of a simplex, which however may
be rotated in different ways; see Hall et al. [25]. As a concrete instance, one may
have a small number of patient-derived samples which are tested against a large
family of genetic hypotheses (Fan et al. [19]).
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