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Basic facts (primary school level)

1. a
b + c

d = ad+bc
bd

2. a
b − c

d = ad−bc
bd

3. a
b · c

d = ac
bd

4.
a
b
c
d

= ad
bc

5. a
0 is not defined (no result)

6. (a + b)(c + d) = ac + ad + bc + bd

7. (a + b)2 = a2 + 2ab + b2

8. (a− b)2 = a2 − 2ab + b2

9. a2 − b2 = (a + b)(a− b)

10. ax2 + bx + c = 0 has roots x1,2 = −b±√b2−4ac
2a , and there holds

ax2 + bx + c = a(x− x1)(x− x2)

Two often misunderstood facts.

1.
√

x is a nonnegative2 number y satisfying x = y2

2. |a| = a if a ≥ 0, and |a| = −a if a < 0

2Thus,
√

4 = 2, not −2, despite the fact that (−2)2 = 4.
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Intervals

1. (a, b) is the set of all numbers satisfying a < x < b (open interval)

2. [a, b] is the set of all numbers satisfying a ≤ x ≤ b (closed interval)

3. (a, b] is the set of all numbers satisfying a < x ≤ b (half-closed interval)

4. [a, b) is the set of all numbers satisfying a ≤ x < b (half-closed interval)
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Elementary functions and their domains

1. y = ex (D = (−∞,∞))

2. y = ln x (D = (0,∞))

3. y = xa (domain depends on a)

4. y = sin x (D = (−∞,∞))

5. y = cosx (D = (−∞,∞))

6. y = tanx (D = (−∞,∞) except all x = kπ
2 , k odd integer)

7. y = cotx (D = (−∞,∞) except all x = kπ
2 , k even integer)

Functions ax and loga x can be expressed via ex and lnx (see p. 4, items 8 and 9).
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Evaluation of elementary functions

1. ex = 1 + x
1! + x2

2! + x3

3! + x4

4! + x5

5! + x6

6! + . . .

2. ln x = 2
(

x−1
x+1 + 1

3(x−1
x+1)3 + 1

5(x−1
x+1)5 + 1

7(x−1
x+1)7 + . . .

)

3. xa = ea·ln x

4. sinx = x
1! − x3

3! + x5

5! − x7

7! + x9

9! − x11

11! + . . .

5. cosx = sin(π
2 − x)

6. tanx = sin x
cos x

7. cotx = cos x
sin x

8. ax = e(ln a)x

9. loga x = ln x
ln a

Two important numbers:

1. e = 1 + 1
1! + 1

2! + 1
3! + 1

4! + 1
5! + 1

6! + . . . = 2.71828 . . .

2. π = 4 · (1
1 − 1

3 + 1
5 − 1

7 + 1
9 − 1

11 + . . .) = 3.14159 . . .

(n! = 1 · 2 · 3 · . . . · n)
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Properties of elementary functions (secondary school level)

1. ex > 0

2. exey = ex+y

3. ex

ey = ex−y

4. (ex)y = ex·y

5. for each x > 0 there exists exactly one y satisfying x = ey (namely, y = ln x)

6. x = eln x

7. ln(x · y) = lnx + ln y

8. ln x
y = ln x− ln y

9. ln xy = y lnx

10. x0 = 1

11. x−a = 1
xa , in particular x−1 = 1

x

12. x
m
n = n

√
xm, in particular x

1
2 =

√
x

13. (xy)a = xaya

14. sin(x + 2π) = sinx

15. cos(x + 2π) = cosx

16. sin2 x + cos2 x = 1

17. tan(x + π) = tanx

18. cot(x + π) = cot x

19. cotx = 1
tan x
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Functions

The functions we meet in examples are constructed from elementary functions by repeated
use of five operations:

f(x) + g(x)

f(x)− g(x)

f(x) · g(x)

f(x)
g(x)

f(g(x))

the last of them being called the composite function (as e.g. sin(x2)).
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Limit

Definition.
A function f(x) is said to have limit d at a point c, which we write as

lim
x→c

f(x) = d, (0.1)

if f(x) approaches d as x approaches c (without touching c).

Explanation. This is an informal definition since the word “approaches” can be understood
only intuitively. The exact definition3 is beyond the scope of a business mathematics class.
The words “without touching c” mean that the possibility of x = c is excluded. As a
consequence, f(x) need not be defined at c, yet lim

x→c
f(x) may exist.

Example. The function
f(x) = x sin 1

x

is obviously not defined at 0, yet lim
x→0

f(x) = 0, as shown by its graph:
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3Exact definition of (0.1): for each ε > 0 there exists a δ > 0 such that each x with 0 < |x− c| < δ satisfies
|f(x)− d| < ε.
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Continuity

Definition.
A function f(x) is called continuous in an interval I (open, closed, or half-closed) if

lim
x→c

f(x) = f(c)

for each c ∈ I.4

Important fact.
All elementary functions are continuous in their domains.

Explanation. A continuous function “does not jump” at any point; its graph can be drawn
up without lifting the pen from the paper. An example of a discontinuous function is the
sign function defined by

sign(x) =
{

1 if x ≥ 0,
−1 if x < 0

which “jumps” at c = 0. If x approaches 0 from the left, then sign(x) approaches −1, while
if x approaches 0 from the right, then sign(x) approaches 1:
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4Which means that for each c ∈ I, f(x) approaches f(c) as x approaches c.
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Definition of the derivative

The derivative of a function f at x is formally defined as

f ′(x) = lim
h→0

f(x + h)− f(x)
h

.

This means that the value of
f(x + h)− f(x)

h

approaches f ′(x) as h approaches 0.

Note. Instead of f ′(x), we can also alternatively write df
dx . The meaning is the same.

Example 1. For the quadratic function f(x) = x2 we have

f(x + h)− f(x)
h

=
(x + h)2 − x2

h
=

x2 + 2xh + h2 − x2

h
= 2x + h

and this value approaches 2x as h approaches 0. Hence,

(x2)′ = 2x.

Example 2. For the reciprocal function f(x) = 1
x we have

f(x + h)− f(x)
h

=
1

x+h − 1
x

h
=

−1
(x + h)x

and this value approaches − 1
x2 as h approaches 0. Hence,

(
1
x

)′
= − 1

x2
.
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Derivatives of elementary functions

1. (ex)′ = ex

2. (lnx)′ = 1
x

3. (xa)′ = axa−1

(particular cases: 1′ = 0, x′ = 1; includes roots: (
√

x)′ = (x
1
2 )′, etc.)

4. (sinx)′ = cosx

5. (cosx)′ = − sinx

6. (tanx)′ = 1
cos2 x

7. (cotx)′ = − 1
sin2 x

Additionally, we have

8. (ax)′ = ax · ln a

9. (loga x)′ = 1
x·ln a

10. c′ = 0

These formulae should be memorized; this is the “alphabet” of calculus.
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Differentiation rules

(f(x) + c)′ = f ′(x) (additive constant) (0.2)
(c · f(x))′ = c · f ′(x) (multiplicative constant) (0.3)

(f(x) + g(x))′ = f ′(x) + g′(x) (0.4)
(f(x)− g(x))′ = f ′(x)− g′(x) (0.5)
(f(x) · g(x))′ = f ′(x) · g(x)+f(x) · g′(x) (0.6)(

f(x)
g(x)

)′
=

f ′(x) · g(x)−f(x) · g′(x)
g2(x)

(0.7)

(f(g(x)))′ = f ′(g(x)) · g′(x) (0.8)

Explanation to rule (0.8). To compute the derivative of the composite function

h(x) = f(g(x))

write it in the form
h(x) = f(y), y = g(x)

and use the formula
h′(x) = f ′(y) · y′ (0.9)

i.e., differentiate the function f(y) with respect to y and multiply the result by the derivative
of g(x)

h′(x) = f ′(y) · g′(x)

then substitute back y = g(x):

h′(x) = f ′(g(x)) · g′(x).

In this way we get the right-hand side of (0.8).

Example. To compute the derivative of the composite function

h(x) = ln(1 + x2),

we write it in the form
h(x) = ln(y), y = 1 + x2

and use the formula (0.9)

h′(x) = (ln(y))′ · y′ = 1
y
· 2x,

then we substitute back y = 1 + x2:

h′(x) =
2x

1 + x2
.
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Differentiation: Examples

Examples of using the rules (0.2)-(0.8):

1. f(x) = sinx + 5
f ′(x) = (sinx)′ = cosx
(rule (0.2))

2. f(x) = 3 · ln x
f ′(x) = 3 · (lnx)′ = 3 · 1

x = 3
x

(rule (0.3))

3. f(x) = x2 + 2x + 1
f ′(x) = (x2)′ + (2x)′ + 1′ = 2x + 2 · 1 + 0 = 2x + 2
(rule (0.4))

4. f(x) = ex − cosx
f ′(x) = (ex)′ − (cosx)′ = ex − (− sinx) = ex + sin x
(rule ())

5. f(x) = x · ln x
f ′(x) = x′ · ln x + x · (lnx)′ = 1 · ln x + x · 1

x = ln x + 1
(rule (0.6))

6. f(x) = x2−1
x2+1

f ′(x) = (x2−1)′(x2+1)−(x2−1)(x2+1)′
(x2+1)2

= 2x(x2+1)−(x2−1)2x
(x2+1)2

= 2x3+2x−2x3+2x
(x2+1)2

= 4x
(x2+1)2

(rule (0.11))

7. f(x) = sin(x4): write f(x) = sin(y), y = x4

f ′(x) = (sin(y))′ · y′ = cos(y) · (x4)′ = cos(x4) · 4x3 = 4x3 cos(x4)
(rule (0.8))
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Minima and maxima

Definitions.
A function f is said to have a relative minimum at c if it satisfies

f(x) ≥ f(c)

for each x in some neighborhood of c (an open interval containing c).

A function f is said to have a relative maximum at c if it satisfies

f(x) ≤ f(c)

for each x in some neighborhood of c (an open interval containing c).

Facts.

1. If f ′(c) = 0 and f ′′(c) > 0, then f(x) has a relative minimum at c.

2. If f ′(c) = 0 and f ′′(c) < 0, then f(x) has a relative maximum at c.

3. If f ′(c) 6= 0, then f(x) has neither relative minimum, nor relative maximum at c.

A point c at which f ′(c) = 0 is called a critical point.
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Plotting a function

Definitions.
A function f is said to be increasing in an open interval (a, b) if

f(x1) < f(x2)

for each a < x1 < x2 < b (as e.g. x2 in (0,∞), see p. 6).

A function f is said to be decreasing in an open interval (a, b) if

f(x1) > f(x2)

for each a < x1 < x2 < b (as e.g. x2 in (−∞, 0), see p. 6).

A function f is said to be convex in an open interval (a, b) if it is “hollowed down” there (as
e.g. ex in (−∞,∞), see p. 5).

A function f is said to be concave in an open interval (a, b) if it is “hollowed up” there (as
e.g. lnx in (0,∞), see p. 5).

Facts.

1. If f ′(x) > 0 for each x ∈ (a, b), then f(x) is increasing in (a, b).

2. If f ′(x) < 0 for each x ∈ (a, b), then f(x) is decreasing in (a, b).

3. If f ′′(x) > 0 for each x ∈ (a, b), then f(x) is convex in (a, b).

4. If f ′′(x) < 0 for each x ∈ (a, b), then f(x) is concave in (a, b).

Summary:

f ′′ > 0 f ′′ < 0
f ′ = 0 minimum maximum
f ′ > 0 increasing, convex increasing, concave
f ′ < 0 decreasing, convex decreasing, concave
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Plotting: Example

Example. The function
f(x) = x3 − 3x

has
f ′(x) = 3x2 − 3 = 3(x2 − 1),

f ′′(x) = 3 · 2x = 6x,

hence f ′(c) = 0 for c1 = −1 and c2 = 1.
Since f ′′(c1) = −6 < 0 and f ′′(c2) = 6 > 0, f has a relative maximum at c1 and a relative
minimum at c2.
Since f ′(x) > 0 for x2 > 1 and f ′(x) < 0 for x2 < 1, f is increasing in (−∞,−1) and in
(1,∞), and decreasing in (−1, 1).
Since f ′′(x) > 0 for x > 0 and f ′′(x) < 0 for x < 0, f is convex in (0,∞), and concave in
(−∞, 0).
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Definition of the definite integral

Given a function f(x) on a closed interval [a, b] and an integer n ≥ 1, define the nth integral
sum Sn as follows: first compute

h =
b− a

n

(the so-called step), and then evaluate

Sn = f(a + h)h + f(a + 2h)h + f(a + 3h)h + . . . + f(a + nh)h (0.10)

Definition.
If f(x) is continuous on [a, b] (see p. 12), then, as n approaches infinity (i.e., increases
without bound), Sn is guaranteed to approach certain number which is denoted by

∫ b

a
f(x)dx

and is called the definite integral of f(x) over the interval [a, b].

Note 1. dx is only a symbol which has evolved from ∆x, the 17th century notation for the
above h; in this way the integral symbol “copies” the form of the integral sum (0.10).

Note 2. The above definition holds for continuous functions only. For the general case a
more complicated way is needed.

Note 3. If f(x) is nonnegative in [a, b], then
∫ b
a f(x) dx expresses the area of the region

bounded by the curve y = f(x) and by the lines x = a, x = b, y = 0. For example,∫ 1
−1

√
1− x2 dx is equal to the area of the half-circle centered in the origin of the plane and

having radius 1 and y ≥ 0, so that its value is π
2 .
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The fundamental theorem of calculus, and definition of indefinite integral

The fundamental theorem of calculus, coauthored by I. Newton and G. W. Leibniz (second
half of the 17th century), asserts that

∫ b

a
f(x) dx = F (b)− F (a)

where F (x) is any function with the property

F ′(x) = f(x) for each x ∈ [a, b]. (0.11)

Definition.
A function F (x) with the above property is called an indefinite integral5 of f(x) over [a, b]
and is denoted by ∫

f(x) dx

(i.e., the same symbol as for the definite integral, but without bounds).

Note 1. Thus, the definite integral is a number whereas indefinite integral is a function; the
definite integral can be computed as soon as we know a corresponding indefinite integral.
Next pages of this text are dedicated to computation of indefinite integrals.

Note 2. The definite integral, if it exists, is uniquely determined. On the contrary, an
indefinite integral, if it exists, is never unique: in fact, if F (x) satisfies (0.11), then so does
F (x) + C for any constant C because

(F (x) + C)′ = F ′(x) + C ′ = F (x) + 0 = F (x) = f(x).

Therefore, we always add “+C” to the computed indefinite integral F (x) to indicate that
each function formed by adding a constant C to F (x) is also an indefinite integral, as e.g. in

∫
cosx dx = sin x + C

etc.

Note 3. Another fundamental theorem (although usually not quoted as such) says that if
f(x) is continuous in an open interval (c, d), then it has an indefinite integral F (x) in (c, d).
This theorem states only existence of an indefinite integral; it does not show a way how to
find it.

5Or, primitive function.
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Integrals of elementary functions

1.
∫

ex dx = ex + C

2.
∫

ln x dx = x(lnx− 1) + C

3.
∫

xa dx = xa+1

a+1 + C if a 6= −1,∫
1
x dx = ln |x|+ C if a = −1 (notice the absolute value6)

4.
∫

sinx dx = − cosx + C

5.
∫

cosx dx = sin x + C

6.
∫

tanx dx = − ln | cosx|+ C

7.
∫

cotx dx = ln | sinx|+ C

Related results:

1.
∫

0 dx = C

2.
∫

1 dx = x + C

3.
∫

c dx = cx + C

4.
∫

ax dx = ax

ln a + C

5.
∫

loga x dx = x(ln x−1)
ln a + C

6.
∫

1
cos2 x

dx = tanx + C

7.
∫

1
sin2 x

dx = − cotx + C

8.
∫

1
1+x2 dx = arctanx + C

(a new function y = arctanx defined in D = (−∞,∞) by x = tan y, y ∈ (−π
2 , π

2 ))

9.
∫

1√
1−x2

dx = arcsinx + C

(a new function y = arcsinx defined in D = [−1, 1] by x = sin y, y ∈ [−π
2 , π

2 ])

6Which is often wrongly omitted.
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Integration rules: addition and subtraction

∫
c · f(x) dx = c ·

∫
f(x) dx (multiplicative constant)

∫
(f(x) + g(x)) dx =

∫
f(x) dx +

∫
g(x) dx

∫
(f(x)− g(x)) dx =

∫
f(x) dx−

∫
g(x) dx

Examples:

1.
∫

(3x5 − sinx +
√

x) dx = 3
∫

x5 dx − ∫
sinx dx +

∫
x

1
2 dx = 3x6

6 − (− cosx) + x
3
2
3
2

=
1
2x6 + cosx + 2

3x
3
2 + C

2.
∫

x2+2x+3
x2 dx =

∫
(1+ 2

x +3x−2) dx =
∫

1 dx+2
∫

1
x dx+3

∫
x−2 dx = x+2 ln |x|+3x−1

−1 =
x + 2 ln |x| − 3

x + C

3.
∫

tan2 x dx =
∫

sin2 x
cos2 x

dx =
∫

1−cos2 x
cos2 x

dx =
∫

( 1
cos2 x

− 1) dx =
∫

1
cos2 x

dx − ∫
1 dx =

tanx− x + C

4.
∫ 1
0 x2 dx. Indefinite integral: F (x) =

∫
x2 dx = x3

3 . By Newton-Leibniz formula,∫ 1
0 x2 dx = F (1)− F (0) = 1

3
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Integration by parts

∫
f ′(x) · g(x) dx = f(x) · g(x)−

∫
f(x) · g′(x) dx

Examples:

1.
∫

exx dx =
∫

(ex)′x dx = exx− ∫
ex · x′ dx = exx− ∫

ex dx = exx− ex = ex(x− 1) + C

2.
∫

x cosx dx =
∫

(cosx)x dx =
∫

(sinx)′x dx = (sinx)x − ∫
(sinx) · 1 dx = x sinx −

(− cosx) = x sinx + cosx + C

3.
∫

ln x dx =
∫

1 · lnx dx =
∫

x′ lnx dx = x ln x − ∫
x(lnx)′ dx = x ln x − ∫

x 1
x dx =

x ln x− ∫
1 dx = x ln x− x = x(lnx− 1) + C. (See p. 22, item 2.)

Explanation. The original integral is given in the form
∫

h(x) · k(x) dx

It is not said which one of the two functions should be taken for f ′(x) and g(x), respectively:
we must make the choice. In the process, f ′(x) integrated and g(x) is differentiated. There-
fore, we must choose f ′(x) to be a function among h(x), k(x) which we are able to integrate,
and if we are able to do so with both of them, to choose g(x) as a function which simplifies
by differentiation.
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Integration by substitution

∫
f(x) dx =

∫
f(ϕ(t)) · ϕ′(t) dt

Explanation. We make substitution x = ϕ(t), where ϕ must be increasing or decreasing.
From x = ϕ(t) we have

dx

dt
= ϕ′(t)

so that we replace dx in the original integral by ϕ′(t)dt. Then we compute the integral
∫

f(ϕ(t)) · ϕ′(t) dt

and finally we must replace the auxiliary variable t by the original variable x. This is done
by solving first the equation x = ϕ(t) for t, thus obtaining t = ψ(x), where ψ is a certain
function. Then we replace t by ψ(x) everywhere in the result (see Examples 1-3 below).
Sometimes it helps to evaluate dt

dx instead of dx
dt (Examples 4 and 5).

Examples:

1.
∫

cos 4x dx. We choose substitution 4x = t, x = 1
4 t, dx

dt = 1
4 , dx = 1

4dt.
Then

∫
cos 4x dx =

∫
cos t · 1

4 dt = 1
4

∫
cos t dt = 1

4 sin t = 1
4 sin 4x + C

2.
∫

1
3x+5 dx. Substitution 3x + 5 = t, x = t−5

3 , dx
dt = 1

3 .
Then

∫
1

3x+5 dx =
∫

1
t · 1

3 dt = 1
3

∫
1
t dx = 1

3 ln |t| = 1
3 ln |3x + 5|+ C

3.
∫

(x + 1)100 dx. Substitution x + 1 = t, dx = dt.
Then

∫
(x + 1)100 dx =

∫
t100 dt = t101

101 = (x+1)101

101 + C

4.
∫ 2
1

x
1+x2 dx. Substitution 1+x2 = t, dt

dx = 2x (notice the difference: dt
dx , not dx

dt ), x dx =
1
2dt. Then F (x) =

∫
x

1+x2 dx =
∫

1
t · 1

2 dt = 1
2 ln |t| = 1

2 ln |1 + x2| = 1
2 ln(1 + x2) + C

(because 1 + x2 is always positive), and
∫ 2
1

x
1+x2 dx = F (2) − F (1) = 1

2 ln 5 − 1
2 ln 2 =

1
2 ln 5

2 .

5.
∫

sin3 x cosx dx. Substitution sinx = t, dt
dx = cosx, cos x dx = dt.

Then
∫

sin3 x cosx dx =
∫

t3 dt = t4

4 = sin4 x
4 + C
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Optimization of a function of two variables

Definitions.
A function f(x, y) is said to have a relative minimum at a point (c, d) if it satisfies

f(x, y) ≥ f(c, d)

for each (x, y) in some neighborhood of (c, d).

A function f(x, y) is said to have a relative maximum at a point (c, d) if it satisfies

f(x, y) ≤ f(c, d)

for each (x, y) in some neighborhood of (c, d).

Facts.

(a) If
fx(c, d) = 0

fy(c, d) = 0

fxx(c, d)fyy(c, d)− f2
xy(c, d) > 0

fxx(c, d) > 0

then f(x, y) has a relative minimum at (c, d).

(b) If
fx(c, d) = 0

fy(c, d) = 0

fxx(c, d)fyy(c, d)− f2
xy(c, d) > 0

fxx(c, d) < 0

then f(x, y) has a relative maximum at (c, d).

Observe that in both cases the first three conditions are the same.
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